
Efficient Penetration Depth Approximation using Active Learning

Supplementary Material (paper # 0122)

1 Background

In this section, we give background related to some concepts and terminology used in the paper.

1.1 Configuration Space and Contact Space

Given two objectsA andB, we denote their configuration space as C-space and each configuration or point in C-space corresponds to relative
configuration (i.e., position and orientation) of A w.r.t B. In the rest of the paper, we assume that A is movable and B is fixed. For 2D
objects, C-space has 2 degrees of freedom (DOF) if A can only undergo translation motion, and 3-DOF if we take into account translational
and rotational motion. For 3D objects, C-space has 3-DOF for translational motion and 6-DOF for both translational and rotational motion. C-
space is composed of two components: collision-free space Cfree = {q : A(q)∩B = ∅} and in-collision space Cobs = {q : A(q)∩B 6= ∅},
where A(q) corresponds to A located at the configuration q.

Contact Space is the boundary of Cobs and is denoted as Ccont = ∂Cobs. Intuitively speaking, a contact space corresponds to the configu-
rations, where A and B just touch each other without any penetration. Figure 1 shows an example of the C-space of two objects A and B,
where Ccont is highlighted with orange curves. We use the notation c(q) ∈ {−1,+1} to denote the collision state of a configuration q, i.e.,
c(q) = +1 if q ∈ Cobs and c(q) = −1 if q ∈ Cfree.

free
C

cont
C

obs
C

A

B

Figure 1: The contact space of two objects. The orange curve highlights the contact space Ccont of A and B. A point inside/on the orange
curve belongs to Cobs and a point outside the orange curve belongs to Cfree. The red and green points will be used to denote configurations
in Cobs and Cfree, respectively. Intuitively, Ccont is the boundary that separates in-collision and collision-free configurations.

1.2 Expected Error

As our PD computation method is a probabilistic approach, we use expected error to evaluate the accuracy of our method. Expected error is
widely used in supervised and machine learning [Vapnik 1995]. Given a set of training samples (i.e., training set) {(q1, c1), ..., (qN , cN)},
where qi is a sample, ci is its label for collision state andN is the total number of training samples, our learning algorithm computes a function
f : C-space → {−1,+1}. The expected error of f(·) on a new sample in the C-space is computed as E(f) =

∫
q∈C-space p(q)L(f(q), c),

where p(q) is the probability that q will appear as a query, c is the actual collision state of q, and f(q) is the collision state predicted by
LCS. L(·) is the loss function (e.g., ‖ · ‖1) used to measure the error between f(q) and c. L(f(q), c) corresponds to ecol(q), the average
error when LCS is applied to predict the collision state (also see Equation 8 in the paper).

ecol = E |ecs(q)| , (1)

where ecs(q) = 0 if q is consistent configuration; otherwise ecs(q) = 1 if q is inconsistent.

We assume p(q) to be uniformly distributed. In many simulation applications, some configurations may appear more frequently than others,
and therefore p(q) may be non-uniform. In these cases, exact computation of E(f) can be non-trivial. Therefore, we use random M(� N)
samples within C-space and estimate E(f) as Ê(f) =

∑M+N
j=N+1 L(f(qj)− cj). We use these error bounds as ecol in Table 1 in the paper.

Based on a learned LCS, we can analogously compute another function C-space → R to estimate the PD value of a given query. The error
can be formulated similarly as follows (also see Equation 11 in the paper).

ePD = E
∣∣PD(A(q), B)− PD(A(q), B)

∣∣ . (2)

2 Proof and Experimental Errors

2.1 Theorem 1 and its Proof

Theorem 1 If the number of samples used in active learning iterations of LCS computation is more than N , where N = O(log(1/(εδ)),
then there exists one active learning technique which can guarantee that with probability at least 1− δ, the expected error of the LCS result
will satisfy the bound ecol ≤ ε.

To prove Theorem 1, we need to show that our LCS computation pipeline can find a special active learning algorithm (which can be some
algorithm other than the exploration-and-exploitation algorithm) with the non-linear SVM as the classification algorithm during each iteration.
In this case, we can guarantee that with probability at least 1− δ, the expected error of the LCS result will satisfy the bound ecol ≤ ε, if more
than N = O(log(1/(εδ)) samples are used.

The special active learning algorithm used in the proof is CAL (Cohn, Atlas, and Ladner [Cohn et al. 1994]) active learning tech-
nique [Hanneke 2013]. CAL is one of the earliest and most elegant general-purpose active learning algorithms purposed by Cohn, Atlas,
and Ladner [Cohn et al. 1994]. It is one example of the disagreement-based active learning and is based on a very simple principle: never
request the label of a data item if we can derive it from information already available. In some sense, it represents the least we could expect
from a reasonable active learning algorithm. This technique does not always yield optimal number of data items required for a given error
bound. However, due to its elegance and other favorable properties, it is one of the most commonly-studied technique in theory and it is
widely used as a base for the performance of other active learning techniques. However, CAL is not practical in terms of applying to most
classification methods due to its requirement to find the classifiers that disagree on a given sample. As a result, it is mainly used for theoretical
analysis and not in practical implementations. For details of CAL, please refer to [Hanneke 2013].

For CAL, we can derive this conclusion [Hanneke 2013]:

Lemma 2 If more than N samples are given, where N = θ(ε)
(
log(θ(ε)) + log(log(1/ε)

δ
)
)
log(1/ε), then with probability at least 1 − δ,

the expected error of CAL will be bounded by ε, where θ(ε) is a parameter depending on the underlying classification algorithm used inside
the CAL active learning iterations.

The main difficulty when computingN for CAL algorithm is how to compute the parameter θ(ε) for the specific classification algorithm used
inside CAL iterations. Fortunately, our LCS algorithm is based on non-linear SVM and its θ(ε) can be computed based on the θ(ε) result for
linear separators, as provided in [Hanneke 2013]. Intuitively, for linear classifiers working on a dataset with a non-uniform distribution, the
corresponding θ(ε) can be computed as follows:

Lemma 3 Suppose C is the class of k-dimensional linear separators, and the dataset distribution has a bounded density with finite support,
then θ(ε) = O(1) for classification algorithm based on C.

In our LCS computation problem, the dataset is a bounded configuration space and we assume that all the points in the configuration
space have the same probability to appear as samples for the active learning pipeline. Moreover, we use non-linear SVM as the underlying
classification algorithm, which is essentially a linear classifier in the feature space, i.e., the mapping of the original configuration space via the
kernel functions. The samples uniformly distributed in the configuration space will be mapped into samples with non-uniform distribution in
the feature space. Based on Lemma 3, we can bound the θ(ε) parameter corresponding to SVM byO(1). Next, according to Lemma 2, we can
see the number of samples required by CAL active learning for our LCS computation problem is bounded by O

(
log(log(1/ε)

δ
) log(1/ε)

)
,

which can be further bounded by O(log(1
εδ
)) and Theorem 1 is proved.

Remark: Theorem 1 tells us there is one active learning algorithm (i.e., CAL) which can produce the bound mentioned above. However,
our LCS computation pipeline chooses a different exploration-and-exploitation scheme as the active learning technique, whose error bound
is difficult to analyze. However, it is believed that the exploration-and-exploitation method should provide lower error bound than CAL,
because 1) CAL represents the least information we could expect from a reasonable active learning algorithm (see the proof above); and 2)
it is heavily used in many applications based on active learning, including computer vision [Loy et al. 2012], text classification [Tong and
Koller 2002], information filtering [Zhang et al. 2003], robot grasping [Kroemer et al. 2009] and Gaussian Processes learning [Krause and
Guestrin 2007]. As a result, it is reasonable to use Theorem 1 to estimate the performance of our LCS computation pipeline.

2.2 Experimental Accuracy Comparison

We have compared the relative accuracy of our algorithm with the uniform sampling methods in Figure 2 and in Figure 3.

0

0.5
P
D

0

0.5

P
D

200 400 600 800 1000
−0.01

0

0.01

e P
D

query

(a) Cup-Spoon

0

0.1

0.2

P
D

0

0.1

0.2

P
D

200 400 600 800 1000
−0.05

0

0.05

e P
D

query

(b) Rings (Bullet)

Figure 2: Accuracy comparison with respect to magnitude of PD. The blue, orange, and pink curves correspond to our approximate PD (i.e.,
PD), nearly exact PD by point-based method [Lien 2009], and the error between them (ePD), respectively. In these benchmarks, we observe
less than 3% relative error in PD computation using our algorithm.

2000 4000 6000 8000 10000
0

2

4

6

8

10

#samples

e c
o
l%

(a) ecol for 3D Bunny Models

2000 4000 6000 8000 10000
0

2

4

6

8

10

#samples

e c
o
l%

(b) ecol for 3D Dragon Models

Figure 3: Relative error convergence of active learning (blue) vs. uniform sampling (red) for complex 3D object pairs. These results
demonstrate the benefits of active learning in terms of fewer samples and improved accuracy. This convergence bound is similar to the one
derived from Theorem 1.

3 Supplemental Results

We have used many benchmarks to evaluate the performance of our algorithm. Most of them are shown in Figure 1 in the paper and some
additional simple models are shown in Figure 4 of this supplemental report (also refer to the accompany video). In this section, we highlight
the performance of our algorithm on many 2D and 3D benchmarks.

(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 4: Some additional simple 2D and 3D models used in robotics and dynamic simulation for evaluating the performance of our PD
algorithm in Table 1 in the paper. Other complex models are shown in Figure 1 in the paper. 2D star, room, monkey and spider models consist
of 8, 25, 148, 250 edges, respectively. 3D star, cup, spoon, upper teeth, lower teeth, bunny and dragon models consist of 24, 1000, 1344, 47K,
40K, 70K, 230K triangles, respectively. We use Buddha models with different complexities, varying from 20K to 1M triangles.

3.1 AngryBirds using Box2D

Box2D uses PD computation in impulse-based collision response algorithm. We demonstrate the performance of our algorithm on a complex
benchmark (Figure 6), angry bird characters falling into a complex chute. We precompute the LCS approximation in 3-DOF C-space. For
comparison, we used a local PD algorithm based on convex decomposition. The convex decomposition results in 17, 30, and 32 convex
pieces for Red Bird, White Bird and Green Piggy models, respectively. We have observe nearly 20 times improvement in PD query using our
active learning algorithm over techniques based on convex decomposition used in Box2D (see Figure 5 and Figure 8).

200 400 600 800

10
−1

10
0

10
1

frame

ti
m

e
 (

m
ill

is
e

c
o

n
d

)

(a)

0

0.5

P
D

0

0.5

P
D

20 40 60 80 100 120 140 160 180
−0.01

0

0.01

e P
D

query

(b)

Figure 5: (a) Relative performance of PD computation for the Angry Birds benchmark. The blue curve represents the query time computed
by our algorithm. The green curve corresponds to the query time computed using convex decomposition and local PD between convex pairs.
The orange curve represents the query time computed using exact (sliced) Minkowski sum (2D objects). (b) Accuracy comparison with respect
to magnitude of PD. We show the values for different PD queries performed during a single frame of the simulation. The blue, orange, and
pink curves correspond to our approximate PD (i.e., PD), exact PD, and the error between them (ePD), respectively. In these benchmarks,
we observe less than 3% relative error in PD computation using our algorithm.

(a) Characters

(b) View 1

(c) View 2

(d) View 3

Figure 6: Angry Birds characters and its dynamic simulation using Box2D. We have observe nearly 20 times improvement in PD query using
our active learning algorithm over techniques based on convex decomposition used in Box2D. Our algorithm avoid the annoying cases where
local PD algorithms cant separate the non-convex objects with deep inter-penetration.

3.2 Nazca Spiders in A Tumbler

Box2D uses PD computation in impulse-based collision response algorithm. We demonstrate the performance of our algorithm on 2D non-
convex Nazca spiders rolling in a tumbler. We precompute the LCS approximation in 3-DOF C-space. We compared our algorithm with
the convex decomposition-based algorithm in which a Nazca spider is decomposed into 77 convex pieces. We have observe nearly 20 times
improvement in PD query using our active learning algorithm over techniques based on the convex decomposition algorithm used in Box2D
(see Figures 7 and 8).

Figure 7: Spiders in a tumbler and its dynamic simulation using Box2D. .

1000 2000 3000 4000 5000 6000 7000
10

−1

10
0

10
1

frame

ti
m

e
 (

m
ill

is
e

c
o

n
d

)

(a) Performance

0

0.5

P
D

0

0.5

P
D

20 40 60 80 100 120 140 160 180

−0.01

0

0.01

e P
D

query

(b) Errors

Figure 8: Performance and Errors. (a) Relative performance of PD computation for the Rolling Nazca Spiders benchmark. The blue curve
represents the query time computed by our algorithm. The green curve corresponds to the query time computed using convex decomposition
and local PD between convex pairs. The orange curve represents the query time computed using exact (sliced) Minkowski sum (2D objects).
(b) Accuracy comparison with respect to magnitude of PD. We show the values for different PD queries performed during a single frame of
the simulation. The blue, orange, and pink curves correspond to our approximate PD (i.e., PD), exact PD, and the error between them (ePD),
respectively. In these benchmarks, we observe less than 3% relative error in PD computation using our algorithm.

3.3 Nazca Monkeys

We show the Nazca monkey simulation and compare the global translational PD (Figure 9) with local translational PD (Figure 10). Local
translational PD corresponding to each isolated contact region does not separate the overlapping objects with deep inter-penetration.

(a) frame=0 (b) frame=5 (c) frame=10

(d) frame=20 (e) frame=37 (f) frame=40

Figure 9: Nazca monkey simulation using global PD. Here show frames 0, 5, 10, 20, 37 and 40. After a few simulation steps, all the
intersecting objects are separate. Intersecting objects are displayed in blue and separate objected are displayed in grey.

(a) frame=0 (b) frame=5 (c) frame=10

(d) frame=20 (e) frame=37 (f) frame=40

Figure 10: Nazca monkey simulation using local PD. Here show frames 0, 5, 10, 20, 37 and 40. Local translational PD corresponding to
each isolated contact region cant separate the non-convex objects with deep inter-penetration.

3.4 Lower Teeth vs. Upper Teeth

Figure 11 shows a pair of moving teeth, where each jaw is composed of more than 40,000 triangles. We generated a sequence of motions for
the upper jaw (also shown in the accompanying video). It exhibits inter-penetration and multiple contacts. We tested our PD algorithm based
on LCS approximation in 6-DOF C-space. As compared with the convex decomposition-based algorithm, we observe more than 10 times
performance improvement (see Figure 12)

(a) (b) (c)

Figure 11: A sequence of motions for the upper jaw.

Figure 12 compares the query performance between our method and the convex-decomposition-based approach.

200 400 600 800

2

4

6

8

10

frame

ti
m

e
 (

m
ill

is
e

c
o

n
d

)

Figure 12: Relative performance of PD computation on teeth benchmark: The blue curve represents the query time computed by our
algorithm. The green curve corresponds to the query time computed using convex decomposition and local PD between convex pairs.

3.5 Buddha vs. Buddha

In this benchmark, we use different Buddha model complexity varying from 20K triangles to 1M triangles, generated by repeatedly subdi-
viding the 20K model. Figure 13 shows the performance and accuracy comparison with PolyDepth [Je et al. 2012] and the timings of PDt
runtime query. We observe lower query time and higher accuracy in our benchmark. Figure 14 shows the performance scalability with respect
to the model complexity.

0

10

20

0 100 200 300 400 500 600

ti
m

e
 (

m
s
)

Ours

PolyDepth

(a) (b)

0

50

100

150

P
D

 M
a
g

n
it
u
d

e
 PolyDepth

PD by [Lien 2009]

(c)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

P
D

 E
rr

o
r(

%
)

Ours

PolyDepth

(d)

Figure 13: The performance and accuracy comparison with PolyDepth [Je et al. 2012] on Buddha-Buddha benchmark with 20K triangles. (a)
computational time (on average, 0.10ms based on our algorithm vs. 7.15ms in PolyDepth); (b) accuracy comparison between our interactive
algorithm vs. offline algorithm based on Minkowski sum [Lien 2009]; (c) accuracy comparison of PD computation between our algorithm
vs. PolyDepth; (d) our global PD algorithm (blue) has lower error as compared to PolyDepth that performs local optimization.

0

10

20

30

40

50

20K 100K 500K 1M

ti
m

e
 (

s
)

(a) Precomputing LCS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20K 100K 500K 1M

ti
m

e
 (

m
s
)

(b) Runtime Query

Figure 14: The performance scalability on Buddha-Buddha benchmark with model complexity varying from 20K triangles to 1M triangles.
(a) time of active learning; (b) time of runtime query.

4 LCS approximation

In this section, we demonstrate the performance of our LCS approximation algorithm on many 2D and 3D benchmarks. In all our bench-
marks, we are able to compute a good approximation in a few iterations.

4.1 Star vs. Room

In Figure 15, we show the LCS sequences generated when using active learning to gradually construct the approximate contact space
between 2D non-convex shapes (star and room) given in Figure 3 in the paper. We show the approximation after i-th iteration and the number
of support vectors. We can see that the final result successfully captures the topological structure of the exact Ccont.

(a) LCS0, |S| = 37 (b) LCS1, |S| = 42 (c) LCS2, |S| = 49 (d) LCS3, |S| = 60

(e) LCS4, |S| = 75 (f) LCS5, |S| = 96 (g) LCS6, |S| = 124 (h) LCS7, |S| = 150

(i) LCS8, |S| = 198 (j) LCS9, |S| = 216 (k) LCS10, |S| = 255 (l) LCS12, |S| = 298

(m) LCS14, |S| = 327 (n) LCS16, |S| = 403 (o) LCS18, |S| = 454 (p) LCS20, |S| = 654

Figure 15: LCS computation using active learning for PDt query between 2D star and room (both are non-convex shapes) given in Figure 2
in the paper. We are able to compute a good approximation to the LCS in about 10 iterations.

In Figure 16, we show the LCS sequences for PDg computation.

(a) LCS0 (b) LCS1 (c) LCS2 (d) LCS3

(e) LCS4 (f) LCS5 (g) LCS6 (h) LCS7

(i) LCS8 (j) LCS9 (k) LCS10 (l) LCS11

(m) LCS12 (n) LCS13 (o) LCS14 (p) LCS15

Figure 16: LCS computation using active learning for PDg query between star and room models given in Figure 2 in the paper. We are able
to compute a good approximation to the LCS in about 10 iterations

4.2 Star vs. Spoon

Figure 17 shows the LCS sequences generated when using active learning to gradually construct the approximate contact space between 3D
star and spoon models. We can see that the LCS converges rather quickly. This demonstrates the benefits of active learning.

(a) LCS0, |S| = 115 (b) LCS1, |S| = 126 (c) LCS2, |S| = 288 (d) LCS3, |S| = 459

(e) LCS4, |S| = 608 (f) LCS5, |S| = 749 (g) LCS6, |S| = 852 (h) LCS7, |S| = 950

(i) LCS8, |S| = 1081 (j) LCS9, |S| = 1100 (k) LCS10, |S| = 1204 (l) LCS11, |S| = 1300

(m) LCS12, |S| = 1407 (n) LCS13, |S| = 1507 (o) LCS14, |S| = 1578 (p) LCS15, |S| = 1650

Figure 17: LCS computation using active learning for PDt query between 3D star and spoon models.

4.3 Cup vs. Spoon

Figure 18 shows the LCS sequences generated when using active learning to gradually construct the approximate contact space between 3D
cup and spoon models. We can see that the LCS converges rather quickly. This demonstrates the benefits of active learning.

(a) LCS0, |S| = 231 (b) LCS1, |S| = 234 (c) LCS2, |S| = 385 (d) LCS3, |S| = 563

(e) LCS4, |S| = 733 (f) LCS5, |S| = 869 (g) LCS6, |S| = 999 (h) LCS7, |S| = 1121

(i) LCS8, |S| = 1230 (j) LCS9, |S| = 1350 (k) LCS10, |S| = 1361 (l) LCS11, |S| = 1491

(m) LCS12, |S| = 1572 (n) LCS13, |S| = 1670 (o) LCS14, |S| = 1761 (p) LCS15, |S| = 1848

Figure 18: LCS computation using active learning for PDt query between 3D cup and spoon models.

4.4 Bunny vs. Bunny

Figure 19 shows the LCS sequences generated when using active learning to gradually construct the approximate contact space between 3D
bunny models. We can see that the LCS converges very fast due to active learning.

(a) LCS0, |S| = 237 (b) LCS1, |S| = 267 (c) LCS2, |S| = 319 (d) LCS3, |S| = 367 (e) LCS4, |S| = 421

(f) LCS5, |S| = 471 (g) LCS6, |S| = 521 (h) LCS7, |S| = 562 (i) LCS8, |S| = 617 (j) LCS9, |S| = 666

(k) LCS10, |S| = 725 (l) LCS11, |S| = 793 (m) LCS12, |S| = 871 (n) LCS13, |S| = 927 (o) LCS14, |S| = 1016

(p) LCS15, |S| = 1123 (q) LCS16, |S| = 1293 (r) LCS17, |S| = 1338 (s) LCS18, |S| = 1450 (t) LCS19, |S| = 1517

Figure 19: LCS computation using active learning for PDt query between 3D bunny models. Each bunny model consists of 70K triangles.

4.5 Dragon vs. Dragon

Figure 20 shows the LCS sequences generated when using active learning to gradually construct the approximate contact space between 3D
dragon models. We can see that the LCS converges very fast due to active learning.

(a) LCS0, |S| = 243 (b) LCS1, |S| = 324 (c) LCS2, |S| = 374 (d) LCS3, |S| = 454

(e) LCS4, |S| = 528 (f) LCS5, |S| = 570 (g) LCS6, |S| = 724 (h) LCS7, |S| = 752

(i) LCS8, |S| = 790 (j) LCS9, |S| = 854 (k) LCS10, |S| = 876 (l) LCS11, |S| = 943

(m) LCS12, |S| = 1023 (n) LCS13, |S| = 1045 (o) LCS14, |S| = 1172 (p) LCS15, |S| = 1232

(q) LCS16, |S| = 1304 (r) LCS17, |S| = 1413 (s) LCS18, |S| = 1490 (t) LCS19, |S| = 1532

Figure 20: LCS computation using active learning for PDt query between 3D dragon models. Each dragon model consists of 230K
triangles.

4.6 Buddha vs. Buddha

Figure 21 shows the LCS sequences generated when using active learning to gradually construct the approximate contact space between 3D
Buddha models. We can see that the LCS converge very fast.

(a) LCS0 (b) LCS1 (c) LCS2 (d) LCS3 (e) LCS4

(f) LCS5 (g) LCS6 (h) LCS7 (i) LCS8 (j) LCS9

(k) LCS10 (l) LCS11 (m) LCS12 (n) LCS13 (o) LCS14

Figure 21: LCS computation using active learning for PDt query between 3D Buddha models. The complexity of the Buddha model varies
from 20K to 1M triangles.

References

COHN, D., ATLAS, L., AND LADNER, R. 1994. Improving generalization with active learning. Machine Learning 15, 2, 201–221.

HANNEKE, S. 2013. A statistical theory of active learning. Foundations and Trends in Machine Learning, 1–212.

JE, C., TANG, M., LEE, Y., LEE, M., AND KIM, Y. J. 2012. Polydepth: Real-time penetration depth computation using iterative contact-
space projection. ACM Trans. Graph. 31, 1 (Feb.), 5:1–5:14.

KRAUSE, A., AND GUESTRIN, C. 2007. Nonmyopic active learning of gaussian processes: an exploration-exploitation approach. In
Proceedings of International Conference on Machine learning, 449–456.

KROEMER, O., DETRY, R., PIATER, J., AND PETERS, J. 2009. Active learning using mean shift optimization for robot grasping. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2610–2615.

LIEN, J.-M. 2009. A simple method for computing minkowski sum boundary in 3d using collision detection. In Algorithmic Foundation of
Robotics VIII, vol. 57 of Springer Tracts in Advanced Robotics. Springer Berlin / Heidelberg, 401–415.

LOY, C., HOSPEDALES, T., XIANG, T., AND GONG, S. 2012. Stream-based joint exploration-exploitation active learning. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, 1560–1567.

TONG, S., AND KOLLER, D. 2002. Support vector machine active learning with applications to text classification. Journal of Machine
Learning Res. 2, 45–66.

VAPNIK, V. N. 1995. The nature of statistical learning theory. Springer-Verlag New York, Inc., New York, NY, USA.

WANG, D., LIU, S., ZHANG, X., AND XIAO, J. 2012. Configuration-based optimization for six degree-of-freedom haptic rendering for fine
manipulation. IEEE Transactions on Haptics 5, 4, 332–343.

ZHANG, Y., XU, W., AND CALLAN, J. 2003. Exploration and exploitation in adaptive filtering based on bayesian active learning. In
Proceedings of International Conference on Machine Learning, 896–903.

ZHANG, L., KIM, Y. J., AND MANOCHA, D. 2007. A fast and practical algorithm for generalized penetration depth computation. In
Robotics: Science and Systems.

