
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018 1

PORCA: Modeling and Planning for Autonomous
Driving among Many Pedestrians

Yuanfu Luo1 Panpan Cai1 Aniket Bera2 David Hsu1 Wee Sun Lee1 Dinesh Manocha3

Abstract—This paper presents a planning system for au-
tonomous driving among many pedestrians. A key ingredient of
our approach is PORCA, a pedestrian motion prediction model
that accounts for both a pedestrian’s global navigation intention
and local interactions with the vehicle and other pedestrians.
Unfortunately, the autonomous vehicle does not know the pedes-
trians’ intentions a priori and requires a planning algorithm
that hedges against the uncertainty in pedestrian intentions.
Our planning system combines a POMDP algorithm with the
pedestrian motion model and runs in real time. Experiments
show that it enables a robot scooter to drive safely, efficiently,
and smoothly in a crowd with a density of nearly one person per
square meter.

Index Terms—Autonomous vehicle navigation; motion plan-
ning and path planning; planning under uncertainty; crowd
motion models

I. INTRODUCTION

DRIVING safely, efficiently, and smoothly among many
pedestrians is a crucial capability of autonomous vehicles

that operate in densely populated public places, such as
airport terminals, shopping malls, hospital complexes etc. . It is
challenging, because of the uncertainty of pedestrian motions,
constantly changing environments, sensor noise, and imperfect
robot control. See Fig. 1 for an example.

To drive successfully among pedestrians, the autonomous
vehicle must understand pedestrian behaviors. Pedestrian
movements generally depend on intentions and interactions.
Intentions represent global navigation goals, e.g., final destina-
tions. However, intentions alone do not fully determine pedes-
trian movements. Interactions with obstacles, vehicles, and
other pedestrians in the local environment also significantly
affect pedestrian movements. A pedestrian motion model must
account for both intentions and interactions in order to capture
pedestrian motions accurately at both global and local scales.
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Fig. 1: Our robot scooter among many people on a campus
plaza at the National University of Singapore.

Integrating an accurate pedestrian motion model with a
planning algorithm enables autonomous driving among pedes-
trians. Unfortunately, pedestrian intentions and interactions of-
ten contain significant uncertainty. Intentions of pedestrians are
not directly observable and must be inferred. Their interactions
vary widely across individuals, because of differences in age,
gender, risk propensity, etc. . Handling these uncertainties is
thus key to robust planning for driving among pedestrians.

Our planning system incorporates pedestrian intentions,
interactions, and their uncertainties in a principled manner. We
first develop a pedestrian motion model conditioned on both
intentions and interactions. We then embed the model within
a Partially Observable Markov Decision Process (POMDP) to
plan for optimal vehicle control under uncertainty.

Our pedestrian motion model extends Optimal Recipro-
cal Collision Avoidance (ORCA) [1], which is a general
motion model for multi-agent reciprocal collision avoidance.
ORCA provides sufficient conditions for collision-free motion
by assuming that each interacting agent takes half of the
responsibility of avoiding pairwise collisions. Our extension,
Pedestrian ORCA (PORCA), addresses two main limitations
of ORCA. First, ORCA suffers from the freezing pedestrian
problem, when applied to pedestrian motion modeling. Under
the ORCA model, agents try to move along the direction of
their preferred velocity as much as possible. When two pedes-
trians or a pedestrian and a vehicle encounter head-on, both
insist on their direction of movement, instead of coordinating
to take a small detour. To avoid collision, both must slow
down, sometimes, to a complete stop, resulting in the freezing
pedestrian problem. PORCA augments the agent’s objective
function in order to encourage it to move and thus explore
new directions in order to escape from the “freezing state”.
Second, the original ORCA model assumes a homogenous
set of agents. For pedestrian-vehicle interaction, the vehicle is
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more retricted in local movement than the pedestrian, because
of the non-holonomic constraints. To address this asymmetry,
PORCA assigns greater responsiblity to the pedestrian for
collsion avoidance, when the pedestrian and the vehicle are
close to each other.

We incorporate PORCA into a probabilistic model of system
dynamics. Our POMDP model encodes pedestrian intentions
as hidden variables and applies PORCA in the state-transition
function to predict pedestrian motions conditioned on their
intentions and interactions. By solving the POMDP, our system
performs intention- and interaction-aware planning for the
autonomous vehicle. We use a parallel version of the DESPOT
algorithm [2] to solve the POMDP model efficiently. The
algorithm maintains a belief, i.e., probability distribution, over
possible intentions of each pedestrian. At each time step, it
performs a lookahead search in a belief tree reachable under
future actions and observations, to plan for optimal vehicle
control.

Experiments show that PORCA predicts pedestrian motions
more accurately than prior models. By integrating it with
POMDP planning, our autonomous vehicle successfully avoids
collision with pedestrians and reaches the goal more efficiently
and smoothly.

II. RELATED WORK

A. Planning for Navigation among Pedestrians

Considerable research has been conducted on navigation
among pedestrians. Many previous planning algorithms ig-
nore pedestrians’ intentions and interactions when predicting
their motions. For example, the approaches in [3], [4] treat
pedestrians as static obstacles and handle pedestrian dynamics
through online replanning. Other approaches assume simple
independent motions for pedestrians, e.g., constant velocity
[5]. Another group of planning algorithms consider pedestri-
ans’ intentions, but do not explicitly model their interactions.
For example, Foka and Trahanias [6] have integrated naviga-
tion goals and short-term motions into a dynamic costmap,
assuming that pedestrians move independently and do not
interact with each other. Thompson, Horiuchi and Kagami
[7] have followed a very similar approach, using probability
grids to encode pedestrians’ independent motions. Both [8]
and [9] have learned pedestrian motion patterns from data
to predict trajectories, then applied A* to compute a path
for the vehicle using those trajectories. These data-driven
approaches, however, can hardly generalize to novel envi-
ronments [7]. Bai et al. [10] has modeled the navigation
problem as a POMDP to handle uncertain pedestrian inten-
tions, but still used a simple straight-line motion model for
them. Some planning algorithms, though few, have modeled
both intentions and interactions of pedestrians. However, they
often overlook the underlying uncertainty. The planning in
[11] models pedestrian-vehicle interactions using interacting
Gaussian processes. However, their method assumes each
pedestrian has a fixed navigation goal, hence does not capture
the uncertainty on pedestrian intentions. Kuderer et al. [12]
performed navigation by optimizing trajectories in a joint
state space of all pedestrians and the vehicle. It assumes

Fig. 2: System overview. The red box contains the key
component of vehicle speed control.

that pedestrians’ intentions are fixed in a planning cycle. The
method is also highly computationally expensive.

Our work is related to the intention-aware planning in [10],
but our POMDP models both intentions and interactions, and
their underlying uncertainty. Instead of assuming straight-line
motions of pedestrians as in [10], we integrate a sophisticated
pedestrian motion model into the POMDP to better character-
ize pedestrians’ short-term motions.

B. Pedestrian Motion Modeling

Pedestrian motion modeling has been studied extensively.
There are three main categories of pedestrian motion models:
social force based, data-driven and geometric approaches.
Most existing methods do not explicitly model the interac-
tions between pedestrians and non-holonomic vehicles. Social
force models [13], [14], [15] assume that pedestrians are
driven by virtual forces that measure the internal motivations
of individuals for reaching the goal, avoiding obstacles, or
performing certain actions, etc.. These approaches perform
well in simulating crowds, but often predict the movements
of individual pedestrian poorly [12]. Data-driven approaches
[16], [17] learn pedestrian dynamics from past trajectories.
However, the training data required is often hard to obtain.
Besides, the learned models may not generalize well to novel
scenarios. Geometric approaches compute collision-free paths
for multiple agents via optimization in the feasible geometric
space. This category includes the well-known Velocity Ob-
stacle (VO) based [18] and the Reciprocal Velocity Obstacle
(RVO) based algorithms [19], [1], [20].

Some previous work has tried to handle non-holonomic
motion of vehicles. The method in [21] uses a trajectory track-
ing controller to generate non-holonomic vehicle motion after
applying ORCA. However, inside ORCA, the vehicle is still
considered as a holonomic agent. Models in [22], [23] handle
pedestrian-vehicle interactions specifically at crosswalks but
are not applicable for other general scenes.

Our pedestrian motion model is developed upon ORCA
[1], a model based on optimal reciprocal collision avoidance.
We improve ORCA by taking the non-holonomic nature of
vehicles into account and enhancing its objective function to
simulate more natural interactions.
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Fig. 3: (a) VOτ
A|B (gray), the velocity obstacle of agent A

(blue) induced by agent B (green) for time τ , is a truncated
cone with its apex at the origin (in velocity space) and its legs
tangent to the disc B 	 A. If the relative velocity of A with
respective to B is in VOτ

A|B , A and B will collide with each
other before time τ . (b) ORCAτ

A|B is a half-plane divided by
the line that is perpendicular to the vector u through the point
voptA + 1

2u, where u is the vector from voptA −v
opt
B to the closest

point on the boundary of VOτ
A|B .

III. OVERVIEW

Fig. 2 shows an overview of our driving system. It consists
of a belief tracker, a path planner, and a speed planner. The
belief tracker maintains a belief over pedestrian intentions
and constantly updates it to integrate new observations. The
path planner uses hybrid A* [24] to plan a non-holonomic
driving path, and extracts vehicle steering commands from the
path. The speed planner solves an intention POMDP model to
control the vehicle speed along the planned path. The planning
system re-plans both the steering and the speed at 3 HZ.

This work focuses on building the speed planner to achieve
intention- and interaction-aware autonomous driving among
pedestrians; we refer readers to [10] for more details on the
path planner and the belief tracker. The red block in Fig. 2
presents a detailed view of our speed planner. We constructed
a POMDP model encoding pedestrian intentions as hidden
states. At each time step, the speed planner performs a look-
ahead search in a belief tree, using a pedestrian motion model
(ORCA) to predict pedestrian behaviors. The vehicle then
executes the first action in the plan, which is optimized for
safe, efficient and smooth driving among many pedestrians.

We will first introduce our pedestrian motion model in
Section IV, and then introduce our POMDP speed planner
that integrates this pedestrian motion model in Section V.

IV. PEDESTRIAN MOTION PREDICTION

The pedestrian motion model takes as input the intentions
of pedestrians and the vehicle, and simulates their inter-
actions to predict pedestrian motions. We improve ORCA
[1], a pedestrian simulation algorithm based on reciprocal
collision avoidance, to model more natural pedestrian-vehicle
and pedestrian-pedestrian interactions.

For completeness, we will first introduce ORCA and its
limitations, and then present our model that addresses these
limitations.

A. Optimal Reciprocal Collision Avoidance

For a given agent. e.g., a pedestrian or a vehicle, ORCA
generates half-planes of velocities that allows it to avoid
collision with other agents. It then selects the optimal velocity
for the given agent from the intersection of the half-planes
using linear programming. ORCA computes the half-planes
based on Velocity Obstacle (VO) [18].

1) Velocity Obstacles: For two agents A and B, the velocity
obstacle VOτ

A|B is defined as the set of all relative velocities
of A with respect to B that will result in a collision between A
and B before time τ . Formally, VOτ

A|B , the velocity obstacle
of agent A induced by B with time window τ is defined as:

VOτ
A|B = {v|δ(pA, v, τ) ∩ (B 	A) 6= ∅}. (1)

The Minkowski difference B 	 A inflates the geometry of
B by that of A, so that A can be treated as a single point.
For simplicity, ORCA represents all the agents as disc shapes.
The Minkowski difference B 	 A then becomes a disk of
radius rA + rB , where rA and rB are the radius of A
and B, respectively. δ(pA, v, τ) is the straight-line relative
trajectory traveled by A with respect to B during time (0, τ),
by starting from its position pA, and taking the relative velocity
v. Suppose A and B are moving with velocity vA and vB ,
respectively. If vA − vB /∈ VOτ

A|B , A and B are guaranteed
to be collision-free for at least τ time. See Fig. 3a for the
geometric interpretation of velocity obstacle.

2) Collision-Avoiding Velocity Set: Suppose B selects its
velocity vB from a set VB . To avoid the collision for at least τ
time, A needs to choose its velocity vA so that vA /∈ VOτ

A|B⊕
VB , where ⊕ denotes the Minkowski sum. This leads to the
definition of collision-avoiding velocity set of A with respect
to B:

CAτ
A|B(VB) = {v|v /∈ VOτ

A|B ⊕ VB}. (2)

A pair of velocity sets VA and VB is called recipro-
cal collision-avoiding if VA ⊆ CAτ

A|B(VB) and VB ⊆
CAτ

B|A(VA); it is further called reciprocal maximal if VA =
CAτ

A|B(VB) and VB = CAτ
B|A(VA).

3) Optimal Reciprocal Collision-Avoiding Velocity Set:
ORCA attempts to find the pair of reciprocal maximal velocity
sets for each pair of agents A and B, with the guidance of the
optimization velocities voptA for A and voptB for B (Fig. 3b),
such that the pair of velocity sets maximize the amount of
permitted velocities close to voptA and voptB . The optimization
velocities voptA and voptB can be either the preferred velocities
of A and B which correspond to their intentions, or simply
set as their current velocities. The target pair of velocity sets,
denoted as ORCAτ

A|B for A and ORCAτ
B|A for B, can be

constructed as follows [1].
Suppose that voptA − voptB ∈ VOτ

A|B , i.e., A and B will
collide with each other before time τ by taking these velocities.
To achieve collision avoidance with the least effort, ORCA
finds a relative velocity from the boundary of VOτ

A|B that is
closest to voptA − voptB . Let u be the vector from voptA − voptB

to this point:

u = ( arg min
v∈∂VOτ

A|B

||v − (voptA − voptB )||)− (voptA − voptB ). (3)
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Fig. 4: An example showing the freezing pedestrian problem.
Two pedestrians (A and B) are walking towards each other,
with velocities vA and vB , respectively. Suppose vprefA = vA.
The new velocity vnewA computed by ORCA is as shown. Its
magnitude is much smaller than that of vprefA , which means
A slows down a lot. This behavior is different from that of
human. Human usually maintains a similar speed (magnitude)
and makes a detour to avoid collisions instead of slowing down
a lot.

Then u is the smallest change on the relative velocity to avoid
the collision within τ time. ORCA lets each agent take half
of the responsibilities for collision avoidance, i.e., adapt its
velocity by (at least) 1

2u. It constructs ORCAτ
A|B , the optimal

collision-avoiding velocity set of agent A with respect to B,
as:

ORCAτ
A|B = {v|(v − (voptA +

1

2
u)) · n ≥ 0}, (4)

where n is the outward normal at point (voptA −v
opt
B )+u on the

boundary of VOτ
A|B . ORCAτ

B|A is constructed symmetrically
(Fig. 3b).

Geometrically, ORCAτ
A|B and ORCAτ

B|A are half-planes
of velocities in the velocity space (Fig. 3b).

4) Computing the New Velocity: For an agent A, ORCA
computes for each other agent B the optimal reciprocal
collision-avoiding velocity set ORCAτ

A|B . The permitted ve-
locity set for A, denoted as ORCAτ

A, is the intersection of the
half-planes ORCAτ

A|B induced by all B’s:

ORCAτ
A =

⋂
B 6=A

ORCAτ
A|B . (5)

The agent A then selects a new velocity vnewA that is closest
to its preferred velocity vprefA from ORCAτ

A, i.e.,

vnewA = arg min
v∈ORCAτA

||v − vprefA ||. (6)

The computation of vnewA can be efficiently done using linear
programming [1].

B. Limitations of ORCA

The original ORCA has two limitations: the freezing pedes-
trian problem and the violation of non-holonomic constraints
problem.

1) Freezing Pedestrians: The objective function (6) for
ORCA attempts to minimize the distance from the new
collision-free velocity to the pedestrian’s preferred velocity
that points to his/her goal position. This sometimes causes
the “freezing pedestrian problem” in pedestrian simulations.

Pedestrians insist on walking in their goal directions, causing
them to walk very slowly or even stay stationary when
obstructed along their way. Pedestrians in reality, however,
would like to maintain their speed (the magnitude of the
velocity) and make necessary detours to bypass the obstacles
in such scenarios. See Fig. 4 for an example of this problem.

2) Violation of Non-holonomic Constraints: ORCA as-
sumes the motions of agents are holonomic and agents can
flexibly change their moving directions to avoid collisions.
It is true for pedestrians. Most vehicles in reality, however,
are under the non-holonomic kinematic constraints and cannot
freely change their directions. With holonomic assumptions for
vehicles, pedestrians in ORCA will have wrong anticipations
on the vehicle’s motions during reciprocal collision avoidance.
This often leads to unnatural simulations of pedestrians. For
example, in ORCA, when a pedestrian is close to a vehicle,
he/she still thinks that the vehicle can flexibly avoid him/her
by moving side-wise, thus will not change his/her walking
direction much. In reality, a pedestrian in this dangerous
situation would try his/her best to avoid collisions.

C. PORCA

In this section, we present our extention, PORCA, which
addresses the aforementioned problems.

1) Objective Function with Patience: The freezing pedes-
trian problem could be addressed by several approaches, such
as performing multiple-step lookahead in ORCA, or applying
a global planner to replan preferred velocities for pedestrians.
However, these approaches would significantly increase the
computation time of ORCA, and are thus not suitable for our
application, because ORCA will be used heavily during each
planning cycle. In this section, we propose a solution to the
freezing pedestrian problem that has rather low computational
overhead.

Concretely, we design a new objective function for ORCA
as follows

vnewA = arg min
v∈ORCAτA

{
||v − vpref ||2 +

1

%A

∣∣||v||2 − ||vpref ||2∣∣} ,
(7)

where the variable %A ∈ (0, 1] measures the patience of a
pedestrian A. We observed that, pedestrians usually prefer to
maintain their current speed. If they intend to move, they often
get more and more impatient when staying put or walking
very slowly. Therefore, we introduce the second term in (7)
to penalize unintended slowing down of pedestrians. We use
the pedestrian’s patience level % to control the strength of
this penalization. Intuitively, if a pedestrian walks at a low
speed, it gets more and more impatient (% decreases) over
time. The weight 1

% for the second term in (7) then increases
and encourages the pedestrian to explore alternative directions
that enable him/her to move faster.

We set the patience for each pedestrian intending to move
as follows. It is set to 1 initially, which indicates a normal
level of patience, and starts to decrease exponentially with the
time if the pedestrian’s new speed is less than some threshold
ς (set to 0.2||vpref || in our experiments). When the patience is
smaller than %min (%min = 0.1 in our experiments), we set it to
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%min; it is reset to 1 once the new speed exceeds ς . Empirically,
we suggest to set ς ∈ (0, 0.3||vpref ||) and %min ∈ (0.05, 0.15).
For pedestrians intending to stay put, we fix their patiences to
be 1.

One may concern that the objective function (7) is no longer
convex when % < 1 and that increases the computational
cost of PORCA. From our observation, fortunately, pedestrian
speeds are smaller than ς only occasionally, meaning that % is
1 for most of the time. Hence we can still solve PORCA very
efficiently.

2) ORCA with Changing Responsibilities: To handle the
non-holonomic motion of the vehicle and produce more nat-
ural pedestrian-vehicle interactions, we let pedestrians take
more responsibilities for reciprocal collision avoidance when
they are very close to a vehicle. The vehicle takes less
responsibilities accordingly. For the vehicle, this mechanism
selects velocities that are closer to its current velocity, and
thus better complies with the non-holonomic constraint. For
pedestrians, it models their urgency to avoid collisions with
the non-holonomic vehicle.

The responsibility r ∈ (0, 1) of an agent is defined as the
ratio of the velocity u (defined in (3)) this agent takes to avoid
collision with others. If an agent A takes r responsibility to
avoid the collision with B, its ORCAτ

A|B will be computed
as,

ORCAτ
A|B = {v|(v − (voptA + ru)) · n ≥ 0},

B will have ORCAτ
B|A with responsibility 1− r accordingly.

Initially, the pedestrian and the vehicle each take half of the
responsibilities. When their distance is within some threshold
d, the responsibility of the pedestrian increases linearly as
he/she approaches the vehicle. The responsibility reaches a
maximum value R when the distance decreases to zero. We
set d = 1.5 and R = 0.95 in our experiments. We found
empirically that the linear function works well.

V. INTENTION-AWARE AND INTERACTION-AWARE
AUTONOMOUS DRIVING

Our planning system uses a two-level hierarchical approach
[10] for autonomous driving to reduce the computational cost.
At the high level, hybrid A* [24] is used to plan a path; at the
low level, a POMDP model is built to control the vehicle speed
along the planned path. This section focuses on the low-level
POMDP speed planner.

A. POMDP Preliminaries

Formally, a POMDP is defined as a tuple
(S,A,Z, T,O,R, b0), where S, A and Z represent the
state space, the action space and the observation space,
respectively. The transition function T (s, a, s′) = p(s′|s, a)
models the imperfect robot control and environment dynamics.
It defines the probability of transiting to a state s′ from a
state s, after the robot executes an action a. The observation
function O(s, a, z) = p(z|a, s) characterizes the robot’s
sensing noises. It defines the probability of receiving the
observation z after the robot executes a and reaches s. The
reward function R(s, a) defines a real-valued immediate

reward for executing a at s. Due to imperfect sensing, the
robot does not know the exact state of the world. Instead, it
maintains a belief, which is a probability distribution over S,
and reasons over the space of beliefs. At each time step, the
belief is updated via the Bayes’ rule:

bt(s
′) = ηO(s′, at, zt)

∑
s∈S

T (s, at, s
′)bt−1(s), (8)

where η is a normalizing constant.
POMDP planning aims to find a policy π, a mapping from

a belief b to an action a, that maximizes the expected total
discounted rewards:

Vπ(b) = E
( ∞∑
t=0

γtR(st, π(bt))
∣∣∣ b0 = b

)
, (9)

where st is the state at time t, π(bt) is the action that the policy
π chooses at time t, and γ ∈ (0, 1) is a discount factor that
places preferences for immediate rewards over future ones.
The expectation is taken over the sequence of uncertain state
transitions and observations over time.

POMDP planning is usually performed as a lookahead
search in a belief tree. Each node of the belief tree corresponds
to a belief. At each node, the tree branches on all actions and
observations. Beliefs in child nodes are computed using the
Bayes’ rule (8). The output of the search is an optimal policy
conditioned on the initial belief.

B. Intention-Aware POMDP for Autonomous Driving

1) State Modeling: A state in our model consists of two
parts: the vehicle state and the pedestrian state. The vehicle
state consists of its 2D position (x, y), heading direction θ,
and instantaneous speed v. The state of a pedestrian consists
of its position (x, y), speed v and intention g. The intention
of a pedestrian is represented as his/her goal location in the
environment. Pedestrians’ intentions are not observable to the
car, and thus are treated as hidden variables in the state and
must be inferred from the history of interactions.

2) Action Modeling: Our model uses discrete actions: at
each time step, the planning can choose to ACCELERATE, DE-
CELERATE, or MAINTAIN the current vehicle speed, in order to
avoid collisions and navigate efficiently and smoothly towards
the goal.

3) Observation Modeling: An observation in our model
consists of the vehicle position, its speed, and the positions
of all pedestrians. These observations are relatively accurate
and their noises do not pose significant effect on decision
making. Therefore, we assume them to be fully observable,
and focus more on modeling the uncertainty in pedestrians’
hidden intentions.

4) Transition (Intention and Interaction) Modeling: We
decompose the transition function into two parts: vehicle
transition and pedestrian transitions.

In each transition step, the vehicle takes a discrete action,
and drives for a fixed time duration ∆t along the path planned
by hybrid A*. We add a small Gaussian noise to the transition
to model imperfect vehicle control. The resulting vehicle
transition function, denoted as p(xt+1, yt+1, vt+1|xt, yt, vt, a),
satisfies the non-holonomic constraints.
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Fig. 5: Comparing pedestrian motion models. (a) The environ-
ment for data collection. (b) Predicted trajectories using four
different motion models, compared with the ground truth.

Pedestrians’ transitions are calculated using PORCA. Given
a set of intentions, (g1, g2, ..., gn), of n surrounding pedes-
trians, we compute for each pedestrian a preferred velocity
pointing to his/her goal and with a speed assumed to be
roughly the human-walking speed, 1.2m/s. These preferred
velocities, together with positions of pedestrians and the
vehicle, are input to PORCA to compute new velocities and
predict next-step positions of pedestrians. To model stationary
pedestrians, a “stop intention” (with preferred velocity 0)
is also included. Gaussian noises are added on those pre-
dicted positions to model uncertainty in pedestrian-vehicle and
pedestrian-pedestrian interactions. This pedestrian transition
model is denoted as:

p(x1t+1, y
1
t+1, ..., x

n
t+1, y

n
t+1|x1t , y1t , ..., xnt , ynt ,

g1, ..., gn, xt, yt, vt)
(10)

This pedestrian transition function (10) is conditioned on a
set of given pedestrian intentions. The uncertainty in pedes-
trian intentions is systematically handled by the belief tree
search and belief update in our POMDP planning.

5) Reward Modeling: The reward function encourages the
vehicle to drive safely, efficiently, and smoothly. For safety,
we give a huge penalty Rcol = −1000 × (v2 + 0.5), varying
with the driving speed v, to the vehicle if it collides with
any pedestrian. For efficiency, we assign a reward Rgoal = 0
to the vehicle when it reaches the goal, and assign a penalty
Rspeed = v−vmax

vmax
to encourage the vehicle to choose a speed v

closer to its maximum speed vmax, when it is safe to do so. For
smoothness of the drive, we add a small penalty Racc = −0.1
for the actions ACCELERATE and DECELERATE, to penalize the
excessive speed changes.

C. Solving the Intention-Aware POMDP

We use a parallel version of DESPOT [2] to efficiently
solve the intention POMDP. The algorithm performs online
POMDP planning through parallel belief tree search and
parallel Monte Carlo simulations at leaf nodes of the belief
tree. Within a simulation step in the planning, we further
parallelize the transitions of individual pedestrians. Benefiting
from the computational efficiency of the parallelized DESPOT,
our planning system is able to re-plan the vehicle speed at 3Hz.

TABLE I: The success rates of four motion models for
pedestrian trajectory prediction.

Const-Vel Pref-Vel ORCA PORCA
0.521 0.674 0.760 0.804

VI. EXPERIMENTS

In the experiments, we first evaluate the prediction accuracy
of our pedestrian motion model using real-world data. Then,
we illustrate the performance of our planning system on three
challenging scenarios in simulation. Finally, we show that our
planning system can successfully drive a real robot vehicle
among pedestrians.

A. Pedestrian Motion Prediction

To test the prediction accuracy, we extracted 2D trajectories
from real-world pedestrian videos shot in a campus plaza
(Fig. 5a), and compared the predicted trajectories with them.
We manually labeled 46 trajectories, each consisting of a
discretized sequence of ground-truth positions for a particular
pedestrian. Each position in a trajectory corresponds to one
time frame. The duration between two adjacent frames is 0.33
second. We then applied our model to predict the trajectories
of the real pedestrians for a duration of 3 seconds. We compute
the distance between the predicted position at each frame
of a trajectory and the ground truth at the same frame. The
prediction is counted as a success if the average distance over
all frames is less than d meters. We set d = 0.4 to have the
average one-second error smaller than 1.2 meters, roughly the
stride length of a pedestrian.

We compared our success rate with those of other mo-
tion models: constant velocity (Const-Vel), preferred veloc-
ity (Pref-Vel), and the original ORCA (ORCA). Const-Vel
assumes each pedestrian keeps his/her current velocity; Pref-
Vel assumes each pedestrian walks towards his/her goal at
a constant speed. Pref-Vel, ORCA and PORCA require goal
information to predict pedestrian motions. Therefore, we
extracted the ground truth goals from the trajectories and
used them in all the models for fair comparisons. Results in
TABLE I shows that our model achieved higher success rate
than other models.

For a detailed view of the performance, we selected an
example scene and visualized the predictions and the ground
truth in Fig. 5b. In this scene, a pedestrian walking towards
GOAL is blocked by a moving vehicle. Both Const-Vel and
Pref-Vel predict that the pedestrian will walk in a straight line,
ignoring that such trajectories lead to collisions. Both ORCA
and PORCA predict that the pedestrian will detour. However,
only our model successfully predicts that the pedestrian will
maintain his speed during the detour.

B. Autonomous Driving in Simulation

We analyze the performance of our planning algorithm
(POMDP-PORCA) by comparing it with two types of base-
lines. The first type includes constant speed (Const-Speed),
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Fig. 6: Three handcrafted scenarios for evaluating autonomous
driving in a crowd. Scenario 1: all pedestrians stay stationary;
Scenario 2: all pedestrians walking towards the vehicle; Sce-
nario 3: 150 pedestrians walking towards seven different goals.
In Scenarios 1 and 2, the vehicle is required to drive along a
straight line for 16 meters. In Scenario 3, the vehicle path is
planed in real time.

reactive controller (Reactive-Controller), and the POMDP
speed planner with Pref-Vel model (POMDP-Pref-Vel). They
only control the speed, and rely on hybrid A* to generate
steering commands. The other type includes dynamic hybrid
A* (Dynamic-Hybrid-A*), which controls both the steering
and the speed. All the baselines do not model at least one of the
following key aspects: intentions, interactions, and uncertainty.
By comparing our algorithm with these baselines, we analyzed
the benefit of modeling these aspects. Now we describe these
baselines in detail.

Const-Speed drives the vehicle at a constant speed. We
set the speed as the average speed of POMDP-PORCA, to
compare the safety when it achieves the same efficiency
as our algorithm. Reactive-Controller avoids collisions with
pedestrians without modeling intentions and interactions. It
compares D, the distance to the nearest pedestrian, with
two distance thresholds Dfar and Dnear, and then chooses
DECELERATE if D < Dnear, ACCELERATE if D > Dfar,
or MAINTAIN if Dnear < D < Dfar. POMDP-Pref-Vel is
similar to our algorithm, except that it uses Pref-Vel instead
of PORCA as the pedestrian motion model, considering only
intentions. Dynamic-Hybrid-A* is hybrid A* augmented with
an acceleration dimension in the search space and with pre-
dicted pedestrian positions in the collision checking module.
Pedestrian motions are predicted using a constant velocity
model. Dynamic-Hybrid-A* also does not explicitly model
intentions and interactions.

The criteria for comparison include safety, efficiency and
smoothness. We measure the safety by the collision rate, the
efficiency by the success rate and the travel time, and the
smoothness by the number of accelerations and decelerations.
We ran 300 trials for each scenario and computed the success
rate; a trial is considered as successful if the vehicle reaches its
goal within 6 minutes. We computed the average collision rate,
travel time and accel/decel number using only the successful
trials.

We tested the algorithms in three simulated scenarios
(Fig. 6). The first two (Fig. 6a and b) are scenarios where
modeling intentions and interactions are especially important.
Scenario 3 (Fig. 6c) represents a complex scene that is
common in real life.

We built our simulator with the Unity game engine, and

TABLE II: Performance comparison. For each scenario, we
run for 300 times. The average collision rate, average travel
time, and average number of accelerating and decelerating
actions are calculated using only the successful trials.

Scenario Algorithm Collision
Rate

Travel
Time

(s)

Accel/
Decel

Number

Success
Rate

1
Const-Speed 0.177 24.19 0.0 1.0
Reactive-Controller - - - 0.0
POMDP-Pref-Vel 0.0 27.27 46.6 0.97
POMDP-PORCA 0.0 24.19 45.1 1.0

2
Const-Speed 0.063 34.63 0.0 1.0
Reactive-Controller 0.0 75.72 128.0 1.0
POMDP-Pref-Vel 0.0 62.57 141.4 0.977
POMDP-PORCA 0.0 34.63 104.8 1.0

3
Const-Speed 0.033 71.38 0.0 1.0
Dynamic-Hybrid-A* 0.023 50.46 36.1 1.0
Reactive-Controller 0.0 183.11 128.8 0.817
POMDP-Pref-Vel 0.0 105.20 190.7 0.91
POMDP-PORCA 0.0 74.36 157.6 0.963

implemented a package of sensors, including 2D LIDARs,
wheel encoders, etc. The simulator uses PORCA to simulate
pedestrian motions. The simulator communicates with our
planning system using the Robot Operating System (ROS).
Note that though this simulator is designed for testing our
planning system, it is general and can be used in other
autonomous driving applications involving pedestrians.

TABLE II shows the performance of the tested algorithms.
Overall, our algorithm, POMDP-PORCA, guarantees safety,
while Const-Speed and Dynamic-Hybrid-A* result in colli-
sions, and it outperforms the other baselines that also achieve
safety, Reactive-Controller and POMDP-Pref-Vel, in efficiency
and smoothness.

Const-Speed drives the vehicle aggressively in all three
scenarios; this leads to collisions when pedestrians fail to avoid
the vehicle. Dynamic-Hybrid-A* also causes collisions. With-
out modeling intentions and interactions, it fails to accurately
predict pedestrian motions. Moreover, since no uncertainty
is considered, it drives the vehicle aggressively. Reactive-
Controller drives the vehicle over-conservatively in all scenar-
ios because it does not model the interactions of reciprocal
collision avoidance. For example, in Scenario 1, Reactive-
Controller keeps the vehicle waiting for stationary pedestrians
in front, in order to guarantee safety. Hence the vehicle never
reaches its goal (0 success rate). With our algorithm, the
vehicle knows that pedestrians will cooperate with it to avoid
collisions. Therefore, instead of waiting, the vehicle slowly
moves forward to convey its intention. Pedestrians hence give
way to the vehicle. POMDP-Pref-Vel can achieve relatively
higher success rates than Reactive-Controller, but still requires
much more travel time and drives less smoothly than our
algorithm.

C. Autonomous Driving with A Robot Scooter

We further tested the performance of our planning system
on a real robot vehicle (Fig. 1).

The sensor package of our robot vehicle includes two
LIDARs, an Inertial Measurement Unit (IMU), and wheel
encoders. The top-mounted SICK LMS151 LIDAR and the
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bottom-mounted SICK TiM551 LIDAR are used for pedestrian
detection and localization, respectively. Our planning system
runs on an Ethernet-connected laptop with an Intel Core i7-
4770R CPU running at 3.90 GHz, a GeForce GTX 1050M
GPU, and 16 GB main memory. The maximum speed for
the vehicle is set to 1m/s for safety. The planning system
is implemented on ROS. Our vehicle detects pedestrians from
laser points using K-means clustering, and tracks pedestrians
between two adjacent time frames by comparing the difference
of their corresponding laser clusters. It localizes itself in a
given map using adaptive Monte Carlo localization [25], which
integrates information from the LIDAR, the IMU, and the
wheel encoders.

We tested our autonomous driving system on a campus
plaza (Fig. 1b) for multiple times. Overall, our planning
system performs well. The vehicle achieved its goal efficiently,
smoothly and avoid the pedestrians successfully in all trials.
See the video at http://motion.comp.nus.edu.sg/2018/06/23/
autonomous-driving-in-a-crowd/ for more details.

VII. CONCLUSION AND FUTURE WORK

We developed an online planning system for autonomous
driving in a crowd that considers both intentions and in-
teractions of pedestrians. Our planning system combines a
pedestrian motion model and a POMDP algorithm seamlessly
to plan optimal vehicle actions under the uncertainty in pedes-
trian intentions and interactions. Our pedestrian motion model
improves over previous models on the accuracy of predicting
pedestrian interactions in the presence of the vehicle. By
utilizing this prediction model, our planning system enables
robot vehicles to drive safely, efficiently and smoothly among
many pedestrians.

There are multiple directions we can work on in the future.
First, we plan to better incorporate the non-holonomic con-
straints of vehicles into the computation of ORCA velocity
sets, instead of using only changing responsibilities. Second,
we can apply more sophisticated pedestrian motion models,
such as GLMP [26], to improve the simulator. Finally, our
POMDP model is actually a POMDP-lite [27], a subclass
of POMDPs where the hidden state variables are constant
or only change deterministically. Our POMDP model can be
potentially solved more efficiently using POMDP-lite.
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