
Technical Report TR02-004, Department of Computer Science, UNC Chapel Hill

Fast 3D Geometric Proximity Queries between Rigid and
Deformable Models Using Graphics Hardware Acceleration

Kenneth E.Hoff III, Andrew Zaferakis, Ming Lin, Dinesh Manocha

The University of North Carolina at Chapel Hill
Department of Computer Science

{hoff,andrewz,lin,dm}@cs.unc.edu

Abstract
We present an approach for computing generalized proximity information between arbitrary polygonal models
using graphics hardware acceleration. Our algorithm combines object-space localization, multi-pass rendering
techniques, and accelerated distance field computation to perform complex proximity queries at interactive rates. It
is applicable to any closed, possibly non-convex, polygonal object and requires no precomputation, making it
suitable for both rigid and dynamically deformable geometry of relatively high complexity. The proximity queries
include, not only collision detection, but also the computation of intersections, minimum separation distance,
closest points, penetration depth and direction, and contact points and normals. The load is balanced between CPU
and graphics subsystems through a hybrid geometry and image-based approach. Geometric object-space
techniques coarsely localize potential interactions between two objects, and image-space techniques accelerated
with graphics hardware provide the low-level proximity information. We have implemented our system using the
OpenGL graphics library and have tested it on various hardware configurations with a wide range of object
complexities and contact scenarios. In all cases, interactive frame rates are achieved. In addition, our algorithm’s
performance is heavily based on the graphics hardware computational power growth curve which has exceeded the
expectations of Moore’s Law for general CPU power growth.

1. Introduction
Many applications of computer graphics or computer
simulated environments require spatial or proximity
relationships between objects. In particular, dynamic
simulation, haptic rendering, surgical simulation, robot
motion planning, virtual prototyping, and computer games
often need to perform different proximity queries at
interactive rates. The set of queries include collision
detection, intersection, closest point computation, minimum
separation distance, penetration depth, and contact points
and normals. Algorithms to perform different queries have
been well studied in computer graphics, virtual
environments, robotics and computational geometry. Most of
the current approaches involve considerable pre-processing
and therefore are not fast enough for deformable models.
Furthermore, no good algorithms are known for penetration
depth computation between general, non-convex models.

We present a novel approach to perform all the proximity
queries between rigid and deformable models using graphics
hardware acceleration. Our algorithm localizes potential

interactions using object-space techniques, point-samples the
region, and then uses polygon rasterization hardware to
compute object intersections, closest points, and the distance
field and its gradients.

The main features of our approach include a unified
framework for all proximity queries, applicability to non-
convex polygonal models, computational efficiency allowing
interactive queries on current PCs, robustness in terms of not
dealing with any special-cases or degeneracies, and
portability across various CPU/graphics combinations. A
user-specified error threshold for pixel point sampling
density and distance approximation governs the accuracy of
the overall approach. Some of the novel features of our
approach include:

• Improved and efficient construction of distance meshes
used to compute 3D Voronoi diagrams accelerated with
graphics hardware.

• Site culling algorithms and distance mesh culling for
increased performance of Voronoi computation.

• Improved graphics hardware acceleration of computing
the intersection between two, possibly non-convex,
polygonal objects, over an entire volume.

• Improved algorithm for computing 3D image-space
intersections that handles both inter-object and self-
collisions.

• Computation of the gradients of the distance field using
graphics hardware.

We have implemented our algorithm on various hardware
configurations, and demonstrate its performance to compute
different queries between rigid and dynamically deforming
polygonal objects. Our approach is well suited for computing
proximity query information needed for collision responses
between dynamic deformable models. The use of graphics
hardware allows us to perform different queries at interactive
rates on complex deformable models. Moreover, it is
relatively simple to implement all these queries in a robust
manner. Over the last decade, the graphics processors
(GPUs) processing power has been progressing at a rate
faster than the CPUs and this will result in handling even
more complex scenarios at interactive rates.

2. Related Work
Algorithms for computing collisions, intersections, and
minimum separation distances have been extensively
researched. Many are restricted to convex objects [Cameron
97, Ehmann01, Gilbert88, Lin91, Mirtich98] or are based on
hierarchical bounding-volume or spatial data structures that
require considerable precomputation and are best suited for
rigid geometry [Hubbard93, Quinlan94, Gottschalk96,
Johnson98, Klosowski98]. Some algorithms handle
dynamically deforming geometry by assuming that motion is
expressed as a closed form function of time [Snyder93] or by
using very specialized algorithms [Baraff92]. In our
approach, we emphasize the handling of non-convex,
dynamically deformable objects with no precomputation or
knowledge of object motions. In addition, we obtain
computational complexity that grows linearly with geometric
complexity for a fixed error tolerance and contact scenario.

As compared to collision detection and separation distance
computation, there is relatively little work on penetration
depth computation. Penetration depth is typically defined as
the minimum translational distance needed to separate two
objects. We define it with respect to a point as the minimum
translational distance and direction needed to separate a
penetrating point from an object’s interior. Dobkin et al.
have presented an algorithm to compute the intersection
depth of convex polytopes, though no practical
implementation is known [Dobkin93]. Cameron has
presented a practical algorithm that computes an
approximate depth for convex polytopes [Cameron97]. No
practical algorithms are known for general, non-convex
polyhedra.

Our algorithm relies on the computation of discretized
distance fields and graphics hardware-accelerated geometric
computation. Distance fields - scalar fields that specify

minimum distance to a shape for all points in the field - have
been used for many applications in graphics, robotics and
manufacturing [Frisken00, Fisher01]. Common algorithms
for distance field computation are based on level sets
[Sethian96] or adaptive techniques [Frisken00]. However,
they either require static geometry, extensive preprocessing,
or lack tight error bounds. Graphics hardware has been used
to accelerate a number of geometric computations, such as
visualization of constructive solid geometry models
[Goldfeather89], cross-sections and interferences
[Rossignac92], and computation of the Minkowki sum
[Kaul92]. However, these only compute intersections, not
distance-related queries. Algorithms also exist for motion
planning using graphics hardware acceleration and distance
fields [Kimmel98, Lengyel90, Pisula00]. More recently, an
algorithm has been proposed to compute generalized
Voronoi diagrams and distance fields using graphics
hardware [Hoff99]. Its application to motion planning was
presented in [Pisula00]. Also, proximity queries accelerated
using graphics hardware was presented in [Hoff01], but it
was restricted to 2D and its extension to 3D was not obvious.

2.1 Voronoi and Distance field Computation
In [Hoff99], they present an algorithm for computing
approximate 2D and 3D generalized Voronoi diagrams for
polygonal objects with a variety of distance metrics. The
representation is in the form of a discretized regular grid of
sample points (images) across a 2D slice. A 3D Voronoi
diagram is composed of a sequence of these slices across the
volume to form a regular 3D grid. At each grid point, the ID
of the nearest site and its associated distance is stored. They
accelerate a brute-force algorithm using graphics hardware.

Instead of relying on a distance evaluation between a point
and a Voronoi site, a polygonal distance mesh is constructed
so that when rendered it computes the correct distance value
as the Z-coordinate. If these distance meshes are rendered
for each site with Z-buffer visibility enabled, the correct
comparisons and updates will also be performed. This
reduces the problem to finding a polygonal mesh
approximation of a 2D slice of the distance function. In 3D,
the distance mesh must approximate a 2D slice of the 3D
domain.

Their 3D implementation simply used a coarse regular grid
with direct distance evaluations at each grid point. This often
required over-meshing, inefficient direct distance
evaluations at grid points, and did not take advantage of the
inherent symmetry in the functions being approximated. In
addition, this approximation did not provide a tight bound on
the approximation and the computation times were on the
order of minutes to hours for high resolution Voronoi
diagrams of complex models.

We extend the 3D distance mesh ideas and formulate a very
fast and efficient bounded error approximation without
requiring any lookup tables or complex data structures. In
addition, we present methods for greatly accelerating the
distance evaluations through culling techniques.

2.2 2D Proximity Queries using Graphics HW
In [Hoff01], they presented an approach using the graphics
hardware based Voronoi computation for performing more
general proximity queries, such as those needed in
computing collision responses in a dynamics simulation.
This paper focused on the interactions between 2D, possibly
non-convex, polygonal objects only, but illustrated the
potential for having a unified framework for a wide range of
proximity queries. Many of the queries supported are
particularly difficult for object-space algorithms, such as
computing intersections, penetrating points, and penetration
depths and directions. They used image-space techniques for
performing these queries that were accelerated using
graphics hardware. The core operations were based on
queries into the Voronoi diagram. They presented a pipeline
that allowed load balancing between CPU and graphics
subsystems by first incorporating an object-space geometric
localization phase to restrict the area over which the image-
space phase must be performed.

Through improvements in the Voronoi diagram computation,
we have extended this work into 3D. Many additional
optimizations were necessary to make this run well in
practice, including: faster and efficient distance meshing
with bounded error, conservative Voronoi site culling, and
making the queries symmetric (query A w.r.t. B is the same
as B w.r.t. A). In addition, we constructed a specialized
algorithm for computing 3D intersections efficiently.
Previously in [Hoff01] for 2D, they relied on pixel overwrite
to find intersection points. For 3D, we used a parity based
strategy similar to operations used in graphics hardware-
accelerated visualization of CSG operations and shadow
volumes.

3. Overview of Our Approach
Given a collection of closed 3D polygonal objects, we
perform coarse geometric localization to find rectangular
regions of space (axis-aligned bounding boxes) that contain
either potential intersections or closest feature pairs between
objects. We uniformly point-sample these regions and use
polygon rasterization hardware to compute object
intersections, closest points, and the distance field. The
distance field and its gradient vector field provide the
distance and direction to the nearest feature for each point in
the localized region, which gives the contact normals,
minimum separation distances, or penetration depths. Our
core algorithm computes the proximity information between
two 3D, possibly non-convex, polygonal objects. Higher-
order curved surfaces are tessellated into polygons with
bounded distance deviation error. In our hybrid approach,
there are two top-level operations:

(1) Geometric object-space operations to coarsely localize
potential intersection regions or closest features

(2) Image-space operations using graphics hardware to
compute the proximity information in the localized
regions

Most of our improvements center around Voronoi and
distance field computation since it is by far the most costly
operation and is the most demanding of the graphics
hardware. Load balancing between CPU and graphics
subsystems is achieved by varying the coarseness of the
object-space localization and by using object-space culling
strategies. Tighter localized regions result in fewer pixels
and a smaller bound on the maximum distance needed for
Voronoi computation, thus reducing the fill and geometry
loads on the graphics pipeline. We can also balance the load
between these two main stages of the graphics pipeline by
shifting the distance error tolerance in the Voronoi
computation between fill and geometry: increasing the pixel
resolution decreases the distance mesh resolution and vice
versa. The main parts of the proximity query pipeline are
shown in the following figure:

object-space
localization: on-the-
fly bounding-volume
hierarchies or spatial
partitioning; trivial

j ti

CPU
image-space
queries: interior
and intersection
pts, Voronoi
diagram, distance
fi ld

Graphics HW

localized region
AABB

2 closed, possibly
non-convex

polygonal objects

proximity info

Main Proximity Query Pipeline

Figure 1: The proximity query pipeline is composed of two main stages:
geometric localization and image-space queries. The most complex queries
are performed by graphics hardware. Each stage can be varied to balance the
load between CPU and graphics subsystems.

4. Object-space Geometric Localization
The image-based queries operate on a uniform 3D grid of
sample points in regions of space containing potential
interactions. The graphics hardware pixel framebuffer is
used as a 2D slice of the grid and the proximity queries
become pixel operations, therefore the performance varies
dramatically with the pixel resolution. To avoid excessive
load, a geometric localization step is used to localize regions
of potential interaction or as a trivial rejection stage. This
hybrid geometry/image-based approach helps balance the
load between the CPU and graphics subsystems, giving us
portability between different workstations with varying
performance characteristics. More sophisticated geometric
techniques, to tightly localize potential intersections or
closest feature pairs, dramatically reduce the graphics
pipeline overhead, but increases the CPU usage and the
complexity of the algorithm. We use coarse fixed-height
bounding-volume hierarchies to achieve this balance
between speed and complexity, and between CPU and
graphics usage.

There are many general and efficient algorithms available
for localizing geometry based on bounding-volume
hierarchies [Gottschalk96, Hubbard93, Johnson98,
Quinlan94]. However, for exact collision detection these
algorithms typically perform well only on static geometry
where the hierarchy can be precomputed. In order to handle
dynamic deformable geometry with no precomputation, we
use coarse levels for efficient trivial rejection and obtain
reasonable geometric localization. In addition, we perform
lazy evaluation of relevant portions of the hierarchies while
performing the collision or distance query. A subtree rooted
at a particular node is only computed if its children need to
be visited during the query traversal. The trees are destroyed

after every proximity query, and no actual tree data
structures are required since the child nodes are recursively
passed to the query routine. A maximum height of each
object tree is used to balance the CPU and graphics load.
Similar algorithms can be constructed using spatial
partitioning rather than bounding-volume hierarchies. Since
the resulting localized region needs to be rectangular (an
axis-aligned cube) to allow simple use of the graphics
hardware, we use a dynamically constructed AABB-tree.
With a fixed number (depth of the tree) of linear passes over
the geometry we obtain reasonable localization.

The typical proximity query is between two objects at a time.
However, it is possible to perform many simultaneous
queries for all objects in an N-body simulation. We could
perform the proximity queries for all objects with one image-
space query by using a localized region that encloses the
entire scene. This may be more efficient in cases when the
objects are densely packed with many complex contacts
throughout the space containing the objects. For example, in
a dense rigid body simulation where many objects are
interacting simultaneously (e.g. an asteroid field), a single
image-space query over the entire space may be more
appropriate (localized region is the world bounding box). In
addition, as the computational power of graphics systems
continues to overtake the general CPU power, coarser and
simpler localization will be favored.

The geometric localization step may often result in multiple
disconnected regions on each object. In these cases, the
proximity query must be repeated for each localized region.
Geometric localization for intersecting and nearest features
can be found by using existing bounding-volume or spatial
partitioning approaches that act on object boundaries, but
finding localized regions around volume intersections
requires a specialized algorithm. At each step of refinement,
the parent bounding box must fully contain the volume
intersection. This can be accomplished by first starting with
the intersection of the top-level object bounding boxes. This
intersection box will surely contain the intersection volume.
Now we can refine this localization by computing the
bounding box of the portion of each object that lies in the
current box. We then repeat the process on the intersection
of these two boxes which is also guaranteed to contain the
intersection volume.

5. Image-space Proximity Queries
The proximity queries are simplified using uniform point
sampling inside an axis-aligned bounding box (localized
region) and accelerated with graphics hardware. This image-
space approach helps decouple the objects’ geometric
complexity from the computational complexity for a
specified error tolerance. We point-sample the space
containing the geometry within the localized regions with a
uniform rectangular 3D grid and perform the queries on this
volumetric representation using graphics hardware
acceleration. The image-based queries include computing
intersections between objects, computing the distance field
of an object boundary, and computing the gradient of the

distance field. Variations of these basic operations are used
to perform the remaining queries. The basic pipeline is
shown in Figure 2.

The 3D image-space queries avoid excessive data handling
when processing the entire volume of the localized region.
Each query must be performed over the uniform 3D grid,
one 2D slice at a time. The application query information is
sent to the application as it is processed slice-by-slice to
avoid processing and storing the entire 3D image. In
addition, many of the queries have been made symmetric to
avoid a second pass as needed in the previous work.

Find interior points of
both objects using
parity-based stencil
test, compute
intersection pts

Graphics HW
Voronoi diagram
computation:
associate isect pts
with closest obj
boundaries,
compute distances
to boundary

Graphics HW

CPU: readback
stencil to get
intersection pts,
find tighter fitting
box around
intersection pts

localized
region: axis-
aligned
bounding box
containing
potential
interactions

CPU: readback
color/depth to get
core proximity
info

Compute gradients
at isect pts using
finite differencing

CPU

Final
proximity
info

Image-Space Proximity Query Pipeline

 Figure 2: The most computationally intensive tasks are performed by the
graphics hardware. These stages are also the most difficult for geometric
object-space approaches. We accelerate simple brute-force image-space
solutions using graphics hardware to obtain interactive performance on
complex models with no precomputation

5.1 Intersections
We compute intersection points on a 2D slice by performing
a parity test, as is often used in shadow volumes and CSG
rendering, using graphics hardware stencil operations
[Crow77, Rossignac92]. In order to find intersections, we
must first be able to identify sample points that are inside the
object. The set of sample points that are inside both objects
form the intersection points between the objects. We then
describe another generalized strategy that can handle
intersections between multiple objects simultaneously along
with the more complex self-intersections.

For any closed object, we can determine if a point is inside
the object by shooting a ray from the point in any direction
and counting the number of times the object’s surface is
crossed. If the count is even, the point is outside of the
object; if odd, the point is inside. We can simultaneously
determine which sample points on a 2D planar slice are
interior points by projecting all of the geometry on one side
of the plane onto the plane and counting the number of times
pixels are overwritten. This computation is performed using
the graphics hardware through an odd-even parity test for
rendered geometry clipped by the plane and projected onto
the plane. Each time a pixel is overwritten the parity bit is
flipped. Pixels whose stencil bit is set to 1 represent points
on the slice that are inside the object. Initially the stencil
buffer is initialized to 0.

5.1.1 Incremental Update and Bucket Sorting

For a single slice, this computation requires rendering all of
the geometry on one side of the plane (clipped by the plane).
However, this is inefficient for evaluating interior points on
many slices swept through our 3D localization box. We
improve efficiency by performing a plane sweep and
updating the stencil buffer incrementally. For each slice, we

only render the geometry between the current slice and the
previous slice.

This incremental update improves the running time
dramatically since on average the entire model is only drawn
once! As opposed to the single slice approach where the
entire model to one side of the slice had to be drawn for each
successive slice. We can obtain even greater performance by
first sorting the geometric primitives along the Z-axis by
their minimum Z-values. A general sort would require O(n
log n) time complexity. We obtain expected O(n) complexity
by performing a bucket sort by using the slab positions as
the buckets. With one pass through the geometry, we can
assign each primitive to a bucket by its minimum Z-value.
We maintain a list of currently active geometry for each slab.
For each subsequent slab we add geometry to the list from
the associated bucket. Geometry is removed from the list by
checking if the old primitives’ max Z-value is less than the
current slab NearZ (swept past the primitives). This also
dramatically improves performance with very little extra
complexity or data. We avoid having to search for geometry
that intersects the current slab. In addition, there is no need
to add geometry to the buckets that lies outside of the XY
min/max box. In practice, very little geometry has to be
processed for the interior computation.

In order to find the intersection between two objects, we
compute the interior of both objects inside of the localized
region one slice at a time. The interior of both objects is
encoded in a different bit of the stencil buffer. The set of
points with both bits set are intersection points since they are
interior to both objects. To actually extract these points, we
must read the stencil image and search for the pixels with the
appropriate value (a value of 3 from the 1st and 2nd least
significant bits being set). These points must then be
transformed from pixel-space into object-space.

5.1.2 Complexity and Error Analysis

Our new algorithm for intersection computation for 3D non-
convex objects is simpler as compared to the 2D intersection
computation algorithm presented in [Hoff01]. The major
weakness of finding overwritten pixels between two non-
convex polygons, was that they had to be triangulated in
order to be rendered. This was the dominant part of the
intersection computation since it was worst case O(n log n)
rather than O(n). However, the expected running time of
most triangulation algorithms is usually close to linear. In
3D, we only require the O(n) complexity where n is the
number of primitives. The actual running time varies most
dramatically with the ratio of the size of the localized region
over the error tolerance, and is largely independent of the
geometric complexity. More complex forms of contact do
not result in increased running times unless the size of the
localized region is increased dramatically or the error
tolerance is reduced. These cases are difficult to analyze
since they vary dramatically with the object configurations.
More sophisticated geometric localization will reduce
performance variations.

The complexity of rendering objects grows linearly with
respect to the number of primitives for a fixed pixel
resolution. Computing intersections geometrically between
two polygon boundaries is worst case O(n2) since all
primitives could intersect each other. The complexity of our
algorithm is O(n) where n is the number of primitives. The
hierarchical geometric localization step is also O(n) since the
maximum depth of the tree is held constant. This tree depth
balances the load between the CPU and graphics subsystems.

Similarly to the 2D case, the error in the interior and
intersection computation is related to the pixel error in scan-
conversion. The actual interior regions will never be off by
more than half of the length of the diagonal of a pixel’s
rectangular cell (the error tolerance). The error tolerance has
a dramatic effect on the number of pixels that have to be
processed. When reduced error tolerances are required,
better geometric object-space localization must be employed
to reduce the load on the graphics subsystem. Furthermore,
we can also balance the loads between geometry and fill
stages of the graphics pipeline by trading off error in the
pixel resolution and the distance mesh granularity.

Incorrect intersection parity resulting from pixel sample
points lying exactly on tangent points to the object surface
are avoided through correct minimum-based triangle
rasterization as described in [Rossignac92]: either the
crossing will be counted twice or not at all.

5.1.3 Multiple Objects and Self-Collisions

We can modify the intersection routine to handle self-
collisions and multiple objects with very little modification
to the previous algorithm. The modification adds the
complexity of having to distinguish front and back faces for
polygons in each slab for a parallel projection and has the
slight restriction of only handling the intersection of at most
255 simultaneous volumes (limit of 8-bit stencil buffer).

Instead of finding the interior of both objects separately and
then finding their common intersection, we can simply
finding the intersection directly using the geometry from
both objects simultaneously using the classic parity test used
in the shadow volume algorithm. Since we want to know if a
point is inside two volumes simultaneously, a ray emanating
from a query point must have exited at least two more
volumes than it has entered.

Instead of simply flipping a bit each time a boundary is
crossed (front or back facing), starting with a stencil counter
initialized to zero, we increment the counter each time a
volume is exited (a back face is rendered) and decrement the
counter whenever a volume is entered (front face is
rendered). The counter will indicate the number of objects
containing the point. We are interested in the intersection
points, so the counter must at least be 2. We simply modify
our existing approach of rendering slabs to perform this
count instead. We must classify all object faces for each slab
as front or back facing with respect to a parallel projection.
Since all object triangles are handled together, we can handle
more than 2 objects and we can also find self-intersections of

a single object. Stencil counts of 2 or greater indicates a
point that is in the intersection of at least one pair of objects
or an object with itself.

5.2 Distance Field Computation
We use the algorithm presented in [Hoff99] for constructing
generalized Voronoi diagrams using graphics hardware for
3D polygonal objects. This approach computes an image-
based representation of the Voronoi diagram in both the
color and the depth buffers for one 2D slice of the 3D
volume at a time. A pixel’s color identifies the polygon
feature (vertex or edge) that is closest to the slice pixel’s
sample points; its depth value corresponds to the distance to
the nearest feature. The depth buffer is an image-based
representation of the distance field of the object boundaries.
The distance field is computed by rendering 3D bounded-
error polygonal mesh approximations of a 2D planar slice of
the distance function where the depth of the rendered mesh
at a particular pixel location corresponds to the distance to
the nearest geometric feature.

The goal in constructing a distance mesh is to find a
piecewise linear approximation across a 2D planar domain
of a Voronoi site’s 3D scalar distance function. The distance
to a site from a point (x,y,z) is defined as D(x,y,z). The
function we are interested in approximating is for a 2D
planar slice z=Zslice. So we wish approximate the 2D scalar
function D(x,y, Zslice), where Zslice is a constant for any
particular slice, such that the approximation D’ and actual
distance function D never differ by more than the user-
specified distance error. In addition, the domain across the
slice is restricted to a 2D window and the range of the
function is restricted to z∈[0,MaxDist]. The shape of the
distance mesh for a 3D point is one sheet of a hyperboloid of
two sheets; for a line, an elliptical cone; and for a plane,
another plane.

In [Hoff99], distance meshes were constructed using lookup
tables. We construct error-bounded polygonal mesh
approximations of a 2D planar slice of a primitives distance
function at run-time with no precomputation at faster rates
than the algorithm based on lookup tables. We solve for the
mesh stepsizes needed to maintain the desired error
threshold while taking advantage of symmetry. We attempt
to actual obtain the desired error to make the meshes as
coarse as possible for rendering efficiency. In addition, we
only construct geometry that lies within the slice window.

For computing distance fields for proximity queries, we
obtain higher performance than the generalized Voronoi
diagram computation because of the localized regions. In the
case of computing distance fields for proximity queries, the
localized regions always contain the geometry that is in
potential contact or that contains the closest features. The
farthest away points on two objects can be is in opposite
corners of the localized region box. So the maximum
distance we need to construct distance meshes for is half of
the diagonal length of the box. Reducing the maximum
distance results in the greatest speedups in Voronoi

computation since it reduces geometry and fill by reducing
the overall extent of the distance meshes, and the smaller
bound allows the objects to be easily culled if they are too
far from the localized region thus avoiding distance mesh
construction completely. In addition, the distance mesh
generation routines attempt to minimize the number of
primitives drawn by constructing a mesh that is as coarse as
possible while staying within the specified error bound (the
error bound is tight, this deviation can actually be measured
for various places in the mesh approximation) and by only
generating primitives that are inside the localized region
bounding box. In addition, in many proximity queries we can
further reduce the maximum distance needed when we only
want intersection or closest points near the boundaries of the
object.

5.3 Gradient of the Distance Field
We compute the gradient of the distance field at pixel
locations by using central differences in all three principal
axis directions. In practice, this simple approach gives
reasonable results even with the distance error and lack of C1
or higher continuity in the polygonal distance mesh
approximations used to compute the distance field. Gradients
are computed in software for selected points after reading
back the distance values. If the entire gradient field is
desired, we could accelerate the computation using multi-
pass rendering or pixel shading operations.

The most difficult problem in computing the gradient is in
handling discontinuities and boundaries in the distance field.
There are three types of discontinuities that occur: across
Voronoi boundaries, across Voronoi sites, and at the
boundaries of the grid. In each case, the support of the finite
differencing “kernel” has to cross a discontinuity and gives
an incorrect gradient. A more robust method is shown in the
fast marching methods in [Sethian96]. He solves for a
distance value at an unknown point using an implicit method
based on the fact that at least one adjacent distance value
must be known and does not cross a discontinuity, and that
for the nearest Euclidean distance metric the magnitude of
the gradient must be 1 everywhere (except at the
discontinuities). We use the same method by just using the
one-sided difference in each direction that will result in a
gradient whose magnitude is 1 (choose the adjacent value in
each direction that has the maximum difference). Adjacent
distance values that cross a discontinuity will not be chosen.
An alternative, but slightly more complex, strategy is to
compute the gradients of the continuous distance meshes
directly.

By directly encoding gradients at distance mesh vertices, we
can use the linear interpolation of polygon rasterization to
compute gradients at all pixels. Since we would be linearly
interpolating a gradient, this gives us a higher order
interpolation than central differencing of adjacent distance
values. This is comparable to the difference between
Gouraud and Phong interpolation (the first linearly
interpolates color values across a polygon, the second
linearly interpolates the surface normal for per-pixel lighting

calculations). In addition, the gradient is much simpler if
computed only for a single site at a time during distance
mesh construction. We need only provide the direction to the
nearest point on the site at each distance mesh vertex. The
main difficulty with this approach is in the encoding of the
gradient for rapid computation by graphics hardware.

This approach as some difficulties due to limitations of
graphics hardware framebuffer precision. There are a
number of ways we can interpolate the gradient information.
The simplest is to encode the signed normalized components
into the 8-bit RGB color values at each vertex (using
hardware scale and bias operations for sign). The linear
interpolation would give the correct results to 8-bits of
precision. This approach introduces quantization error when
encoding and additional error during interpolation. Using 3D
texture coordinates, high precision encoding and
interpolation is obtained. However, the resulting per-pixel
texture coordinates are still quantized to low precision RGB
values in the framebuffer. The texture-mapping function
would simply be the identity mapping. We are interpolating
(s,t,r) gradient values and we want those values directly at
each pixel. The graphics hardware does not allow higher
precision intermediate results for multi-pass operations.
However, the texture-mapping method has the advantage of
only introducing significant error at the final stage; encoding
and interpolation are done at floating point precision. Also,
the signs will be correctly handled without any additional
scaling or biasing. However, we also have no simple way of
performing the identity map. We must use a 1D texture that
maps [-1,1] to [0,255], but this can only be applied to one
texture component at a time. This would require three passes
in order to transform (s,t,r) into RGB values. A less efficient
approach would involve the use of a 3D texture map. Current
pixel-level programmable graphics hardware may provide a
simpler and more efficient way to handle this mapping.

5.4 Other Proximity Queries
We use the basic operations of computing interior points,
intersections, the distance field, and the gradient of the
distance field to perform the other proximity queries
mentioned in section 1.

Penetration Depth and Direction: For a point on object A
that is penetrating object B, we define the penetration depth
and direction for the point as the distance and direction to the
nearest feature on B. This information is provided directly
from the distance field and its gradient computed at the
penetrating point. Penetrating points are found using the
intersection operation. Intersection points are associated with
each object based on the Voronoi diagram’s color buffer that
indicates the closest object to each point. Contact points and
Normals are computed in the same way. Approximate
contact points result from the objects slightly penetrating
each other.

Closest Point: We find the point on object A that is closest
to object B by first geometrically localizing potential closest
feature regions (one bounding box on each object) using

some hierarchical approach. We then compute the distance
field of object B and the interior points of A in A’s localized
region (gives us minimum distance to B for all points in A in
A’s localized region). We then search these points to find the
one with the smallest distance value. This point will be the
point on A that is closest to B. This process has to be
repeated for B with respect to A. This requires two passes,
but the interior points and the distance field needs to only be
computed once for each object.

Separation Distance and Direction: We find the minimum
separation distance and direction between two objects A and
B by first computing the closest point on A to B and vice
versa. Ideally, we find the closest point on B to A from the
distance value and gradient at the closest point on A to B,
but the amplification of errors over the greater distance may
cause problems. The distance between these two closest
points is the separation distance and the line segment
between them gives the separation direction.

6 Performance
We tested the system performance in both rigid and
deformable body dynamic simulations on a several different
hardware configurations. In the rigid body cases, we
measured the performance of the system in computing
proximity query information needed for computing a
penalty-based collision response. In these cases, only
shallow penetration is allowed since the objects bounce off
of each other. For the deformable cases, we perform only the
proximity queries without collision response to show the
worst case of computing proximity information for many
deep simultaneous contact scenarios with dynamically
deforming geometry. We tried to choose three hardware
configurations that would reflect variations in balance
between CPU and graphics computational power:

(1) Pentium-4 1.8Ghz with GeForce3 Ti500 graphics: fast
CPU and fast graphics

(2) 1 graphics pipe and 1 300Mhz MIPS R12000 processor
of an SGI Reality Monster with InfiniteReality2
graphics: slower CPU and fast graphics

(3) PentiumIII-750Mhz laptop with ATI Rage Pro LT: fast
CPU and slow graphics.

Because of the ability to balance the load between the CPU
and graphics subsystems and between stages of the graphics
pipeline, we are able to achieve interactive performance on
all configurations. In most cases, we only needed very
simple one-level geometric localization (intersection of top-
level axis-aligned bounding boxes). Most of the balancing
was between stages of the graphics pipeline (much of the
geometry stage on older graphics systems was performed on
the CPU: before hardware T&L). We also show the effects
of the varying the distance threshold on system performance.

For performance evaluation, we implemented a rigid body
simulator with collision response and a variety of
deformable simulations without collision responses to allow

more complex contact scenarios. The test scenarios vary
from simple convex objects composed of around 2 thousand
triangles with simple contact regions to non-convex objects
with nearly 10,000 triangles with multiple complex
overlapping and interlocking contact regions. The average
query times are shown in Table 1. It is important to note that
the query time is not growing because of the increase in
geometric complexity, but rather because our more complex
models are in more complex contact configurations.

The performance of our image-space query system depends
more on the contact configuration than on the complexity of
the objects. The distance error tolerance determines the point
sample density across the contact volume. The density and
the volume of the localized regions and the contact regions
determine the number of pixels that have to be processed. If
an insufficient level of geometric localization is used, the
number of pixels to process may increase dramatically. The
user must decide the appropriate amount of localization to
properly balance the CPU/graphics load. In addition, the
performance can be varied dramatically by the user-specified
distance error tolerance. In Table 2, we show the effects on
performance with a varying error tolerance.

Average Total Per-frame Proximity Query Times
Demo #Tris Isect Pts GeForce3 IR2 Rage Pro

Cylinders 2000 513 12ms 61ms 45ms
Tori 5000 1412 71 262 257

Heart 8000 317 149 329 434
Rigid 15000 2537 313 1001 966

Table 1: Performance timings for dynamics simulations. The number of
triangles, average number of intersection points, and average time to run
proximity queries per frame is reported for error tolerance d (see Table2).
Timing data was gather from three machines, a Pentium4 1.8GHz desktop
with a 64Mb GeForce3, a SGI 300MHz R12000 with InfiniteReality2 graphics,
and a Pentium-III 750Mhz laptop with ATI Rage Pro LT graphics.

Effects of Error Tolerance on Performance
Error Isect Pts/Frame GeForce3 IR2 Rage Pro LT
d/4 89605 548ms 1701ms 2846ms
d/2 11238 169 578 689
d 1413 71 262 257
2d 177 32 189 103
4d 22 15 56 40

Table 2: The effect on performance when changing the distance error
tolerance d. The average number of intersection points per frame is also
reported. We used proximity queries on the deformable tori demo. The error
determines the number of pixels used in the image-based operations.
Systems with low graphics performance are more directly affected by the
choice of d; however, as the error is increased there is less dependence on
graphics performance and the faster laptop CPU overtakes the InfiniteReality2
system.

Although we focused most of our efforts on handling
deformable body proximity queries, our system is also
applicable to rigid body queries. We use a penalty-based
collision response that acts on individual point samples that
approximate our object. These point samples arise from our
image-space proximity queries. Particles are allowed to
penetrate objects in penalty-based collision response
computation. When a penetration is detected, a spring based
restoring force, whose magnitude is proportional to

penetration depth, is then applied to the particle until it has
separated from the object. The measure of penetration is
notoriously expensive to compute and limits the use of
penalty-based techniques to mostly models decomposable
into convex primitives. The generality and computational
efficiency provided by our proximity query algorithms
alleviates this problem.

7 Conclusion and Future Work
We have presented a hybrid geometry- and image-based
algorithm for computing geometric proximity queries
between two non-convex closed 3D polygonal objects using
graphics hardware. This approach has a number of
advantages over previous approaches. The unified
framework allows us to compute all the queries, including
penetration depth and direction and contact normals.
Furthermore, it involves no precomputation and handles
non-convex objects; as a result, it is also applicable to
dynamic or deformable geometric primitives. In practice, we
have found the algorithm to be simple to implement (as
compared to similarly robust geometric algorithms), quite
robust, fast (considering the complexity of the queries), and
very flexible. We have developed an interactive system that
shows proximity queries computed between 3D dynamic
deformable objects to illustrate the effectiveness of our
approach.

8 Acknowledgements
This research has been supported in part by
ARO Contract DAAG55-98-1-0322, DOE ASCII Grant,
NSF Grants NSG-9876914, NSF DMI-9900157 and NSF
IIS-982167, ONR Contracts N00014-01-1-0067 and
N00014-01-1-0496 and Intel

References

[Baraff92] D. Baraff, Dynamic Simulation of Non-Penetrating Rigid
Bodies. Ph.D. Thesis, Dep of Comp. Sci., Cornell University, March 1992
[Cameron97] S. Cameron, Enhancing GJK: Computing Minimum and
Penetration Distance between Convex Polyhedra. International
Conference on Robotics and Automation, 3112-3117, 1997
[Crow77] F. Crow, Shadow Algorithms for Computer Graphics.
SIGGRAPH 77.
[Dobkin93] D. Dobkin, J. Hershberger, D. Kirkpatrick, S. Suri,
Computing the Intersection Depth of Polyhedra. Algorithmica, 9(6), 518-
533, 1993
[Ehmann01] S. Ehmann and M. Lin. Accurate and Fast Proximity
Queries between Polyhedra Using Surface Decomposition. Eurographics
2001
[Fisher01] S. Fisher and M. Lin. Fast Penetration Depth Estimation for
Elastic Bodies Using Deformed Distance Fields. Proc. Intl. Conf. on
Intelligent Robots and Systems, 2001
[Frisken00] S. Frisken, R. N. Perry, A. P. Rockwood, T. R. Jones,
Adaptively Sampled Distance Fields: A General Representation of Shapes
for Computer Graphics. SIGGRAPH00, 249-254, July 2000
[Gilbert88] E. G. Gilbert, D. W. Johnson, S.S. Keerthi. A Fast Procedure
for Computing the Distance Between Objects in Three-Dimensional
Space. IEEE J. Robotics and Automation, RA(4): 193-203, 1988
[Goldfeather89] J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs. Near
Real-time CSG Rendering Using Tree Normalization and Geometric

Pruning. IEEE Computer Graphics and Applications, 9(3):20-28, May
1989
[Gottschalk96] S. Gottschalk, M. C. Lin, D. Manocha, OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection. SIGGRAPH 96,
171-180, 1996
[Hoff99] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast
Computation of Generalized Voronoi Diagrams Using Graphics
Hardware. SIGGRAPH 99, 277-285, 1999
[Hoff01] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and
Simple 2D Geometry Proximity Queries Using Graphics Hardware. ACM
Symposium on Interactive 3D Graphics, 2001
[Hubbard93] P. M. Hubbard, Interactive Collision Detection. IEEE
Symposium on Research Frontiers in Virtual Reality. 24-31, 1993
[Kaul92] A. Kaul and J. Rossignac, Solid-interpolating Deformations:
Construction and Animation of PIPs, Computer and Graphics, vol 16,
107-116, 1992
[Kimmel98] R. Kimmel, N. Kiryati, A. Bruckstein, Multi-Valued
Distance Maps for Motion Planning on Surfaces with Moving Obstacles.
IEEE Transactions on Robotics and Automation, vol 14: 427-438, 1998
[Klosowski98] J. Klosowski, M. Held, J. Mitchell, K. Zikan, H. Sowizral.
Efficient Collision Detection Using Bounding Volume Hierarchies of k-
DOPs. IEEE Trans. Vis. Comp. Graph, 4(1):21-36, 1998
[Johnson98] D. Johnson, E. Cohen, A Framework for Efficient Minimum
Distance Computation, IEEE Conf. On Robotics and Animation, 3678-
3683, 1998
[Lengyel90] J. Lengyel, M. Reichert, B.R. Donald, and D.P. Greenberg.
Real-time Robot Motion Planning Using Rasterizing Computer Graphics
Hardware. Computer Graphics (SIGGRAPH 90 Proc.), vol. 24, pgs 327-
335, Aug 1990
[Lin91] M. Lin, J. Canny. Efficient Algorithms for Incremental Distance
Computation. IEEE Transactions on Robotics and Automation, 1991
[Mirtich96] B. Mirtich, Impulse-Based Dynamic Simulation of Rigid Body
Systems. Ph.D. Thesis, University of California, Berkeley, Dec 1996
[Mirtich98] B. Mirtich, V-Clip: Fast and Robust Polyhedral Collision
Detection. ACM Trans. on Graph, 17(3):177-208, 1998
[Pisula00] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized Path
Planning for a Rigid Body Based on Hardware Accelerated Voronoi
Sampling. Proc. of Workshop on Algorithmic Foundations of Robotics,
2000
[Quinlan94] S. Quinlan, Efficient Distance Computation between Non-
Convex Objects. International Conf. on Robotics and Automation, 3324-
3329, 1994
[Rossignac92] J. Rossignac, A. Megahed, and B. Schneider. Interactive
Inspection of Solids: Cross-sections and Interferences. SIGGRAPH 92,
26, 353-360, July 1992
[Sethian96] J. Sethian, Level Set Methods, Cambridge University Press,
1996
[Snyder93] J. Snyder, A. Woodbury, K. Fleischer, B. Currin, A. Barr,
Interval Methods for Multi-Point Collisions Between Time Dependent
Curved Surfaces. ACM Computer Graphics, 321-334, 1993

Plate 1 hybrid proximity query pipeline : Given two closed polygonal objects, a coarse object-space geometric localization step is performed to find an
axis-aligned bounding box that contains a potential interaction (2). Inside the localized region, the lower-level image-space queries are performed. First
the interior of each object is indentified using an incremental stencil parity test for a series of 2D slices across the volume (2). The set of point that are
determined to lie in the interior of both objects form the intersection points between the objects (3). Then, the Voronoi diagram is computed inside a
tighter region around the intersection points at the same resolution as the intersection resolution. The Voronoi diagram serves two purposes: associates
intersection points with their closest object boundaries, and provides the distance field. The distance value at an intersection point gives the penetration
depth, and the gradient gives the penetration direction.

Plate 2 real-time dynamic deformable proximity queries: The same proximity query pipeline can be applied to dynamic deformable models where
every vertex is assumed to change for every frame. The complex contacts between non-convex objects can result in disconnected intersection regions.
Each cylinder model is composed of 2000 triangles and the average query time is 12ms for an average of 513 intersection points per query. The tori are
composed of 5000 triangles and the query time is 71ms for 1412 intersection points. Each simulation performed at interactive rates on a Pentium4
1.8GHz desktop with a 64Mb GeForce3.

Plate 3 proximity queries on body heartbeat simulation: The proximity queries are used for
path verification of the organs during a precomputed breathing simulation. Here we can see
that the two ventricles are actually intersecting. The heart is composed of 8000 triangles and
the average query time is 149ms for an average of 317 intersection points. This simulation
performed at interactive rates on a Pentium4 1.8GHz desktop with a 64Mb GeForce3.

Plate 4 multiple complex contact scenario in an
interactive rigid body simulation: Collision
responses are computed using a penalty-based
method that requires penetration depth computation.
Each ring is composed of 2500 triangles, average
query time is 313ms for 2537 intersection points.

