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ABSTRACT
We present a new approach for computing generalized proximity
information of arbitrary 2D objects using graphics hardware.
Using multi-pass rendering techniques and accelerated distance
computation, our algorithm performs proximity queries not only
for detecting collisions, but also for computing intersections,
separation distance, penetration depth, and contact points and
normals. Our hybrid geometry and image-based approach balances
computation between the CPU and graphics subsystems.
Geometric object-space techniques coarsely localize potential
intersection regions or closest features between two objects, and
image-space techniques compute the low-level proximity
information in these regions. Most of the proximity information is
derived from a distance field computed using graphics hardware.
We demonstrate the performance in collision response
computation for rigid and deformable body dynamics simulations.
Our approach provides proximity information at interactive rates
for a variety of simulation strategies for both backtracking and
penalty-based collision responses.
Keywords: Proximity queries, collision detection, penetration
depth, graphics hardware acceleration, multi-pass techniques.

1 INTRODUCTION
Many applications of computer graphics or computer simulated
environments require spatial or proximity relationships between
objects. In particular, dynamic simulation, haptic rendering,
surgical simulation, robot motion planning, virtual prototyping,
and computer games often require many different proximity
queries simultaneously at interactive rates. We focus on interactive
computation of the following proximity queries between 2D
objects: collision detection, intersection, minimum separation
distance, penetration depth, and contact points and normals.

Algorithms for determining collisions, intersections, and minimum
separation distances have been extensively researched. Many are
restricted to convex objects [2,4,6,16] or are based on hierarchical
bounding-volume or spatial data structures that require
considerable precomputation and are best suited for rigid
geometry [8,12,14,19]. Some algorithms handle dynamically
deforming geometry by either having prior knowledge of motion
trajectories [22] or by using very specialized algorithms [1]. In our

approach, we emphasize the handling of non-convex, dynamically
deformable objects with no precomputation or knowledge of
object motions.

Penetration depth is typically defined as the minimum
translational distance needed to separate two objects. We define it
with respect to a point as the minimum translational distance and
direction needed to separate a penetrating point from an object’s
interior. This information is useful for penalty-based collision
response computation. Dobkin et al. have presented an algorithm
to compute the intersection depth of convex polytopes, though no
practical implementation is known [3]. In general, no robust and
efficient algorithms are known for computing the penetration
depth and direction for general, non-convex primitives.

Our algorithm relies on the computation of discretized distance
fields and graphics hardware-accelerated geometric computation.
Distance fields − scalar fields that specify minimum distance to a
shape for all points in the field − have been used for many
applications in graphics, robotics and manufacturing [5,9].
Common algorithms for distance field computation are based on
level sets [21] or adaptive techniques [5]. However, they either
require static geometry, extensive preprocessing, or lack tight
error bounds. Graphics hardware has been used to accelerate a
number of geometric computations, such as visualization of
constructive solid geometry models [7] and cross-sections and
interferences [20]. However, these only compute intersections, not
distance-related queries. Algorithms also exist for motion planning
using graphics hardware acceleration and distance fields [11,
13,15,18]. More recently, an algorithm has been proposed to
compute generalized Voronoi diagrams and distance fields using
graphics hardware [10]. Its application to motion planning was
presented in [11,18].

Our algorithm combines coarse traditional hierarchical approaches
and multi-pass rendering techniques with the graphics hardware-
accelerated distance field computation presented in [10]. The main
features of our approach include a unified framework for all
proximity queries, generality to non-convex polygons, no required
precomputation or complex data structures, computational
efficiency allowing interactive queries on current PCs, robustness
requiring no special-case handling of degeneracies, portability
across various CPU/graphics combinations, and error-bounds on
approximations. We have implemented our algorithm on PC and
SGI platforms, and demonstrated its performance in computing
collision responses in both rigid- and deformable-body dynamic
simulations. Our current algorithm and implementation focuses on
2D polygonal objects, but the basic design principles extend to 3D
and are the focus of our current work.

2 OUR APPROACH
While algorithms exist for performing some of the proximity
queries in both 2D and 3D, none meet all of our requirements even



in 2D. Our first step in developing a general unified approach that
is efficient and robust in practice focuses on the general 2D
proximity problem. Given a collection of 2D objects, we perform
coarse geometric localization to find rectangular regions of space
that contain either potential intersections or closest feature pairs
between objects. We uniformly point-sample these regions and use
polygon rasterization hardware to compute object intersections,
closest points, and the distance field. The distance field and its
gradient vector field provide the distance and direction to the
nearest feature for each point in the localized region, which gives
the contact normals, minimum separation distances, or penetration
depths. Our core algorithm computes the proximity information
between two 2D, simple, possibly non-convex polygons. Higher-
order primitives are tessellated into polygons with bounded
distance deviation error. In our hybrid approach, there are two top-
level operations: (1) geometric object-space operations to coarsely
localize potential intersection regions or closest features, and (2)
image-based operations using graphics hardware to compute the
proximity information in the localized regions.

2.1 Geometric Localization
The image-based queries operate on a uniform grid of sample
points in regions of space containing potential interactions. The
graphics hardware pixel framebuffer is used as the grid and the
queries become pixel operations, therefore the performance varies
dramatically with the pixel resolution. To avoid excessive load, a
geometric localization step is used to window regions of potential
interaction or as a trivial rejection stage. This hybrid
geometry/image-based approach helps balance the load between
the CPU and graphics subsystems, giving us portability between
different workstations with varying performance characteristics.
Using more sophisticated geometric techniques to tightly localize
potential intersections or closest feature pairs dramatically reduces
the graphics pipeline overhead, but increases the CPU usage and
the complexity of the algorithm. We use coarse bounding-volume
hierarchies to achieve this balance between speed and complexity,
and CPU and graphics usage.

 
Figure 1: Points on the boundary of left circle intersecting the volume of the
right circle, a tight-fitting bounding box around these penetrating points, and
the distance field of the right circle computed in this bounding region (left).
Gradient vectors at the penetrating points computed using central differencing
in the distance field. The lengths represent the distance to the boundary
(right). The top-level bounding boxes and their intersection used for
computing the intersection points are also shown.

There are many general and efficient algorithms available for
localizing geometry based on bounding-volume hierarchies
[8,12,14,19]. However, for exact intersection testing these
algorithms typically perform well only on static geometry where
the hierarchy can be precomputed. In order to handle dynamic
deformable geometry with no precomputation, we use coarse
levels for efficient trivial rejection and to obtain reasonable
geometric localization. In addition, we perform lazy evaluation of
relevant portions of the hierarchies while performing the collision
or distance query. A subtree rooted at a particular node is only
computed if its children need to be visited during the query
traversal. The trees are destroyed after every proximity query, and

no actual tree data structures are required since the child nodes are
recursively passed to the query routine. A maximum height of
each object tree is used to balance the CPU and graphics load.

2.2 Image-based Proximity Queries
The proximity queries are simplified using uniform point sampling
and accelerated with graphics hardware. This image-based
approach helps decouple the objects’ geometric complexity from
the computational complexity for a specified error tolerance. The
geometric localization step improves the performance since large
areas of space and portions of the objects can be rejected from the
query computation. We point-sample the geometry and the space
around the geometry within the localized regions with a uniform
rectangular grid and perform the queries on this volumetric
representation using graphics hardware acceleration. The image-
based queries include computing intersections between objects,
computing the distance field of an object boundary, and
computing the gradient of the distance field. Variations of these
basic operations are used to perform the remaining queries.

2.2.1 Intersections
There are three types of intersections possible between two
polygonal objects: boundary-boundary, boundary-volume, and
volume-volume (boundary-volume is shown in Figure 1). We
render both objects within a localized region using the graphics
hardware and treat overwritten pixel sample points as the
intersection points. The type of intersection determines whether
the boundary or the interior of the object is rendered. Several
strategies are given for detecting overwritten pixels (Table 1).

Multi-pass operations for finding object intersections

Buffer Clear val Render B Render A Intersection

Stencil 0 increment by 1 for all pixels==1,
incr by 1

stencil value: 2

Color:
blend ops

0,0,0 set color to
128,128,128

in color 127,127,127
with additive blend

color =
255,255,255

Color:
logic ops

0,0,0 set color to
127,127,127

in color 128,128,128 color =
255,255,255

Color and
Depth

0,0,0 and 1 depth = 0
depth func =
always pass

depth = 0
depth func = equals
Color = 255,255,255

color =
255,255,255

Table 1: OpenGL multi-pass rendering options for finding the overwritten
pixels. The basic ops: a buffer is cleared; object B is rendered setting buffer
values of all covered pixels; object A is rendered changing buffer values of
pixels covered by A and B; intersection points are represented by pixels
whose buffer values are set in the last pass. Each approach varies in
performance, in the resulting buffer state, and in the sophistication needed in
the underlying hardware implementation.

The error in the intersection calculation is governed by the pixel
resolution. Given a distance error bound d, we choose a resolution
so that no point in the rectangular region can be farther than d
from a pixel sample point (d is the half diagonal length of a pixel
grid cell). These error bounds hold for filled polygons, since all
pixels in the interior of the polygon will be rasterized. Line
segment rasterization does not guarantee that all pixels within d
distance of the line will be set, so we draw an offset polygon
surrounding the line segment that is d distance away from the line
segment using the bounded-error distance mesh presented in [10].

The intersection operation requires clearing a buffer, rendering the
objects into the potential intersection region, reading the buffer
containing the intersection information, and searching through the
image to find the intersection pixels. We avoid the full-screen
clear by drawing a polygon the size of the localized region.
Hardware min/max or histogram queries eliminate read back and
the per-pixel search when no intersections have occurred, but



these operations may not be available on some platforms. In this
case, the coarse bounding-volume hierarchy is used to reject
object pairs. When the image operations dominate the query time,
performance can be improved by increasing the error tolerance or
by improving the geometric localization step by traversing deeper
levels in the hierarchy. The running time of these image operations
is largely independent of the object complexity, thus becoming
negligible for complex objects.

The complexity of object rasterization grows linearly with respect
to the number of vertices. Computing intersections geometrically
between two polygon boundaries is worst case O(n2) since all
edges could intersect. The complexity of our algorithm is O(n)
where n is the number of vertices. The hierarchical geometric
localization step is also O(n) since the maximum depth of the tree
is held constant.

2.2.2 Distance Field
We use a variation of the algorithm described in [10] for
constructing generalized Voronoi diagrams using graphics
hardware for 2D polygonal objects. This approach computes an
image-based representation of the Voronoi diagram in both the
color and the depth buffers. A pixel’s color identifies the polygon
feature (vertex or edge) that is closest to that pixel’s sample point;
its depth value corresponds to the distance to the nearest feature.
The depth buffer is an image-based representation of the distance
field of the polygon boundary. The distance field is computed by
rendering 3D bounded-error polygonal mesh approximations of
the distance function where the depth of the rendered mesh at a
particular pixel location corresponds to the distance to the nearest
2D polygon feature. Distance values at arbitrary points are
bilinearly interpolated from the four nearest pixel distance values.

The algorithm by Hoff et al. only gives unsigned distance [10].
We need signed distances to avoid problems when computing the
gradient near an object boundary for computing surface contact
normals. We extend this algorithm to compute signed distances by
distinguishing the inside and outside regions of the object using
any of the available buffers to encode the “negative” interior of the
object. We simply render the polygon, setting values in a pixel
buffer. For each distance value, we also have a sign value that is
read from this other buffer. Several possibilities include: setting
the stencil buffer to 1; setting the color buffer to white; setting the
most significant bit of the color ID in the Voronoi computation.
For arbitrary points, the sign value can also be bilinearly
reconstructed between 0 and 1. Values less than or equal to 0.5
can be positive and values greater than 0.5 can be negative.

Distance field computation requires clearing the depth buffer,
rendering the objects’ distance mesh, reading back the depth
buffer, and rendering and reading of sign values. This is often
more efficient than computing the intersection since we only need
distance values at the intersection points (or at closest feature or
penetrating points). In fact, we may not even need to read back the
entire buffer since we could read just the individual pixel locations
that we are querying (Figure 1).

2.2.3 Gradient of the Distance Field
We compute the gradient of the distance field at pixel locations by
using central differences. For an arbitrary point, we compute the
gradient as the bilinear interpolation of the gradients at the four
surrounding pixel locations. In practice, this gives reasonable
results even with the error and lack of C1 or higher continuity in
the polygonal distance mesh approximations used to compute the
distance field (Figure 1). Gradients are computed in software for

selected points after reading back the distance values. If the entire
gradient field is desired, we could accelerate the computation
using multi-pass rendering. For the x component of the gradient,
we could subtractively blend the distance image shifted two pixels
to the left with the original distance image. For the y component,
we blend with the image shifted two pixels down. The division by
2 is performed by a multiplicative blend of 0.5. Unfortunately,
subtractive blending is currently not available on all platforms
even though it has been accepted into most graphics APIs, and the
limited precision of pixel arithmetic may cause noticeable errors.

2.2.4 Other Proximity Queries
Given the basic operations of computing intersections, distance
fields, and gradient of the distance field, we can perform the other
proximity queries mentioned in section 1.

Penetration Depth and Direction: For a point on object A that is
penetrating object B, we define the penetration depth and direction
for the point as the distance and direction to the nearest feature on
B. This is given by the distance field and its gradient computed at
the penetrating point. Penetrating points are found using the
intersection operation.

Contact Points and Normals: Ideally, the contact points are
simply the intersections of the object boundaries; however, we
often need the set of points that are almost in contact. For a given
contact distance threshold d, we find all boundary points that are
within d distance of each other. The basic approach is slightly
modified to efficiently handle this query. First of all, in the
geometric localization stage we find the potential intersection
between the two polygons that are slightly thicker. This is handled
by enlarging all bounding boxes by d in each. We then find the
intersection between the boundaries by drawing the objects’
boundary line segments with an enlarged offset of d (using the
distance mesh from [10]) and finding intersecting pixels. Normals
at each contact point are computed from the gradient of the signed
distance field (signed distance to avoid distance discontinuity near
the object boundary).

Closest Point: We find the point on object A that is closest to
object B by rendering the boundary of object A in the localized
region of A containing its closest feature, rendering the distance
field of B in this same region, and then searching the boundary
points of A and finding the point that is closest to B.

Separation Distance and Direction: We find the minimum
separation distance and direction between two objects A and B by
first computing the closest point on A to B and vice versa. Ideally,
we find the closest point on B to A from the distance value and
gradient at the closest point on A to B, but the amplification of
errors over the greater distance may cause problems. The distance
between these two closest points is the separation distance and the
line segment between them gives the separation direction.

3 PERFORMANCE
We demonstrate the effectiveness of our proximity queries in
computing collision responses for interactive dynamic simulations
of rigid and deformable objects. We compute the collision
response for a particle and use a collection of particle responses to
extend to rigid and deformable bodies [1,19]. We implemented
collision responses for simulations with and without penetration
constraints. In constrained simulation, penetration is avoided
through a backtracking algorithm that finds the state of all objects
“just before” a collision. A bisection search in time is performed
between the last non-collision state and the collision state for all



objects in the scene, and the collision response is then computed
for the objects that are in close contact. In unconstrained
simulation, penetration is allowed, but a spring-based restoring
penalty force proportional to the penetration depth is applied to the
object until separation occurs. Collision responses between object
pairs are handled locally without requiring global update of the
entire system.

Each collision response requires different proximity information.
Constrained simulation requires points of close contact and the
contact normals. Unconstrained simulation requires points of
penetration and their penetration depths. The effectiveness of our
approach is most clearly shown in the unconstrained, penalty-
based approach because of the difficulty in computing penetration
depth. Earlier algorithms give only coarse approximations without
error bounds or are only restricted to convex objects.

We tested the system in several different contact scenarios. In each
simulation, the user provides the initial position, orientation, and
velocity of a collection of objects, and the appropriate collision
responses are computed as the simulation advances. See the
colorplate for descriptions of the simulations. Each simulation is
performed on rigid-bodies except for wavy, but the same
proximity query algorithm was used on all simulations. More
deformable bodies were not shown because of the difficulty in
developing effective deformable simulations. In table 2, we show
the average total per-frame proximity query times. Wavy requires
more time because there are large areas of continuous close
contact as the shapes conform to each other when colliding. In
table 3 we show the effects of the distance error on performance.

Average Total Per-frame Proximity Query Times

Demo Objects Lines GeForce2 InfiniteReality2 ATI Rage Pro LT

Map 6 719 0.281ms 0.901ms 0.434ms
Gears 13 391 0.015 0.026 0.064
Links 15 440 0.020 0.052 0.038
Cars 18 266 0.007 0.026 0.015
Wavy 2 200 1.030 2.360 2.990

Table 2: Performance timings for dynamics simulations. The number of
objects, number of line segments, and the average total time in milliseconds
to run proximity queries on all objects in the scene per frame is reported.
Timing data was gathered from three machines: a Pentium-III 933MHz
desktop with a 64Mb GeForce2, a SGI 300MHz R12000 with InfiniteReality2
graphics, and a Pentium-III 750Mhz laptop with ATI Rage Pro LT graphics.

Effects of Error Tolerance on Performance of Wavy

Error GeForce2 InfiniteReality2 ATI Rage Pro LT

d/4 0.710ms 1.270ms 5.560ms
d/2 0.315 1.000 1.850
d 0.211 0.930 0.895
2d 0.176 0.879 0.631
4d 0.165 0.876 0.535

Table 3: The effect on performance when changing the distance error
tolerance d. We used proximity queries on the wavy demo with no collision
response. The error determines the number of pixels used in the image-
based operations. Systems with low graphics performance are more directly
affected by the choice of d (see ATI Rage Pro LT); however, as the error is
increased there is less dependence on graphics performance and the faster
laptop CPU overtakes the InfiniteReality2 system.

4 CONCLUSION
We have presented a hybrid geometry- and image-based algorithm
for computing geometric proximity queries between two arbitrary
2D objects using graphics hardware. This approach has a number
of advantages over previous approaches since the unified
framework allows us to compute all the queries, including
penetration depth and contact normals. Furthermore, it involves no
precomputation and handles non-convex polygons; as a result, it is

also applicable to dynamic or deformable geometric primitives. In
practice, we have found the algorithm to be simple to implement,
quite robust, fast (considering the complexity of the queries), and
very flexible. We have developed an interactive 2D dynamic
simulation system for rigid and deformable objects to illustrate the
effectiveness of our approach. We are currently extending this
framework to 3D for interactive proximity queries on complex,
dynamic geometry.
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PLATE 1: Map (large non-convex objects, frequent simultaneous close contact). Our approach computes proximity query information
needed for penalty-based collision response between complex non-convex objects. For each penetrating point, we compute a minimal
penetration depth and direction and apply a penalty force to resolve the collision. Intersections between the top-level axis-aligned
bounding boxes were used as potential intersection regions. A coarse hierarchical search with oriented bounding boxes would find
smaller potential intersection regions, thus improving performance. Even with this simplified search, we achieved interactive
performance on several difference machines with widely varying CPU/graphics combinations (see Table 2).

    
PLATE 2: Cars (convex objects, less frequent contact), Gears (non-convex, less frequent interlocking contact), and Links (non-convex
objects, frequent simultaneous interlocking contacts) demos. Collision responses in some specialized 3D scenes, such as those whose
objects collide only in the 2D plane, can be computed using our approach. The 2D projection of each object onto the plane is used for
the dynamics simulation. The left-image shows our method applied to a standard non-penetrating backtracking collision response
method where contact points and normals are computed. All of the other simulations use the penalty-based collision response based on
penetrating points and their penetration depths and directions. The right two images show collision responses between complex
interlocking non-convex objects which are easily handled without specialized techniques such as convex decomposition.

    
PLATE 3: Wavy (large deformable-bodies, continuous contact). Other important characteristics of our proximity query algorithm include
not requiring any precomputation or complex data structures. Here we show proximity information being used for collision response
between dynamically deformable bodies. The left image shows a wave propagating through the right object and hitting the left object.
The collision response causes the object to become indented and creates a reaction wave in the left object. Many dynamics simulations
resolve collisions by backing up the simulation to a moment before contact, we use a penalty-based method that applies a force at each
penetrating point based on the amount of penetration. The center image shows the penalty-based response between two objects that
were initially overlapping by a large amount. The right image shows the distance field around the contact area.


