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Abstract 
We present an approach for computing generalized proximity information between arbitrary polygonal models 
using graphics hardware acceleration. Our algorithm combines object-space localization, multi-pass rendering 
techniques, and accelerated distance field computation to perform complex proximity queries at interactive rates. It 
is applicable to any closed, possibly non-convex, polygonal object and requires no precomputation, making it 
suitable for both rigid and dynamically deformable geometry of relatively high complexity. The proximity queries 
include, not only collision detection, but also the computation of intersections, minimum separation distance, 
closest points, penetration depth and direction, and contact points and normals. The load is balanced between CPU 
and graphics subsystems through a hybrid geometry and image-based approach. Geometric object-space 
techniques coarsely localize potential interactions between two objects, and image-space techniques accelerated 
with graphics hardware provide the low-level proximity information. We have implemented our system using the 
OpenGL graphics library and have tested it on various hardware configurations with a wide range of object 
complexities and contact scenarios. In all cases, interactive frame rates are achieved. In addition, our algorithm’s 
performance is heavily based on the graphics hardware computational power growth curve which has exceeded the 
expectations of Moore’s Law for general CPU power growth. 

  

1. Introduction 
Many applications of computer graphics or computer 
simulated environments require spatial or proximity 
relationships between objects. In particular, dynamic 
simulation, haptic rendering, surgical simulation, robot 
motion planning, virtual prototyping, and computer games 
often need to perform different proximity queries at 
interactive rates. The set of queries include collision 
detection, intersection, closest point computation, minimum 
separation distance, penetration depth, and contact points 
and normals. Algorithms to perform different queries have 
been well studied in computer graphics, virtual 
environments, robotics and computational geometry. Most of 
the current approaches involve considerable pre-processing 
and therefore are not fast enough for deformable models. 
Furthermore, no good algorithms are known for penetration 
depth computation between general, non-convex models. 

We present a novel approach to perform all the proximity 
queries between rigid and deformable models using graphics 
hardware acceleration. Our algorithm localizes potential 

interactions using object-space techniques, point-samples the 
region, and then uses polygon rasterization hardware to 
compute object intersections, closest points, and the distance 
field and its gradients.  

The main features of our approach include a unified 
framework for all proximity queries, applicability to non-
convex polygonal models, computational efficiency allowing 
interactive queries on current PCs, robustness in terms of not 
dealing with any special-cases or degeneracies, and 
portability across various CPU/graphics combinations. A 
user-specified error threshold for pixel point sampling 
density and distance approximation governs the accuracy of 
the overall approach. Some of the novel features of our 
approach include:  

• Improved and efficient construction of distance meshes 
used to compute 3D Voronoi diagrams accelerated with 
graphics hardware. 

• Site culling algorithms and distance mesh culling for 
increased performance of Voronoi computation. 



• Improved graphics hardware acceleration of computing 
the intersection between two, possibly non-convex, 
polygonal objects, over an entire volume. 

• Improved algorithm for computing 3D image-space 
intersections that handles both inter-object and self-
collisions. 

• Computation of the gradients of the distance field using 
graphics hardware. 

 
We have implemented our algorithm on various hardware 
configurations, and demonstrate its performance to compute 
different queries between rigid and dynamically deforming 
polygonal objects. Our approach is well suited for computing 
proximity query information needed for collision responses 
between dynamic deformable models. The use of graphics 
hardware allows us to perform different queries at interactive 
rates on complex deformable models. Moreover, it is 
relatively simple to implement all these queries in a robust 
manner. Over the last decade, the graphics processors 
(GPUs) processing power has been progressing at a rate 
faster than the CPUs and this will result in handling even 
more complex scenarios at interactive rates. 

2. Related Work 
Algorithms for computing collisions, intersections, and 
minimum separation distances have been extensively 
researched. Many are restricted to convex objects [Cameron 
97, Ehmann01, Gilbert88, Lin91, Mirtich98] or are based on 
hierarchical bounding-volume or spatial data structures that 
require considerable precomputation and are best suited for 
rigid geometry [Hubbard93, Quinlan94, Gottschalk96, 
Johnson98, Klosowski98]. Some algorithms handle 
dynamically deforming geometry by assuming that motion is 
expressed as a closed form function of time [Snyder93] or by 
using very specialized algorithms [Baraff92]. In our 
approach, we emphasize the handling of non-convex, 
dynamically deformable objects with no precomputation or 
knowledge of object motions. In addition, we obtain 
computational complexity that grows linearly with geometric 
complexity for a fixed error tolerance and contact scenario. 

As compared to collision detection and separation distance 
computation, there is relatively little work on penetration 
depth computation. Penetration depth is typically defined as 
the minimum translational distance needed to separate two 
objects. We define it with respect to a point as the minimum 
translational distance and direction needed to separate a 
penetrating point from an object’s interior. Dobkin et al. 
have presented an algorithm to compute the intersection 
depth of convex polytopes, though no practical 
implementation is known [Dobkin93]. Cameron has 
presented a practical algorithm that computes an 
approximate depth for convex polytopes [Cameron97]. No 
practical algorithms are known for general, non-convex 
polyhedra. 

Our algorithm relies on the computation of discretized 
distance fields and graphics hardware-accelerated geometric 
computation. Distance fields - scalar fields that specify 

minimum distance to a shape for all points in the field - have 
been used for many applications in graphics, robotics and 
manufacturing [Frisken00, Fisher01]. Common algorithms 
for distance field computation are based on level sets 
[Sethian96] or adaptive techniques [Frisken00]. However, 
they either require static geometry, extensive preprocessing, 
or lack tight error bounds. Graphics hardware has been used 
to accelerate a number of geometric computations, such as 
visualization of constructive solid geometry models 
[Goldfeather89], cross-sections and interferences 
[Rossignac92], and computation of the Minkowki sum 
[Kaul92]. However, these only compute intersections, not 
distance-related queries. Algorithms also exist for motion 
planning using graphics hardware acceleration and distance 
fields [Kimmel98, Lengyel90, Pisula00]. More recently, an 
algorithm has been proposed to compute generalized 
Voronoi diagrams and distance fields using graphics 
hardware [Hoff99]. Its application to motion planning was 
presented in [Pisula00]. Also, proximity queries accelerated 
using graphics hardware was presented in [Hoff01], but it 
was restricted to 2D and its extension to 3D was not obvious. 

2.1 Voronoi and Distance field Computation 
In [Hoff99], they present an algorithm for computing 
approximate 2D and 3D generalized Voronoi diagrams for 
polygonal objects with a variety of distance metrics. The 
representation is in the form of a discretized regular grid of 
sample points (images) across a 2D slice. A 3D Voronoi 
diagram is composed of a sequence of these slices across the 
volume to form a regular 3D grid. At each grid point, the ID 
of the nearest site and its associated distance is stored. They 
accelerate a brute-force algorithm using graphics hardware.  

Instead of relying on a distance evaluation between a point 
and a Voronoi site, a polygonal distance mesh is constructed 
so that when rendered it computes the correct distance value 
as the Z-coordinate. If these distance meshes are rendered 
for each site with Z-buffer visibility enabled, the correct 
comparisons and updates will also be performed. This 
reduces the problem to finding a polygonal mesh 
approximation of a 2D slice of the distance function. In 3D, 
the distance mesh must approximate a 2D slice of the 3D 
domain. 

Their 3D implementation simply used a coarse regular grid 
with direct distance evaluations at each grid point. This often 
required over-meshing, inefficient direct distance 
evaluations at grid points, and did not take advantage of the 
inherent symmetry in the functions being approximated. In 
addition, this approximation did not provide a tight bound on 
the approximation and the computation times were on the 
order of minutes to hours for high resolution Voronoi 
diagrams of complex models. 

We extend the 3D distance mesh ideas and formulate a very 
fast and efficient bounded error approximation without 
requiring any lookup tables or complex data structures. In 
addition, we present methods for greatly accelerating the 
distance evaluations through culling techniques. 



2.2 2D Proximity Queries using Graphics HW 
In [Hoff01], they presented an approach using the graphics 
hardware based Voronoi computation for performing more 
general proximity queries, such as those needed in 
computing collision responses in a dynamics simulation. 
This paper focused on the interactions between 2D, possibly 
non-convex, polygonal objects only, but illustrated the 
potential for having a unified framework for a wide range of 
proximity queries. Many of the queries supported are 
particularly difficult for object-space algorithms, such as 
computing intersections, penetrating points, and penetration 
depths and directions. They used image-space techniques for 
performing these queries that were accelerated using 
graphics hardware. The core operations were based on 
queries into the Voronoi diagram. They presented a pipeline 
that allowed load balancing between CPU and graphics 
subsystems by first incorporating an object-space geometric 
localization phase to restrict the area over which the image-
space phase must be performed. 

Through improvements in the Voronoi diagram computation, 
we have extended this work into 3D. Many additional 
optimizations were necessary to make this run well in 
practice, including: faster and efficient distance meshing 
with bounded error, conservative Voronoi site culling, and 
making the queries symmetric (query A w.r.t. B is the same 
as B w.r.t. A). In addition, we constructed a specialized 
algorithm for computing 3D intersections efficiently. 
Previously in [Hoff01] for 2D, they relied on pixel overwrite 
to find intersection points. For 3D, we used a parity based 
strategy similar to operations used in graphics hardware-
accelerated visualization of CSG operations and shadow 
volumes. 

3. Overview of Our Approach 
Given a collection of closed 3D polygonal objects, we 
perform coarse geometric localization to find rectangular 
regions of space (axis-aligned bounding boxes) that contain 
either potential intersections or closest feature pairs between 
objects. We uniformly point-sample these regions and use 
polygon rasterization hardware to compute object 
intersections, closest points, and the distance field. The 
distance field and its gradient vector field provide the 
distance and direction to the nearest feature for each point in 
the localized region, which gives the contact normals, 
minimum separation distances, or penetration depths. Our 
core algorithm computes the proximity information between 
two 3D, possibly non-convex, polygonal objects. Higher-
order curved surfaces are tessellated into polygons with 
bounded distance deviation error. In our hybrid approach, 
there are two top-level operations: 

(1) Geometric object-space operations to coarsely localize 
potential intersection regions or closest features 

(2) Image-space operations using graphics hardware to 
compute the proximity information in the localized 
regions 

Most of our improvements center around Voronoi and 
distance field computation since it is by far the most costly 
operation and is the most demanding of the graphics 
hardware. Load balancing between CPU and graphics 
subsystems is achieved by varying the coarseness of the 
object-space localization and by using object-space culling 
strategies. Tighter localized regions result in fewer pixels 
and a smaller bound on the maximum distance needed for 
Voronoi computation, thus reducing the fill and geometry 
loads on the graphics pipeline. We can also balance the load 
between these two main stages of the graphics pipeline by 
shifting the distance error tolerance in the Voronoi 
computation between fill and geometry: increasing the pixel 
resolution decreases the distance mesh resolution and vice 
versa. The main parts of the proximity query pipeline are 
shown in the following figure: 
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Figure 1: The proximity query pipeline is composed of two main stages: 
geometric localization and image-space queries. The most complex queries 
are performed by graphics hardware. Each stage can be varied to balance the 
load between CPU and graphics subsystems. 

4. Object-space Geometric Localization 
The image-based queries operate on a uniform 3D grid of 
sample points in regions of space containing potential 
interactions. The graphics hardware pixel framebuffer is 
used as a 2D slice of the grid and the proximity queries 
become pixel operations, therefore the performance varies 
dramatically with the pixel resolution. To avoid excessive 
load, a geometric localization step is used to localize regions 
of potential interaction or as a trivial rejection stage. This 
hybrid geometry/image-based approach helps balance the 
load between the CPU and graphics subsystems, giving us 
portability between different workstations with varying 
performance characteristics. More sophisticated geometric 
techniques, to tightly localize potential intersections or 
closest feature pairs, dramatically reduce the graphics 
pipeline overhead, but increases the CPU usage and the 
complexity of the algorithm. We use coarse fixed-height 
bounding-volume hierarchies to achieve this balance 
between speed and complexity, and between CPU and 
graphics usage. 

There are many general and efficient algorithms available 
for localizing geometry based on bounding-volume 
hierarchies [Gottschalk96, Hubbard93, Johnson98, 
Quinlan94]. However, for exact collision detection these 
algorithms typically perform well only on static geometry 
where the hierarchy can be precomputed. In order to handle 
dynamic deformable geometry with no precomputation, we 
use coarse levels for efficient trivial rejection and obtain 
reasonable geometric localization. In addition, we perform 
lazy evaluation of relevant portions of the hierarchies while 
performing the collision or distance query. A subtree rooted 
at a particular node is only computed if its children need to 
be visited during the query traversal. The trees are destroyed 



after every proximity query, and no actual tree data 
structures are required since the child nodes are recursively 
passed to the query routine. A maximum height of each 
object tree is used to balance the CPU and graphics load. 
Similar algorithms can be constructed using spatial 
partitioning rather than bounding-volume hierarchies. Since 
the resulting localized region needs to be rectangular (an 
axis-aligned cube) to allow simple use of the graphics 
hardware, we use a dynamically constructed AABB-tree. 
With a fixed number (depth of the tree) of linear passes over 
the geometry we obtain reasonable localization. 

The typical proximity query is between two objects at a time. 
However, it is possible to perform many simultaneous 
queries for all objects in an N-body simulation. We could 
perform the proximity queries for all objects with one image-
space query by using a localized region that encloses the 
entire scene. This may be more efficient in cases when the 
objects are densely packed with many complex contacts 
throughout the space containing the objects. For example, in 
a dense rigid body simulation where many objects are 
interacting simultaneously (e.g. an asteroid field), a single 
image-space query over the entire space may be more 
appropriate (localized region is the world bounding box). In 
addition, as the computational power of graphics systems 
continues to overtake the general CPU power, coarser and 
simpler localization will be favored. 

The geometric localization step may often result in multiple 
disconnected regions on each object. In these cases, the 
proximity query must be repeated for each localized region. 
Geometric localization for intersecting and nearest features 
can be found by using existing bounding-volume or spatial 
partitioning approaches that act on object boundaries, but 
finding localized regions around volume intersections 
requires a specialized algorithm. At each step of refinement, 
the parent bounding box must fully contain the volume 
intersection. This can be accomplished by first starting with 
the intersection of the top-level object bounding boxes. This 
intersection box will surely contain the intersection volume. 
Now we can refine this localization by computing the 
bounding box of the portion of each object that lies in the 
current box. We then repeat the process on the intersection 
of these two boxes which is also guaranteed to contain the 
intersection volume. 

5. Image-space Proximity Queries 
The proximity queries are simplified using uniform point 
sampling inside an axis-aligned bounding box (localized 
region) and accelerated with graphics hardware. This image-
space approach helps decouple the objects’ geometric 
complexity from the computational complexity for a 
specified error tolerance. We point-sample the space 
containing the geometry within the localized regions with a 
uniform rectangular 3D grid and perform the queries on this 
volumetric representation using graphics hardware 
acceleration. The image-based queries include computing 
intersections between objects, computing the distance field 
of an object boundary, and computing the gradient of the 

distance field. Variations of these basic operations are used 
to perform the remaining queries. The basic pipeline is 
shown in Figure 2. 

The 3D image-space queries avoid excessive data handling 
when processing the entire volume of the localized region. 
Each query must be performed over the uniform 3D grid, 
one 2D slice at a time. The application query information is 
sent to the application as it is processed slice-by-slice to 
avoid processing and storing the entire 3D image. In 
addition, many of the queries have been made symmetric to 
avoid a second pass as needed in the previous work. 
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 Figure 2: The most computationally intensive tasks are performed by the 
graphics hardware. These stages are also the most difficult for geometric 
object-space approaches. We accelerate simple brute-force image-space 
solutions using graphics hardware to obtain interactive performance on 
complex models with no precomputation 

5.1 Intersections 
We compute intersection points on a 2D slice by performing 
a parity test, as is often used in shadow volumes and CSG 
rendering, using graphics hardware stencil operations 
[Crow77, Rossignac92]. In order to find intersections, we 
must first be able to identify sample points that are inside the 
object. The set of sample points that are inside both objects 
form the intersection points between the objects. We then 
describe another generalized strategy that can handle 
intersections between multiple objects simultaneously along 
with the more complex self-intersections. 

For any closed object, we can determine if a point is inside 
the object by shooting a ray from the point in any direction 
and counting the number of times the object’s surface is 
crossed. If the count is even, the point is outside of the 
object; if odd, the point is inside. We can simultaneously 
determine which sample points on a 2D planar slice are 
interior points by projecting all of the geometry on one side 
of the plane onto the plane and counting the number of times 
pixels are overwritten. This computation is performed using 
the graphics hardware through an odd-even parity test for 
rendered geometry clipped by the plane and projected onto 
the plane. Each time a pixel is overwritten the parity bit is 
flipped. Pixels whose stencil bit is set to 1 represent points 
on the slice that are inside the object. Initially the stencil 
buffer is initialized to 0. 

5.1.1 Incremental Update and Bucket Sorting 

For a single slice, this computation requires rendering all of 
the geometry on one side of the plane (clipped by the plane). 
However, this is inefficient for evaluating interior points on 
many slices swept through our 3D localization box. We 
improve efficiency by performing a plane sweep and 
updating the stencil buffer incrementally. For each slice, we 



only render the geometry between the current slice and the 
previous slice. 

This incremental update improves the running time 
dramatically since on average the entire model is only drawn 
once! As opposed to the single slice approach where the 
entire model to one side of the slice had to be drawn for each 
successive slice. We can obtain even greater performance by 
first sorting the geometric primitives along the Z-axis by 
their minimum Z-values. A general sort would require O(n 
log n) time complexity. We obtain expected O(n) complexity 
by performing a bucket sort by using the slab positions as 
the buckets. With one pass through the geometry, we can 
assign each primitive to a bucket by its minimum Z-value. 
We maintain a list of currently active geometry for each slab. 
For each subsequent slab we add geometry to the list from 
the associated bucket. Geometry is removed from the list by 
checking if the old primitives’ max Z-value is less than the 
current slab NearZ (swept past the primitives). This also 
dramatically improves performance with very little extra 
complexity or data. We avoid having to search for geometry 
that intersects the current slab. In addition, there is no need 
to add geometry to the buckets that lies outside of the XY 
min/max box. In practice, very little geometry has to be 
processed for the interior computation. 

In order to find the intersection between two objects, we 
compute the interior of both objects inside of the localized 
region one slice at a time. The interior of both objects is 
encoded in a different bit of the stencil buffer. The set of 
points with both bits set are intersection points since they are 
interior to both objects. To actually extract these points, we 
must read the stencil image and search for the pixels with the 
appropriate value (a value of 3 from the 1st and 2nd least 
significant bits being set). These points must then be 
transformed from pixel-space into object-space. 

5.1.2 Complexity and Error Analysis 

Our new algorithm for intersection computation for 3D non-
convex objects is simpler as compared to the 2D intersection 
computation algorithm presented in [Hoff01]. The major 
weakness of finding overwritten pixels between two non-
convex polygons, was that they had to be triangulated in 
order to be rendered. This was the dominant part of the 
intersection computation since it was worst case O(n log n) 
rather than O(n). However, the expected running time of 
most triangulation algorithms is usually close to linear. In 
3D, we only require the O(n) complexity where n is the 
number of primitives. The actual running time varies most 
dramatically with the ratio of the size of the localized region 
over the error tolerance, and is largely independent of the 
geometric complexity. More complex forms of contact do 
not result in increased running times unless the size of the 
localized region is increased dramatically or the error 
tolerance is reduced. These cases are difficult to analyze 
since they vary dramatically with the object configurations. 
More sophisticated geometric localization will reduce 
performance variations. 

The complexity of rendering objects grows linearly with 
respect to the number of primitives for a fixed pixel 
resolution. Computing intersections geometrically between 
two polygon boundaries is worst case O(n2) since all 
primitives could intersect each other. The complexity of our 
algorithm is O(n) where n is the number of primitives. The 
hierarchical geometric localization step is also O(n) since the 
maximum depth of the tree is held constant. This tree depth 
balances the load between the CPU and graphics subsystems. 

Similarly to the 2D case, the error in the interior and 
intersection computation is related to the pixel error in scan-
conversion. The actual interior regions will never be off by 
more than half of the length of the diagonal of a pixel’s 
rectangular cell (the error tolerance). The error tolerance has 
a dramatic effect on the number of pixels that have to be 
processed. When reduced error tolerances are required, 
better geometric object-space localization must be employed 
to reduce the load on the graphics subsystem. Furthermore, 
we can also balance the loads between geometry and fill 
stages of the graphics pipeline by trading off error in the 
pixel resolution and the distance mesh granularity. 

Incorrect intersection parity resulting from pixel sample 
points lying exactly on tangent points to the object surface 
are avoided through correct minimum-based triangle 
rasterization as described in [Rossignac92]: either the 
crossing will be counted twice or not at all. 

5.1.3 Multiple Objects and Self-Collisions 

We can modify the intersection routine to handle self-
collisions and multiple objects with very little modification 
to the previous algorithm. The modification adds the 
complexity of having to distinguish front and back faces for 
polygons in each slab for a parallel projection and has the 
slight restriction of only handling the intersection of at most 
255 simultaneous volumes (limit of 8-bit stencil buffer). 

Instead of finding the interior of both objects separately and 
then finding their common intersection, we can simply 
finding the intersection directly using the geometry from 
both objects simultaneously using the classic parity test used 
in the shadow volume algorithm. Since we want to know if a 
point is inside two volumes simultaneously, a ray emanating 
from a query point must have exited at least two more 
volumes than it has entered. 

Instead of simply flipping a bit each time a boundary is 
crossed (front or back facing), starting with a stencil counter 
initialized to zero, we increment the counter each time a 
volume is exited (a back face is rendered) and decrement the 
counter whenever a volume is entered (front face is 
rendered). The counter will indicate the number of objects 
containing the point. We are interested in the intersection 
points, so the counter must at least be 2. We simply modify 
our existing approach of rendering slabs to perform this 
count instead. We must classify all object faces for each slab 
as front or back facing with respect to a parallel projection. 
Since all object triangles are handled together, we can handle 
more than 2 objects and we can also find self-intersections of 



a single object. Stencil counts of 2 or greater indicates a 
point that is in the intersection of at least one pair of objects 
or an object with itself. 

5.2 Distance Field Computation 
We use the algorithm presented in [Hoff99] for constructing 
generalized Voronoi diagrams using graphics hardware for 
3D polygonal objects. This approach computes an image-
based representation of the Voronoi diagram in both the 
color and the depth buffers for one 2D slice of the 3D 
volume at a time. A pixel’s color identifies the polygon 
feature (vertex or edge) that is closest to the slice pixel’s 
sample points; its depth value corresponds to the distance to 
the nearest feature. The depth buffer is an image-based 
representation of the distance field of the object boundaries. 
The distance field is computed by rendering 3D bounded-
error polygonal mesh approximations of a 2D planar slice of 
the distance function where the depth of the rendered mesh 
at a particular pixel location corresponds to the distance to 
the nearest geometric feature. 

The goal in constructing a distance mesh is to find a 
piecewise linear approximation across a 2D planar domain 
of a Voronoi site’s 3D scalar distance function. The distance 
to a site from a point (x,y,z) is defined as D(x,y,z). The 
function we are interested in approximating is for a 2D 
planar slice z=Zslice. So we wish approximate the 2D scalar 
function D(x,y, Zslice), where Zslice is a constant for any 
particular slice, such that the approximation D’ and actual 
distance function D never differ by more than the user-
specified distance error. In addition, the domain across the 
slice is restricted to a 2D window and the range of the 
function is restricted to z∈[0,MaxDist]. The shape of the 
distance mesh for a 3D point is one sheet of a hyperboloid of 
two sheets; for a line, an elliptical cone; and for a plane, 
another plane. 

In [Hoff99], distance meshes were constructed using lookup 
tables. We construct error-bounded polygonal mesh 
approximations of a 2D planar slice of a primitives distance 
function at run-time with no precomputation at faster rates 
than the algorithm based on lookup tables. We solve for the 
mesh stepsizes needed to maintain the desired error 
threshold while taking advantage of symmetry. We attempt 
to actual obtain the desired error to make the meshes as 
coarse as possible for rendering efficiency. In addition, we 
only construct geometry that lies within the slice window. 

For computing distance fields for proximity queries, we 
obtain higher performance than the generalized Voronoi 
diagram computation because of the localized regions. In the 
case of computing distance fields for proximity queries, the 
localized regions always contain the geometry that is in 
potential contact or that contains the closest features. The 
farthest away points on two objects can be is in opposite 
corners of the localized region box. So the maximum 
distance we need to construct distance meshes for is half of 
the diagonal length of the box. Reducing the maximum 
distance results in the greatest speedups in Voronoi 

computation since it reduces geometry and fill by reducing 
the overall extent of the distance meshes, and the smaller 
bound allows the objects to be easily culled if they are too 
far from the localized region thus avoiding distance mesh 
construction completely. In addition, the distance mesh 
generation routines attempt to minimize the number of 
primitives drawn by constructing a mesh that is as coarse as 
possible while staying within the specified error bound (the 
error bound is tight, this deviation can actually be measured 
for various places in the mesh approximation) and by only 
generating primitives that are inside the localized region 
bounding box. In addition, in many proximity queries we can 
further reduce the maximum distance needed when we only 
want intersection or closest points near the boundaries of the 
object. 

5.3 Gradient of the Distance Field 
We compute the gradient of the distance field at pixel 
locations by using central differences in all three principal 
axis directions. In practice, this simple approach gives 
reasonable results even with the distance error and lack of C1 
or higher continuity in the polygonal distance mesh 
approximations used to compute the distance field. Gradients 
are computed in software for selected points after reading 
back the distance values. If the entire gradient field is 
desired, we could accelerate the computation using multi-
pass rendering or pixel shading operations. 

The most difficult problem in computing the gradient is in 
handling discontinuities and boundaries in the distance field. 
There are three types of discontinuities that occur: across 
Voronoi boundaries, across Voronoi sites, and at the 
boundaries of the grid. In each case, the support of the finite 
differencing “kernel” has to cross a discontinuity and gives 
an incorrect gradient. A more robust method is shown in the 
fast marching methods in [Sethian96]. He solves for a 
distance value at an unknown point using an implicit method 
based on the fact that at least one adjacent distance value 
must be known and does not cross a discontinuity, and that 
for the nearest Euclidean distance metric the magnitude of 
the gradient must be 1 everywhere (except at the 
discontinuities). We use the same method by just using the 
one-sided difference in each direction that will result in a 
gradient whose magnitude is 1 (choose the adjacent value in 
each direction that has the maximum difference). Adjacent 
distance values that cross a discontinuity will not be chosen. 
An alternative, but slightly more complex, strategy is to 
compute the gradients of the continuous distance meshes 
directly. 

By directly encoding gradients at distance mesh vertices, we 
can use the linear interpolation of polygon rasterization to 
compute gradients at all pixels. Since we would be linearly 
interpolating a gradient, this gives us a higher order 
interpolation than central differencing of adjacent distance 
values. This is comparable to the difference between 
Gouraud and Phong interpolation (the first linearly 
interpolates color values across a polygon, the second 
linearly interpolates the surface normal for per-pixel lighting 



calculations). In addition, the gradient is much simpler if 
computed only for a single site at a time during distance 
mesh construction. We need only provide the direction to the 
nearest point on the site at each distance mesh vertex. The 
main difficulty with this approach is in the encoding of the 
gradient for rapid computation by graphics hardware. 

This approach as some difficulties due to limitations of 
graphics hardware framebuffer precision. There are a 
number of ways we can interpolate the gradient information. 
The simplest is to encode the signed normalized components 
into the 8-bit RGB color values at each vertex (using 
hardware scale and bias operations for sign). The linear 
interpolation would give the correct results to 8-bits of 
precision. This approach introduces quantization error when 
encoding and additional error during interpolation. Using 3D 
texture coordinates, high precision encoding and 
interpolation is obtained. However, the resulting per-pixel 
texture coordinates are still quantized to low precision RGB 
values in the framebuffer. The texture-mapping function 
would simply be the identity mapping. We are interpolating 
(s,t,r) gradient values and we want those values directly at 
each pixel. The graphics hardware does not allow higher 
precision intermediate results for multi-pass operations. 
However, the texture-mapping method has the advantage of 
only introducing significant error at the final stage; encoding 
and interpolation are done at floating point precision. Also, 
the signs will be correctly handled without any additional 
scaling or biasing. However, we also have no simple way of 
performing the identity map. We must use a 1D texture that 
maps [-1,1] to [0,255], but this can only be applied to one 
texture component at a time. This would require three passes 
in order to transform (s,t,r) into RGB values. A less efficient 
approach would involve the use of a 3D texture map. Current 
pixel-level programmable graphics hardware may provide a 
simpler and more efficient way to handle this mapping. 

5.4 Other Proximity Queries 
We use the basic operations of computing interior points, 
intersections, the distance field, and the gradient of the 
distance field to perform the other proximity queries 
mentioned in section 1. 

Penetration Depth and Direction: For a point on object A 
that is penetrating object B, we define the penetration depth 
and direction for the point as the distance and direction to the 
nearest feature on B. This information is provided directly 
from the distance field and its gradient computed at the 
penetrating point. Penetrating points are found using the 
intersection operation. Intersection points are associated with 
each object based on the Voronoi diagram’s color buffer that 
indicates the closest object to each point. Contact points and 
Normals are computed in the same way. Approximate 
contact points result from the objects slightly penetrating 
each other. 

Closest Point: We find the point on object A that is closest 
to object B by first geometrically localizing potential closest 
feature regions (one bounding box on each object) using 

some hierarchical approach. We then compute the distance 
field of object B and the interior points of A in A’s localized 
region (gives us minimum distance to B for all points in A in 
A’s localized region). We then search these points to find the 
one with the smallest distance value. This point will be the 
point on A that is closest to B. This process has to be 
repeated for B with respect to A. This requires two passes, 
but the interior points and the distance field needs to only be 
computed once for each object. 

Separation Distance and Direction: We find the minimum 
separation distance and direction between two objects A and 
B by first computing the closest point on A to B and vice 
versa. Ideally, we find the closest point on B to A from the 
distance value and gradient at the closest point on A to B, 
but the amplification of errors over the greater distance may 
cause problems. The distance between these two closest 
points is the separation distance and the line segment 
between them gives the separation direction. 

6 Performance 
We tested the system performance in both rigid and 
deformable body dynamic simulations on a several different 
hardware configurations. In the rigid body cases, we 
measured the performance of the system in computing 
proximity query information needed for computing a 
penalty-based collision response. In these cases, only 
shallow penetration is allowed since the objects bounce off 
of each other. For the deformable cases, we perform only the 
proximity queries without collision response to show the 
worst case of computing proximity information for many 
deep simultaneous contact scenarios with dynamically 
deforming geometry. We tried to choose three hardware 
configurations that would reflect variations in balance 
between CPU and graphics computational power: 

(1) Pentium-4 1.8Ghz with GeForce3 Ti500 graphics: fast 
CPU and fast graphics 

(2) 1 graphics pipe and 1 300Mhz MIPS R12000 processor 
of an SGI Reality Monster with InfiniteReality2 
graphics: slower CPU and fast graphics 

(3) PentiumIII-750Mhz laptop with ATI Rage Pro LT: fast 
CPU and slow graphics.  

Because of the ability to balance the load between the CPU 
and graphics subsystems and between stages of the graphics 
pipeline, we are able to achieve interactive performance on 
all configurations. In most cases, we only needed very 
simple one-level geometric localization (intersection of top-
level axis-aligned bounding boxes). Most of the balancing 
was between stages of the graphics pipeline (much of the 
geometry stage on older graphics systems was performed on 
the CPU: before hardware T&L). We also show the effects 
of the varying the distance threshold on system performance. 

For performance evaluation, we implemented a rigid body 
simulator with collision response and a variety of 
deformable simulations without collision responses to allow 



more complex contact scenarios. The test scenarios vary 
from simple convex objects composed of around 2 thousand 
triangles with simple contact regions to non-convex objects 
with nearly 10,000 triangles with multiple complex 
overlapping and interlocking contact regions. The average 
query times are shown in Table 1. It is important to note that 
the query time is not growing because of the increase in 
geometric complexity, but rather because our more complex 
models are in more complex contact configurations. 

The performance of our image-space query system depends 
more on the contact configuration than on the complexity of 
the objects. The distance error tolerance determines the point 
sample density across the contact volume. The density and 
the volume of the localized regions and the contact regions 
determine the number of pixels that have to be processed. If 
an insufficient level of geometric localization is used, the 
number of pixels to process may increase dramatically. The 
user must decide the appropriate amount of localization to 
properly balance the CPU/graphics load. In addition, the 
performance can be varied dramatically by the user-specified 
distance error tolerance. In Table 2, we show the effects on 
performance with a varying error tolerance. 

Average Total Per-frame Proximity Query Times 
Demo #Tris Isect Pts GeForce3 IR2 Rage Pro 

Cylinders 2000 513 12ms 61ms 45ms
Tori 5000 1412 71 262 257

Heart 8000 317 149 329 434
Rigid 15000 2537 313 1001 966

Table 1: Performance timings for dynamics simulations. The number of 
triangles, average number of intersection points, and average time to run 
proximity queries per frame is reported for error tolerance d (see Table2). 
Timing data was gather from three machines, a Pentium4 1.8GHz desktop 
with a 64Mb GeForce3, a SGI 300MHz R12000 with InfiniteReality2 graphics, 
and a Pentium-III 750Mhz laptop with ATI Rage Pro LT graphics. 

Effects of Error Tolerance on Performance 
Error Isect Pts/Frame GeForce3 IR2 Rage Pro LT
d/4 89605 548ms 1701ms 2846ms 
d/2 11238 169 578 689 
d 1413 71 262 257 
2d 177 32 189 103 
4d 22 15 56 40 

Table 2: The effect on performance when changing the distance error 
tolerance d. The average number of intersection points per frame is also 
reported. We used proximity queries on the deformable tori demo. The error 
determines the number of pixels used in the image-based operations. 
Systems with low graphics performance are more directly affected by the 
choice of d; however, as the error is increased there is less dependence on 
graphics performance and the faster laptop CPU overtakes the InfiniteReality2 
system. 
 

Although we focused most of our efforts on handling 
deformable body proximity queries, our system is also 
applicable to rigid body queries. We use a penalty-based 
collision response that acts on individual point samples that 
approximate our object. These point samples arise from our 
image-space proximity queries. Particles are allowed to 
penetrate objects in penalty-based collision response 
computation. When a penetration is detected, a spring based 
restoring force, whose magnitude is proportional to 

penetration depth, is then applied to the particle until it has 
separated from the object.  The measure of penetration is 
notoriously expensive to compute and limits the use of 
penalty-based techniques to mostly models decomposable 
into convex primitives. The generality and computational 
efficiency provided by our proximity query algorithms 
alleviates this problem. 

7 Conclusion and Future Work 
We have presented a hybrid geometry- and image-based 
algorithm for computing geometric proximity queries 
between two non-convex closed 3D polygonal objects using 
graphics hardware. This approach has a number of 
advantages over previous approaches. The unified 
framework allows us to compute all the queries, including 
penetration depth and direction and contact normals. 
Furthermore, it involves no precomputation and handles 
non-convex objects; as a result, it is also applicable to 
dynamic or deformable geometric primitives. In practice, we 
have found the algorithm to be simple to implement (as 
compared to similarly robust geometric algorithms), quite 
robust, fast (considering the complexity of the queries), and 
very flexible. We have developed an interactive system that 
shows proximity queries computed between 3D dynamic 
deformable objects to illustrate the effectiveness of our 
approach. 
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Plate 1 hybrid proximity query pipeline : Given two closed polygonal objects, a coarse object-space geometric localization step is performed to find an 
axis-aligned bounding box that contains a potential interaction (2). Inside the localized region, the lower-level image-space queries are performed. First 
the interior of each object is indentified using an incremental stencil parity test for a series of 2D slices across the volume (2). The set of point that are 
determined to lie in the interior of both objects form the intersection points between the objects (3). Then, the Voronoi diagram is computed inside a 
tighter region around the intersection points at the same resolution as the intersection resolution. The Voronoi diagram serves two purposes: associates 
intersection points with their closest object boundaries, and provides the distance field. The distance value at an intersection point gives the penetration 
depth, and the gradient gives the penetration direction. 

    

    

Plate 2 real-time dynamic deformable proximity queries: The same proximity query pipeline can be applied to dynamic deformable models where 
every vertex is assumed to change for every frame. The complex contacts between non-convex objects can result in disconnected intersection regions. 
Each cylinder model is composed of 2000 triangles and the average query time is 12ms for an average of 513 intersection points per query. The tori are 
composed of 5000 triangles and the query time is 71ms for 1412 intersection points. Each simulation performed at interactive rates on a Pentium4 
1.8GHz desktop with a 64Mb GeForce3. 

   
Plate 3 proximity queries on body heartbeat simulation: The proximity queries are used for 
path verification of the organs during a precomputed breathing simulation. Here we can see 
that the two ventricles are actually intersecting. The heart is composed of 8000 triangles and 
the average query time is 149ms for an average of 317 intersection points. This simulation 
performed at interactive rates on a Pentium4 1.8GHz desktop with a 64Mb GeForce3. 

Plate 4 multiple complex contact scenario in an 
interactive rigid body simulation: Collision 
responses are computed using a penalty-based 
method that requires penetration depth computation. 
Each ring is composed of 2500 triangles, average 
query time is 313ms for 2537 intersection points. 


