
Efficient Penetration Depth Approximation using Active Learning

Jia Pan Xinyu Zhang Dinesh Manocha ∗

University of North Carolina at Chapel Hill

(a) (b)

(c) (d) (e)

(f) (g) (h)
Figure 1: Our algorithm computes a global penetration depth between overlapping non-convex and non-manifold objects. (a) Dynamic
simulation of angry bird characters falling into a complex chute in Box2D physics engine; (b) rainfall of 1, 000 rings in Bullet physics engine;
(c) a star and a spoon; (d) a spoon and a cup; (e) multiple contacts between upper and lower teeth (each has more than 40, 000 triangles).
(f-h) benchmarks consisting of complex models (bunny, dragon and Buddha models have 70K, 230K and 1M triangles, respectively). Our
PD algorithm takes less than 0.1 ∼ 2 milliseconds, with less than 2-3% relative error, for each pair of overlapping objects.

Abstract

We present a new method for efficiently approximating the global
penetration depth between two rigid objects using machine learning
techniques. Our approach consists of two phases: offline learning
and performing run-time queries. In the learning phase, we precom-
pute an approximation of the contact space of a pair of inter-
secting objects from a set of samples in the configuration space.
We use active and incremental learning algorithms to accelerate
the precomputation and improve the accuracy. During the run-time
phase, our algorithm performs a nearest-neighbor query based on
translational or rotational distance metrics. The run-time query has
a small overhead and computes an approximation to global penetra-
tion depth in a few milliseconds. We use our algorithm for collision
response computations in Box2D or Bullet game physics engines
and complex 3D models and observe more than an order of magni-
tude improvement over prior PD computation techniques.

CR Categories: I.3.3 [Computer Graphics]: Computational
Geometry and Object Modeling—Geomtric algorithms, languages
and systems

Keywords: Contact Space, Penetration Depth, Support Vector
Machine, Active Learning, Dynamic Simulation

Links: DL PDF WEB

∗e-mail: {panj,zhangxy,dm}@cs.unc.edu

1 Introduction

Measuring the extent of inter-penetration between two intersecting
objects is an important problem in physically-based simulation and
geometric computing. A widely used metric to quantify inter-
penetration is the penetration depth (PD), which is defined as the
minimum amount of motion transformation required to separate
two intersecting objects. This transformation may correspond to
only translation (translational PD) or both translation and rotation
(generalized PD). PD computation is widely used for contact reso-
lution in dynamic simulation [Baraff and Witkin 2001], tolerance
verification for virtual prototyping [Kim et al. 2002a], force compu-
tation in haptic rendering [Wang et al. 2012b], motion planning in
robotics [Zhang et al. 2007b], etc. Many well known game physics
engines such as Box2D [Catto 2010] and Bullet [Coumans 2010]
also perform PD computation for collision response.

The time complexity of exact PD computation in 3D can be as
high as O(m3n3) for translational PD and O(m6n6) for gener-
alized PD, where m and n are the number of triangles in two non-
convex input models. Given the high combinatorial complexity of
exact PD computation, many approximate algorithms have been
proposed. At a broad level, prior methods can be classified
into techniques based on local feature analysis, constrained opti-
mization, distance fields, convex-decomposition, and point-based
approximations. Many of these algorithms compute local PD based
on overlapping features, and may not provide a reliable solution for
general non-convex models (see Figure 2). The accuracy of local
PD algorithms varies based on the relative configuration of the two
objects and on the heuristics used to estimate the extent and direc-
tion of penetration [Heidelberger et al. 2004; Tang et al. 2012].
Methods based on convex decomposition or point-based approxi-
mations can compute a more reliable measure of global penetration,
but they are too slow for interactive applications.

Main Results: We present a novel algorithm to approximate
global PDs between rigid objects for interactive applications using
machine learning classification techniques. Our approach is appli-
cable to all rigid models and can compute translational and gener-

http://doi.acm.org/10.1145/2508363.2508385
http://portal.acm.org/ft_gateway.cfm?id=2508385&type=pdf
http://gamma-web.iacs.umd.edu/PDAL

Figure 2: (a) Global translational PD between non-convex models
(shown in red and blue). (b) Local translational PD corresponding
to each isolated contact region (shown with different arrows), which
does not separate the overlapping objects. (c) In this Box2D simu-
lation, local PD algorithms cannot separate the non-convex objects
with deep inter-penetration.

alized PD (see Section 3). The main idea is to precompute an
approximation of the contact space of two overlapping objects
by generating configuration space samples and computing a deci-
sion function using support vector machines (see Section 4). In
order to reduce the number of samples and improve the accu-
racy of this representation, we use active and incremental machine
learning techniques. At runtime, our algorithm performs a nearest-
neighbor query between a given configuration and precomputed
contact space approximation (see Section 5). As compared to prior
techniques, our approach offers the following benefits:

• The overall algorithm is general and directly applicable to
complex non-convex and non-manifold models.

• This formulation can be used to compute translational and
generalized PD between 2D and 3D objects.

• The use of active learning can drastically reduce the number
of samples and improves the convergence rate of our approx-
imation scheme (see Section 6).

• The runtime query has a small overhead (a few milliseconds)
and can be used for interactive applications (see Section 7).

We highlight the performance of our algorithm on complex non-
convex models with multiple contacts. In practice, we are able
to compute approximate PD with less than 2-3% relative error
by using a few thousand samples during the learning phase (see
Section 7). We also use our PD algorithm to compute collision
response between non-convex models in Box2D and Bullet physics
engines. As compared to prior global PD algorithms, we observe
more than an order of magnitude improvement in runtime perfor-
mance. To the best of our knowledge, this is the first practical algo-
rithm for reliable PD computation between non-convex models for
interactive applications.

2 Related Work

There is extensive work on PD computation in computer graphics,
geometric modeling, haptics, and robotics. We give a brief
overview of exact and approximate computation algorithms.

For convex polytopes, exact translational PD can be computed
using the Minkowski sum [van den Bergen 2001; Agarwal et al.
2000; Kim et al. 2002a]. For non-convex objects, the PD can
be computed using a combination of convex decomposition, pair-
wise Minkowski sums, and union computation [Kim et al. 2002b].
these algorithms are applicable to closed polyhedral shapes. The
computational complexity of union computation is high and it can
be approximated using rasterization hardware [Kim et al. 2002b].

Most practical techniques for translational PD compute local PD or

some approximation of global PD. Local PD algorithms only take
account of local overlapping features (vertices, edges and faces),
and compute a transformation to separate those features [Guen-
delman et al. 2003; Redon and Lin 2006; Lien 2009; Tang et al.
2009; Tang et al. 2012]. Intersection volume and its derivative can
also be used for volume-based repulsion in [Wang et al. 2012a].
Distance fields are also used for local translational PD computa-
tion [Heidelberger et al. 2004] and can be computed in realtime
using GPUs. Point-based Minkowski sum approximation [Lien
2008] can also be used to compute global translational PDs.

Exact generalized PD can be computed by constructing the exact
contact space and then searching the contact space for the closest
point to a given query [Zhang et al. 2007b]. However, due to high
time and storage complexity, most generalized PD algorithms use
optimization-based techniques [Nawratil et al. 2009; Zhang et al.
2007a; Je et al. 2012] and compute a locally optimal solution based
on local approximation of the contact space.

Machine learning techniques have been used for collision detec-
tion [Doshi et al. 2007; Pan et al. 2011]. However, these techniques
cannot be used for PD computation directly. In practice, checking
for collisions is much easier than computing the PD between over-
lapping objects.

3 Background and Overview

In this section, we introduce our notation and give an overview of
our approach. We first present PD formulation in terms of configu-
ration space and then describe our approach to computing approxi-
mate PD using active learning.

3.1 Contact Space and PD Formulation

Given two objects A and B, we denote their configuration space
as C-space. Each configuration or point in C-space corresponds to
the relative configuration (i.e., position and orientation) of A with
respect to B. In the rest of the paper, we assume that A is movable
and B is fixed. For 2D objects, C-space has 2 degrees of freedom
(DOF) if A can only undergo translation motion, and 3-DOF if we
take account of translational and rotational motion. For 3D objects,
C-space has 3-DOF for translational motion and 6-DOF for both
translational and rotational motion. C-space is composed of two
components: collision-free space Cfree = {q : A(q) ∩ B = ∅}
and in-collision or obstacle space Cobs = {q : A(q) ∩ B 6= ∅},
where A(q) corresponds to A located at the configuration q.

Contact Space: It is the boundary of Cobs and is denoted as
Ccont = ∂Cobs. Intuitively speaking, a contact space corresponds
to the configurations where A and B just touch each other without
any penetration. Figure 3-(a) shows an example of the C-space of
two objects A and B, where Ccont is highlighted with orange curves.
We use the notation c(q) ∈ {−1,+1} to denote the collision state
of a configuration q, i.e., c(q) = +1 if q ∈ Cobs and c(q) = −1 if
q ∈ Cfree.

PD Formulation: We define global penetration depth as the
minimum motion or transformation required to separate two inter-
secting objects A and B [Agarwal et al. 2000; Kim et al. 2002a]:

PD(A(q0), B) = min
q∈Ccont

dist(q0,q), (1)

where q0 is an in-collision configuration and q is a configuration
that lies in the contact space Ccont. We use the notation dist(·, ·)
to represent the distance between two configurations, which may
correspond to any metric defined on the C-space. The point or
configuration on the contact space for which PD(A,B) attains its
minimal value is denoted as qc = argminq∈Ccont

dist(q0,q).

Figure 3: This figure shows the offline computation pipeline and the runtime phase of our algorithm. The different approximations of LCS
are shown below the corresponding stage. We use green points for collision-free configuration samples and red points for in-collision samples.

In this paper, we mainly limit ourselves to translational and rota-
tional motion and use appropriate dist(·, ·) metrics. For transla-
tional PD (PDt), dist(·, ·) is the standard Euclidean distance metric
between 3-DOF vectors corresponding to the configurations. Many
distance metrics have been proposed for generalized PD (PDg)
computation, including weighted Euclidean distance [Wang et al.
2012b] or object norm [Je et al. 2012] or displacement distance
metric [Zhang et al. 2007a]. We used the displacement distance
metric in our algorithm, which is defined as:

dist(qi,qj) = µ1q
2
1 + µ2q

2
2 + µ3q

2
3 + q24 + q25 + q26 , (2)

where (q1, q2, q3) and (q4, q5, q6) measure the relative rotation
and the relative translation between two configurations qi and qj ,
respectively. (q0, q1, q2, q3) corresponds to the relative quaternion
between these two configurations, where q0 = (1−q21−q22−q23)1/2.
µi is the weight on the rotational component and is computed
as [Zhang et al. 2007a]:

µ1 =
4

Vol
Ixx, µ2 =

4

Vol
Iyy, µ3 =

4

Vol
Izz, (3)

where diag(Ixx, Iyy, Izz) represents the diagonal of the inertia
matrix of object A and Vol is the volume of object A. For closed
models, the volume Vol is computed based on a tetrahedral decom-
position computed using an interior point. For other models, we use
the volume of its bounding sphere. Note that a weighted metric is
application dependent and we can adjust the relative weight of the
translational and rotational component.

3.2 Active Machine Learning

Given the high combinatorial complexity of exact computation of
contact space, our approach computes an approximation based on
sampling and active machine learning. Active learning is a form
of supervised machine learning. The key idea is that if a learning
algorithm is allowed to choose the data from which it learns, that
algorithm will perform better with less training. It is generally
used in applications where labels are expensive to compute and
has been widely used for web searching, email filtering, relevance
feedback, computational biology [Murphy 2011] and text classifi-
cation [Tong and Koller 2002]. In our application, the label of each
sample is computed via exact collision detection, which is relatively

expensive, especially for complicated meshes with many trian-
gles. Therefore, active learning is a good choice to smartly refine
the approximation of the contact space by choosing appropriate
samples. Typically, the selections for active learning are made by
a machine learning method which determines the informativity of
the examples. In our case, we use support vector machines (SVM)
which are used to analyze sample configurations and generate a
decision function or classifier [Mohri et al. 2012]. The structure of
SVMs can be exploited to determine which data points or samples
should be chosen by the learning algorithm. A common strategy in
active learning is to use a combination of exploration and exploita-
tion [Huang et al. 2010]. Simply speaking, exploration is used to
select samples in the undiscovered regions (i.e., far from the deci-
sion function), and exploitation is used to generate samples near
the known regions (i.e., close to the decision function). In practice,
the exploration-and-exploitation active learning algorithm is widely
used in many applications, including computer vision, computa-
tional biology, machine learning, etc. Using active learning, the
cost of sampling can be reduced, or, alternately, a more accurate
approximation of contact space can be obtained for the same cost.

3.3 Approximate PD Formulation

Given the approximate representation of the contact space, we can
then compute the approximate global PD by performing a nearest-
neighbor query in the C-space. Our formulation relies on gener-
ating a sufficient number of samples in the configuration space
and using active learning and classification techniques to compute
the approximation efficiently. We denote this approximation as
Learned Contact Space (LCS). Based on LCS, we can, analo-
gously, define an approximate penetration depth computation as

PD(A(q0), B) = min
q∈LCS

dist(q0,q), (4)

The accuracy of PD is governed by the accuracy of LCS.

3.4 PD Computation

Our approach consists of two phases: offline learning of contact
space (LCS) and runtime PD query. The overall pipeline of our
algorithm is illustrated in Figure 3.

Offline Learning Phase: As shown in Figure 3-(a), we first
generate a small set of uniform samples in a subspace of C-space

(a) LCS0, |S| = 37 (b) LCS4, |S| = 75 (c) LCS8, |S| = 198 (d) LCS14, |S| = 327 (e) LCS20, |S| = 654

Figure 4: LCS computation using active learning for PDt query between 2D star and room models shown as the input of learning pipeline
in Figure 3. We highlight the number of support vectors corresponding to LCSi. In our benchmarks, the algorithm can compute a good
approximtion in a few iterations.

(a) LCS0, |S| = 88 (b) LCS2, |S| = 123 (c) LCS5, |S| = 174 (d) LCS9, |S| = 237 (e) LCS12, |S| = 248

Figure 5: LCS computation using active learning for PDg query between 2D non-convex shapes given in Figure 3. We show the approxi-
mation after i-th iteration and the number of support vectors. The vertical axis represents the rotational component of the C-space.

for two given objects. Next, we classify these configurations into
Cfree or Cobs by performing exact collision checking between the
two objects using bounding volume hierarchies. Given the collision
states (−1 or +1) of all configuration samples, a coarse approxi-
mation LCS0 (Figure 3-(b)) is computed using classifiers. Next,
we select new samples in C-space to further improve the accu-
racy of the initial representation LCS0 using active learning. We
either select samples that are far away from prior samples (so-called
exploration) (Figure 3-(c)), and near LCS0 (so-called exploitation)
(Figure 3-(d)). After the new samples are generated, we compute an
updated approximation LCS1 (Figure 3-(e)) based on incremental
machine learning techniques. We repeat this process, generating a
sequence of approximate representations LCS0, LCS1, ..., with
increasing accuracy. This iterative process is repeated until the
collision states of all the new samples can be correctly predicted
by the current approximation. The final result LCS (Figure 3-(f))
corresponds to either a piecewise linear (for PDt) or smooth (for
PDg) surface approximation of contact space.

Runtime Phase: We use the approximate contact space LCS,
generated during the learning phase, to compute the penetration
depth for a given in-collision query. As shown in Figure 3-(g),
given a relative configuration q0, we perform a nearest-neighbor
search to compute a configuration that is close to the decision func-
tion and project to the boundary of LCS. Let qc correspond to the
configuration on LCS that is closest to q0. Finally, the distance
between q0 and qc is computed using the appropriate distance
metric dist(·, ·) to approximate the PD.

4 Contact Space Learning

In this section, we present our algorithm for the offline learning of
contact space and the computation of LCS. Different stages of this
algorithms are shown in Figure 3.

4.1 Initial Sampling

We perform uniform sampling in C-space to obtain a set of configu-
ration points. Rather than sampling the entire C-space, we generate
samples in a subspace that contains Ccont. Given two objects A
andB, the contact space Ccont is contained in the in-collision space
Cobs of their bounding volumes BV (A) and BV (B). In our case,
we choose axis-aligned bounding boxes (AABB) as the underlying
BVs for PDt computation, due to their translational invariance in
R2 and R3. Similarly, we use spheres as the underlying BVs for
PDg computation due to its translational and rotational invariance
in SE(2) and SE(3).

4.2 Compute LCS0

Given a set of k samples from Cobs(BV (A), BV (B)), we perform
exact collision queries between A and B to check whether these
samples are in-collision space or not. Note that performing Boolean
or discrete collision queries between complex models is a much
easier problem as compared to PD computation, as shown in
Section 6.4. Our goal is to learn an approximate representation,
LCS0 from these configurations. In particular, LCS0 corresponds
to a decision function f(q) = 0 that is fully determined by a set
of configurations S in C-space. We refer to f(q) as the classifier
and use it to predict whether a given configuration q is collision-
free (f(q) < 0) or in-collision (f(q) > 0). S corresponds to the
support vectors, which is a small subset of configuration samples
used in learning. Intuitively, S are the samples that are close to
Ccont.

There are possible methods that can be used to compute the
approximate contact space. One possible alternative is to use
surface fitting techniques to approximate the contact space using an
implicit function, but it gets more challenging for high-dimensional
spaces (e.g., 6-DOF C-space). Another possibility is to use regres-
sion based learning techniques to approximate the contact space.

However, such techniques typically require an improved or contin-
uous approximation of PD values at these samples, which is much
harder to compute (as compared to discrete collision queries).

4.2.1 Nonlinear Classifier based on SVM

We use the classifier SVM [Vapnik 1995] to learn LCS0 from the
set of k configurations. A decision function generated by SVM
is a smooth nonlinear surface. As the underlying samples can
always be separated into collision-free and in-collision spaces, we
use hard-margin SVM. Intuitively speaking, SVM maps the given
samples {qi} into a higher (possibly infinite) dimensional space by
a function φ, which computes a mapping from an input space onto
the feature space, which may be infinite dimensional. For LCS
computation, the input space is the C-space.

SVM computes a linear separating hyperplane in feature space
characterized by parameters w and b, which corresponds to a
nonlinear separating surface in the input space. In this case w is the
normal vector to the hyperplane; and the parameter b determines the
offset of the hyperplane from the origin along the normal vector. In
the feature space, the distance between a hyperplane and the closest
sample point is called the ‘margin’, and the optimal separating
hyperplane should maximize this distance. The maximal margin
can be achieved by solving the following optimization problem:

min
w,b

1

2
‖w‖2 (5)

subject to ci(w · φ(qi) + b) ≥ 1, 1 ≤ i ≤ k.

where ci ∈ {−1,+1} is the collision state of each sample qi..

Let K(qi,qj) = φ(qi)
Tφ(qj) represent the kernel function (i.e.,

a function used to calculate inner products in the feature space), the
distance between two points φ(qi) and φ(qj) in the feature space
can be computed as:

‖φ(qi)− φ(qj)‖

=
√
K(qi,qi) +K(qj ,qj)− 2K(qi,qj). (6)

In our algorithm, we use the radial basis function (RBF) as the
kernel: K(qi,qj) = exp(−γ‖qi − qj‖2), where γ is a posi-
tive parameter and the corresponding φ function is infinite dimen-
sional. In practice, we use γ = 20 in our algorithm. We use RBF
kernel because it keeps the distance ranking in both the input space
and the feature space due to the fact that ‖φ(qi) − φ(qj)‖22 =
2− 2 · exp(−γ‖qi − qj‖22).

The solution of Equation 5 is a nonlinear surface in the input space
(a hyperplane in the feature space) that separates collision-free and
in-collision configurations. Based on the dual form of optimization
in Equation 5, this solution can be formulated as:

f(q) = w∗ · φ(q) + b∗ =

k∑
i=1

αiciK(qi,q) + b∗, (7)

where w∗ and b∗ are the solutions of Equation 5 and αi ≥ 0
correspond to each training sample’s weight for the classification,
which comes from the dual form of optimization in Equation 5.
According to Karush-Kuhn-Tucker conditions, only a few of the
αi’s are non-zero and the corresponding qi are the support vectors,
S. Intuitively, the support vectors are those samples very close to
the separating hyperplane f(q) = 0, as shown by the red and green
configurations in Figures 3(b) and 3(g). Finally, LCS0 consists
of an implicit function fLCS0(q) = f(q) and a set of samples
SLCS0 = S (i.e., the support vectors), which are used to approxi-
mate the exact contact space.

4.3 Refine LCS0 using Active Learning

We refine LCS0 using active learning. The goal is to actively
select new samples so that a better approximate contact space repre-
sentation, LCS1, can be obtained by incorporating these samples
into LCS0. We use a combination of exploration and exploita-
tion [Huang et al. 2010]. The basic idea is to determine whether
to explore or to exploit by flipping a biased coin with a proba-
bility (initially 0.5). If the result is a head, we apply exploration.
If the result is a tail, we apply exploitation, and the given proba-
bility is adjusted according to the fraction of exploration samples
whose collision states are correctly predicted by the current LCSi.
The new samples are used to update LCS0 and generate a new
approximationLCS1 (or refine fromLCSi toLCSi+1). We repeat
the active learning step until all the new samples can be correctly
predicted by the current LCSi or the final result (represented as
LCS) has sufficient accuracy to approximate Ccont. Later, in
Section 6 we show that active learning offers improved convergence
as compared to uniform or random sampling schemes.

4.3.1 Exploration

It is possible thatLCS0 may miss some holes or components corre-
sponding to collision-free regions, as compared with exact Ccont,
because no samples were generated inside those regions. As a
result, there may be some portions that LCS0 may incorrectly
classify, as shown in Figure 3(c). In this case, exploration allows
us to generate samples far away from prior samples in order to
explore the regions not well-sampled by the current LCS0. In our
algorithm, we use random sampling to explore these new regions
(Figure 3-(c)). As shown in Figure 3(e), two new collision-free
regions (marked as blue curves) are found after exploration. After
each exploration sampling step, we need to determine whether the
exploration improves LCS0 by computing the fraction of the new
samples that are not correctly predicted by LCS1. If this fraction
is large (e.g., 0.3), then we increase the probability for exploration;
otherwise we decrease it.

4.3.2 Exploitation

Exploitation allows us to generate samples near the decision func-
tion of a given approximation LCS0. We use a simple method
based on the maximal margin property of SVM. The maximal
margin property [Vapnik 1995] states that the decision function will
have the same distance to the support vectors with different labels
(i.e., collision-free or in-collision). In order to obtain a sample near
the decision function fLSC0 = 0, we first choose a pair of support
vectors that are close to each other, but have opposite labels. Based
on the maximal margin property, the midpoint of the two supporting
vectors lies on or near the decision function. For nonlinear SVM,

Figure 7: Exploitation in SVM: (a) support vectors are on different
side of the decision function (qi and qj) in input space; (b) their
midpoints (black points) are computed in the feature space; (c) the
pre-image of the midpoints lies near the decision function and can
be used for exploitation.

the closest point and interpolation computations are performed in
the feature space. As shown in Figure 7, we first use the distance

(a) LCS0, |S| = 231 (b) LCS2, |S| = 385 (c) LCS5, |S| = 869 (d) LCS9, |S| = 1350 (e) LCS12, |S| = 1572

Figure 6: LCS computation using active learning for PDt query between 3D cup and spoon. We highlight the number of support vectors
corresponding to LCSi. In our benchmarks, the algorithm can compute a good approximation in a few iterations.

metric mentioned in Equation 6 to find a pair of supporting vectors
qi and qj . Next, we compute their midpoint 1

2
(φ(qi) + φ(qj))

(shown as black points in Figure 7-(b)). However, the resulting
midpoint may not have a pre-image in the input space. Therefore,
we search the input space for a point q whose image φ(q) in feature
space is closest to 1

2
(φ(qi) + φ(qj)):

min
q

‖1
2
(φ(qi) + φ(qj))− φ(q)‖2

⇔ max
q

K(q,qi) +K(q,qj).
(8)

The solution is solved using an optimization solver based on
sequential quadratic programming (SQP), where the midpoint in
the input space qi+qj

2
is used as the initial guess. In our bench-

marks, this optimization solver tends to converge quickly (less than
10 iterations).

4.4 Incremental Learning

Instead of computing a new decision function from scratch using all
the previous samples, we apply incremental learning techniques to
efficiently compute LCSi+1 from LCSi. Intuitively, incremental
learning utilizes a small set of new samples to update LCSi. The
decision function of LCSi serves as the initial guess for gener-
ating a refined result LCSi+1. Incremental SVM [Karasuyama and
Takeuchi 2009] can be used to update the current result generated
using SVM; the key is to retain the optimality condition of Equa-
tion 5 (i.e., the Kuhn-Tucker condition) on all prior samples while
adding new samples. This is achieved by adjusting the coefficients
αi and b in Equation 7 and by migrating some samples in and out
of support vector set S. The coefficient adjustment and the support
vector migration are guided by the gradient of the objective func-
tion in Equation 7.

4.5 Terminating Active Learning

Active learning terminates when either of these conditions has been
satisfied:

(a) The collision states of all the new samples generated during
exploration and exploitation computation can be correctly
predicted by the current approximation LCSi.

(b) The total number of samples used in active learning iterations
is more than a user given threshold.

The first condition guarantees that all the configurations used for
learningLCS are consistent (i.e., they can be correctly predicted by
LCS). This implies that the current LCS has a high probability of
accurately approximating the underlying contact space. The second
condition controls the error in PD computation. As more samples

are used, we get a better approximation to Ccont, and thereby lower
PD error.

5 Runtime PD Queries

We use the approximate contact space,LCS, to perform PD queries
at runtime. In this section, we give details on the runtime algorithm.
It consists of two parts: localLCS refinement based on consistency
checks and computing the nearest configuration on LCS.

5.1 Local LCS Refinement

Let q0 be a configuration that corresponds to overlapping rigid
objects A and B. The exact collision check between these objects
is performed using bounding volume hierarchies. We also compute
the approximate collision state corresponding to q0 using LCS:
i.e., check whether (f(q0) > 0) as that corresponds to an in-
collision configuration. It is possible that the collision state
predicted using LCS may be different from that computed by the
exact algorithm, which implies that LCS is not sufficiently accu-
rate at approximating the contact space in the neighborhood of
q0. In this case, we refer to q0 as an inconsistent configuration;
otherwise, it is consistent. Generally, an inconsistent configuration
occurs when the query is located in a C-space region that is not well
sampled during learning phase. During runtime phase, the incon-
sistent configuation rarely occurs, especially if the LCS is quite
accurate. For example, for all the benchmarks we used in Table 1,
the inconsistent configurations arise in 1% to 4% of all the query
samples generated during runtime phase.

Our runtime algorithm first checks whether a given query q0 is
consistent. If q0 is inconsistent, q0 corresponds to a collision-free
configuration which is predicted in-collision by LCS (f(q0) > 0)
or an in-collision configuration which is predicted to be collision-
free by LCS (f(q0) < 0). We only consider the inconsistent
configuration whose distance to LCS is more than a user-specified
error threshold. In this case, we locally refine LCS by incorpo-
rating q0 into LCS using incremental learning (see Section 4.4).
This local refinement of LCS improves the query efficiency and
the accuracy of PD computation, as highlighted in Equation 11.

During each runtime query, we perform an incremental learning
step for an inconsistent single configuration. As a result, its
runtime overhead is O(1). Moreover, this local refinement step
improves the accuracy of LCS in regions, where more PD queries
are performed by an application during runtime. As a result, this
scheme exploits the spatial coherence in configuration space for
nearby PD queries and results in more accurate answers for all those
queries.

5.2 LCS Projection

Given a consistent configuration q0, we search for the closest
configuration on LCS to compute the PD. In particular, we project
q0 onto the decision boundary fLCS = 0, and let qc be the
nearest configuration on LCS. In this case, the approximate PD
is computed using dist(q0,qc) function. For SVM classifiers, the
projection computation can be reduced to a constrained optimiza-
tion problem:

min
q

dist(q0,q), subject to fLCS(q) = 0. (9)

We use SNOPT package [Gill et al. 2005] to efficiently solve this
optimization problem. A key challenge is to perform this projec-
tion efficiently, ensuring that the optimization algorithm is not
trapped in a local minima, as the shape of the decision function
can be rather complicated. In order to deal with these issues, we
perform the computation in two phases: first, we perform a k-
nearest-neighbor search in C-space to compute the configuration
qv ∈ SLCS (i.e., among the support vectors) that is closest to q0

based on our dist(·, ·) metric. Next, we use qv as an initial guess
to the constrained optimization problem and compute the closest
configuration on the LCS. Since qv is a configuration very close
to the decision boundary, it serves as a good initial guess.

Nearest Neighbor Search: We use different nearest-neighbor
(NN) search algorithms to compute qv , depending on whether we
are performing this search in 3-DOF C-space or 6-DOF C-space.
For 3-DOF C-space, dist(·, ·) corresponds to the Euclidean distance
metric, and we use a kd-tree to accelerate NN computation. For 6-
DOF C-space, dist(·, ·) is the non-Euclidean displacement metric,
as defined in Section 3. As a result, we use a hierarchical clustering
algorithm for efficient NN search [Muja and Lowe 2009].

6 Analysis

In this section, we analyze various characteristics of our algorithm,
including errors in PD computation, benefits of active learning, and
time and space complexity.

6.1 Error in LCS and in PD Computation

Since our approach is probabilistic, we compute a bound on PD
approximation based on expected error [Vapnik 1995], which
corresponds to the average error when LCS is applied to predict
the collision state or PD value for a new configuration in the C-
space. This error can be expressed as:

ecol = E |ecs(q)| , (10)

where ecs(q) = 0 if q is a consistent configuration; otherwise
ecs(q) = 1 if q is inconsistent. Expectation E is performed for
a series of random configurations or queries (see appendix for more
details). Typically, these queries arise from an application (e.g.,
dynamic simulation), and we assume that they follow a uniform
distribution in C-space.

The accuracy of approximate global PD computation is measured
by the expected error that arises while using LCS to compute the
PD for a random configuration in C-space:

ePD = E
∣∣PD(A(q), B)− PD(A(q), B)

∣∣ . (11)

Note that we scale the objects such that the maximum dimension
of the subspace Cobs(BV (A), BV (B)) is equal to 1. A small ecol
usually implies a small value of ePD and vice versa. There may be
a few cases where ecol and ePD can be quite different. For example,
in a very narrow passage in Cfree, ePD can be large but ecol is small.
If Cobs is composed of many small isolated components, ecol can be
large, whereas ePD may be small.

6.2 Benefits of Active Learning

A key component of our algorithm is the computation of
LCS by generating appropriate samples in the configuration
space. The simplest choice is to perform uniform sampling in
Cobs(BV (A), BV (B)) or to use some other random sampling
scheme. Instead, we use a combination of active and incremental
learning techniques to refine LCSi and improve its accuracy.

The time and space complexity of the LCS precomputation phase
is a function of the number of samples used for active learning
iterations. In particular, our goal is to ensure that the final LCS
corresponds to a good approximation of Ccont. Note that the
number of samples required to achieve a given error bound ecol
depends on both the active learning technique and the underlying
classification method used within active learning iterations. In
general, it is non-trivial to derive a tight bound on the number of
samples for a specific combination of active learning and classifica-
tion algorithms. However, we use some general results on sample
complexity of active learning [Hanneke 2013] to show the benefits
of our approach.

Theorem 1 If the number of samples used in active learning
iterations of LCS computation is more than N , where N =
O(log(1/(εδ)), then there exists one active learning technique
which can guarantee that with probability at least 1 − δ, the
expected error of the LCS result will satisfy the bound ecol ≤ ε.

Intuitively, this theorem says that there exists a special active
learning technique that can be used to derive these bounds on LCS
approximation. We give a proof of this theorem in the supplemental
material based on CAL (Cohn-Atlas-Ladner) algorithm [Cohn et al.
1994]. This guarantees our LCS computation to have a bounded
error with a high probability, if more than N = O(log(1/(εδ))
samples are used. However, the CAL active learning algorithm is
not practical [Hanneke 2013] and rather we use a combination of
exploration-and-exploitation as the active learning (Section 4.3) in
our LCS computation algorithm.

A lot of applications use exploration-and-exploitation active
learning algorithm. In this case, we can expect that the use of
exploration-and-exploitation could also result in a bound similar to
Theorem 1, although the exact derivation of such a bound is a good
topic for future research.

Since ecol and ePD are closely related to each other, Theorem 1 also
implies that ePD decreases at an exponential rate with the number of
samples. This is in contrast with using uniform sampling strategy
to learn the contact space, in which LCS converges to the exact
contact space at a polynomial rate when the number of samples
increases [Mohri et al. 2012]:

Theorem 2 When using uniform sampling, if the number of
samples is more than N , where N = O(1

2ε2
log(2/δ)), then with

probability ≥ 1− δ, we have the error bound ecol ≤ ε.

Theorems 1 and 2 provide approximate bounds for the number of
samples required to archive a specified error bound for the approx-
imate LCS, when active sampling or uniform sampling is used,
respectively. Since these bounds are based on unknown constants,
we can’t use them directly to compute the number of iterations
in our contact space learning algorithm. At the same time, these
two theorems provide theoretical justification to our use of active
learning techniques to improve the accuracy and efficiency of our
offline training algorithm. Since active sampling uses much fewer
samples to achieve the same error bound than uniform sampling,
active learning would outperform uniform sampling in spite of the
computational overhead of exploitation and exploration operations.

We also measured the expected error, ecol or ePD, in complex 2D

200 400 600 800 1000
0

2

4

6

8

10

#samples

e c
o
l%

(a) ecol for 2D spiders

2000 4000 6000 8000 10000
0

2

4

6

8

10

#samples

e c
o
l%

(b) ecol for 3D cup-spoon

Figure 8: Relative error convergence of active learning (blue)
vs. uniform sampling (red) for 2D and 3D object pairs. These
results demonstrate the benefits of active learning in terms of fewer
samples and improved accuracy.

and 3D benchmarks, as shown in Figure 8 (and also supplemen-
tary material). These figures verify the convergence of our contact
space learning algorithm during offline learning phase, for both
active learning and uniform sampling. It also demonstrates the
high convergence rate and lower error in LCS and PD computa-
tion using active learning, with the same number of samples.

6.3 Benefits of Local Refinement

Our contact space and PD computation algorithms are probabilistic
algorithms. Their accuracy is governed by the samples chosen
during the learning phase, including initial samples and active
learning, as well as the runtime queries. As more PD queries are
performed within a subspace or a specific region of C-space, the
accuracy ofLCS in that subspace or region tends to be higher. This
is due to the local refinement step that is performed during runtime
whenever we encounter an inconsistent query configuration. The
incremental learning algorithm updates LCS around the query
configuration by taking into account local information in C-space.
In many applications, including dynamic simulation, haptics, or
motion planning, a high proportion of sample queries correspond
to nearby positions of the two objects A and B. As a result, the
runtime query configurations are relatively close to each other in C-
space and the local refinement step improves the accuracy of LCS
in that region. This implies that as more queries are performed in a
localized region of C-space, the accuracy of LCS and PD queries
improves. Our algorithm does not make any assumptions about
the application or the distribution of runtime query configurations.
We expect that the accuracy of local refinement will improve at the
rate given by uniform sampling (i.e., Theorem 2), rather than the
exponential rate of active learning. In other words, after generating
N = O(1/ε2) samples within a subspace at runtime, the expected
error locally around those samples will be less than ε.

6.4 Time and Space Complexity

The precomputation or learning phase is performed for each object
pair (A,B) in the environment. The exact collision check is
performed using precomputed bounding volume hierarchies. Given
two objects with m and n triangles, the expected cost of a single
exact collision query is Tcol = O(logm+ logn).

Offline Learning: The timing complexity for the learning phase
can be estimated as

(TLCS0 +

IAL∑
i=1

(TESi + TLCSi)) + Tcol ·
IAL∑
i=1

NLCSi , (12)

where TLCS0 is the time complexity to learn the initial approx-
imation; TESi is the time cost to perform exploitation sampling

or exploration sampling in the i-th iteration of active learning;
TLCSi is the time cost for the i-th step incremental learning; IAL
is the number of iterations performed during active learning. We
also denote the number of new samples generated during LCSi as
NLCSi . We need to perform collision checking for each sample
generated during the learning phase; hence the collision cost is
Tcol ·

∑
iNLCSi .

TLCS0 complexity is governed by the SVM classifier. SVM
computation boils down to solving a constrained quadratic opti-
mization problem using the interior point or conjugate gradient
method and its worst case complexity is about O(N2.3

LCS0
) [Bottou

and Lin 2007].

Incremental learning combines each new sample into LCS within
constant time, and hence we have TLCSi = O(NLCSi). TESi

is the time cost for exploitation sampling or exploration sampling.
For exploration, TESi = O(NLCSi). The time complexity for
exploitation sampling is O(|SLCSi |) as we perform interpolation
between each support vector of LCSi and its k-nearest neighbors,
which can be bounded above as O(

∑
iNLCSi).

Overall, the timing complexity for the learning phase is
O(log(1

ε
)
∑
iNLCSi + N2.3

LCS0
) + Tcol ·

∑
iNLCSi . The space

complexity of our algorithm is linear in the number of samples used
during the learning and runtime phases and linear in the size of
support vectors in the final LCS representation.

Runtime Query: The timing complexity in the runtime query
phase depends on |SLCS |, i.e., the number of support vectors in
LCS. |SLCS | is related to the smoothness of exact Ccont, and not
so much on the geometric complexity of A and B (see Figures 4,
5, 6 and 10). For example, the Ccont of a sphere and another object
(i.e., the offset surface) is always smooth, and therefore a small
SLCS is sufficient to generate a good approximation of Ccont. We
also notice that in our benchmarks, where |S| for the teeth model
(40K triangles) is comparable or higher than bunnies (70K trian-
gles), dragon (230K triangles), and Buddha (1M triangles) models.
Furthermore, we generated different low-polygon count represen-
tations of the Buddha models and observed similar performance
on all these approximations (see supplementary material). In other
words, the size of SLCS depends on the combinatorial complexity
of Ccont. Moreover, the size of SLCS can be used to control the
tradeoff between the accuracy of PD computation and the query
efficiency.

7 Implementation and Performance

In this section, we highlight the performance of our algorithm
on complex benchmarks and compare it with prior techniques.
We implemented our algorithm using C++ under Visual Studio
2010 and Windows 7. The two main routines needed during
the learning phase are exact collision checking between polyg-
onal models and computing the approximation using support vector
machines. At runtime, we need the capability to perform a
nearest-neighbor query in the configuration space and to compute a
projection using constrained optimization. We used the OBBTree
algorithm [Gottschalk et al. 1996] for exact collision detection
between polygonal objects. We also used a variant of GJK algo-
rithm [van den Bergen 2001] to compute translational penetration
depth between convex polytopes to compare the performance with
prior methods. In our implementation, we have set ε = 2.5% and
δ = 0.01.

7.1 Benchmarks

We have used many complex benchmarks to evaluate the perfor-
mance of our algorithm. They are shown in Figure 1 and Figure 2

(also refer to the accompany video). In the simulation, there are
multiple contacts between the overlapping objects and we compute
PDt and PDg between them. The performance of the learning and
runtime phases are shown in Table 1.

We precompute BVHs for collision detection, which has a linear
memory complexity for each object. For each different type of
object pair, we precompute their LCS, which takes about 5KB
(star-box)-110KB (teeth, dragon, bunny, Buddha) memory.

7.2 Physically Based Simulation using PD

Penetration depth has been used in many dynamic simulators to
compute collision response based on penalty forces or constraint-
based solvers. We have integrated our new PD algorithm into
the well-known game physics engines, Box2D [Catto 2010] and
Bullet [Coumans 2010]. These engines have support for PD compu-
tation based on convex decomposition and computing the local
translational penetration depth between convex polytopes [van den
Bergen 2001]. However, convex decomposition can result in a
high number of convex pieces, Moreover, the decomposition-based
approach is mainly limited to closed objects and doesn’t guarantee
that two overlapping non-convex objects can separate as they only
compute local PD using the convex pairs.

Contact Points and Normals: For an inter-penetration configura-
tion q0 and its resulting contact configuration qc, the contact points
and contact normal can be computed in the workspace for two
objects. First, for the contact configuration qc, its nearest collision-
free configuration can be computed using support vectors based on
k-nearest-neighbor search in C-space. Next, a set of contact features
(including contact points, edges, or faces) and contact normals of
the given two objects can be computed using the proximity query
algorithm [Larsen et al. 2000]. The performance of contact compu-
tation is similar to collision queries (tens of milliseconds) and is
a fraction of PD computation. For collision response, we treat
each contact point as a planar constraint and also cluster the nearby
contacts. A constraint force proportional to the penetration depth is
applied to resist, and ultimately eliminate the penetration. The PD
can be also used to estimate the time of contact to apply impul-
sive forces in impulse-based collision response methods. Reli-
able multiple contact points can be obtained using perturbation
and persistent contact caching techniques [Coumans 2010]. Our
method can efficiently compute the contact features and normals for
non-convex objects, while previous methods like [Coumans 2010]
only handle convex objects.

Box2D uses PD computation in impulse-based collision response
algorithm. We demonstrate the performance of our algorithm on
two complex benchmarks (Figure 1): (1) angry bird characters
falling into a complex chute; (2) Nazca spiders rolling in a tumbler.
We precompute the LCS approximation in 3-DOF C-space. The
convex decomposition results in 17, 30, and 32 convex pieces for
BigRedBird, WhiteBird and GreenPig models, respectively. More-
over, the Nazca spiders decomposed into 77 convex pieces. We
have observe nearly 20 times improvement in PD query using
our active learning algorithm over techniques based on convex
decomposition used in Box2D (see Figure 9-(a)(b)). The collision
response algorithm is based on Box2D implementation.

Bullet uses PD computation to handle penetrations in their
constraint-based solver. We demonstrate the benefits of our PD
computation algorithm in three scenarios (shown in Figure 1 or the
video): (1) interlocking 10 rings; (2) a rainfall of 1, 000 rings; (3)
collapse of a tower composed of 5, 500 rings. Each ring consists of
256 triangles. We precompute the LCS approximation in 6-DOF
C-space and use it to perform PD queries during the simulation.
Each ring is decomposed into 16 convex pieces. As compared to
the convex decomposition based algorithm used in Bullet, our PD

computation algorithm is about an order of magnitude faster. We
use the standard implementation of contact normal and collision
response forces computation available in Bullet.

Complex 3D Models: We have evaluated the performance of
algorithm on many complex models corresponding to cup-spoon,
moving teeth, bunnies, dragons and Buddha models (see Figure 1).
The exact motion trajectories are shown in the video and we
performed LCS computation in 6D space. We observe more
than an order of magnitude performance improvement than prior
methods (see Figures 9, 11, and supplementary material).

200 400 600 800 1000
0

5

10

15

20

frame

ti
m

e
 (

m
ill

is
e
c
o
n
d
)

(a) PDg : cup-spoon

200 400 600 800 1000

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

frame

ti
m

e
 (

m
ill

is
e
c
o
n
d

)

(b) PDg : rings (Bullet)

Figure 9: Relative performance of PD computation for different
benchmarks: The blue curve represents the query time computed by
our approximate PDg algorithm. The green curve corresponds to
the query time computed using convex decomposition and local PD
between convex pairs. The orange curve represents the PDg query
time computed using point-based approximation [Lien 2009].

7.3 Comparison with Prior Methods

Most practical algorithms perform local analysis of the intersection
regions and compute local PD. Other techniques use distance fields
and can be accelerated using GPUs. In practice, these techniques
are quite fast and can also handle deformable models. On the other
hand, our global PD algorithm involves preprocessing and is mainly
designed for rigid objects. The performance of our runtime query
(e.g., about 0.1 ∼ 2 millisecond) is comparable or faster than these
local PD computation algorithms. The main benefit of our approach
over local PD methods is computation of global translational and
rotational PD, which provides a more reliable measure of separating
two overlapping objects. Other algorithms reduce PD computa-
tion to constrained optimization [Nawratil et al. 2009; Zhang et al.
2007a; Je et al. 2012]. In these techniques, a sequence of config-
uration samples on the contact space are iteratively computed until
a local minimum configuration is found. The performance of these
algorithms heavily relies on the initial guess of the configuration,
and it is hard to provide error bounds in terms of global PD (see
Figure 11). Basically, they are useful for computing locally optimal
PD between non-convex objects. The approximate PD computed
by our global algorithm can be used as an initial guess for these
optimization-based techniques and thereby improve their accuracy.

In order to evaluate the error in our approximate PD computation
algorithm, we need to compute very accurate (almost exact PD)
between the two objects. For translational PD, the exact PD can be
obtained by computing the Minkowski sum between two objects.
However, for complex 3D objects like teeth or dragon, it is very
hard to compute exact Minkowski sum due to its combinatorial
complexity. Instead we use the point-based algorithm [Lien 2009]
to approximate the PD and estimate the error of our algorithm. For
generalized PD, the exact PD computation is even harder. There-
fore, we approximate the exact contact space by many slices of
Minkowski sums. Intuitively speaking, we sample many rota-
tions in rotation space and then compute Minkowski sums for all

Model
Offline Learning LCS Runtime Query

Initial Learning Active Learning
total (s) mem

time (ms)
ePD(%)

#smpls time (s) #smpls |S| ecol (%) time (s) NN projection refine total

2D PDt

star vs. room 100 0.006 1000 374 1.88 0.15 0.156 4.4 0.065 0.02 0.03 0.115 0.023
monkeys 100 0.4 1000 346 0.11 2.74 3.14 4.2 0.06 0.01 0.03 0.10 0.008

spiders 100 0.01 1000 389 1.37 0.27 0.28 4.7 0.066 0.01 0.02 0.096 0.025

3D PDt

star vs. spoon 1000 0.08 10000 1105 0.59 1.245 1.33 17 0.43 0.21 0.02 0.66 0.012
cup vs. spoon 1000 0.25 10000 1472 0.75 4.46 4.81 23 0.54 0.22 0.03 0.79 0.019

rings 1000 0.20 10000 1224 0.56 11.99 12.01 19 0.66 0.12 0.05 0.83 0.016
teeth 1000 0.33 10000 2132 1.3 43.21 43.54 34 1.3 0.2 0.08 1.58 N/A

bunnies 1000 0.15 10000 666 1.7 36.49 36.64 11 0.1 0.12 0.04 0.26 2.0
dragons 1000 0.17 10000 854 1.8 31.11 31.28 14 0.13 0.11 0.05 0.29 1.9
Buddha 1000 1.7 10000 1384 1.8 37 38 22 0.18 0.10 0.09 0.37 1.8

2D PDg

star vs. room 100 0.005 2000 436 2.0 1.276 1.281 6.9 0.08 0.03 0.02 0.13 0.021
monkeys 100 0.42 2000 545 0.43 5.84 6.26 8.7 0.07 0.02 0.02 0.11 0.013

spiders 100 0.011 2000 540 0.8 1.16 1.17 8.6 0.08 0.02 0.01 0.11 0.018

3D PDg

star vs. spoon 1000 0.095 10000 1731 1.9 37.49 37.58 48 0.5 0.25 0.05 0.80 N/A
cup vs. spoon 1000 0.3 10000 2107 1.2 78.34 78.64 59 0.3 1.0 0.03 1.33 N/A

rings 1000 0.25 10000 1977 1.3 223.1 223.4 55 0.82 0.21 0.03 1.06 N/A
teeth 1000 0.54 10000 3216 2.8 476.43 476.97 90 2.2 0.2 0.04 2.44 N/A

bunnies 1000 0.33 10000 2283 3.1 342.31 342.64 64 0.89 0.12 0.02 1.03 N/A
dragons 1000 0.37 10000 2387 2.8 378.92 477.29 69 1.01 0.18 0.03 1.22 N/A
Buddha 1000 2.3 10000 3765 2.7 643 645 105 1.20 0.28 0.07 1.55 N/A

Table 1: Performance of our PD algorithm on 2D and 3D models: The learning phase includes the number of samples, size of support
vectors, final memory (KB) usage and precomputation time. We also give a timing breakdown of runtime query. The PD error is computed by
comparing the accuracy of PD with prior algorithms used for PD computations. For accurate PDt computation, we use the accurate, offline
algorithm of [Lien 2009] or using a combination of convex decomposition and Minkowski sums. Since no accurate and efficient algorithms
are known for many PD queries (e.g., PDt computation for non-closed meshes like teeth model; PDg computation for 3D models), we don’t
analyze the accuracy of our algorithm in such cases (shown as N/A).

(a) LCS0, |S| = 115 (b) LCS4, |S| = 608 (c) LCS8, |S| = 1081 (d) LCS12, |S| = 1407 (e) LCS15, |S| = 1650

Figure 10: LCS computation using active learning for PDt query between 3D star and spoon models. We highlight the number of support
vectors corresponding to LCSi. In our benchmarks, the algorithm can compute a good approximtion in a few iterations.

the rotations. The combination of these Minkowski sums is used
as an approximation of the contact space. We label the accurate
PD computed using these offline techniques as “nearly exact PD”
for our algorithm and comparisons. In practice, our approach is
more than an order of magnitude faster than other algorithms that
are based on convex decomposition (e.g., [Kim et al. 2002b] for
PDt; [Zhang et al. 2007b] for PDg) or point-based approximations.
We have compared the runtime performance of our algorithm with
these prior global methods in Figure 9. More benchmarks, results
and comparison are given in the supplementary material.

Figure 11 show the timings of PDt runtime query using our algo-
rithm against the most recent work, PolyDepth [Je et al. 2012].
Each benchmark corresponds to a pre-defined trajectory of config-
urations. We also use Lien’s offline method [Lien 2009] to compute
the Minkowski sum and compute the translational PD for each
configuration in the pre-defined trajectory. The results are used
as the ground-truth for translational PD. Next, we compute PDt
using our method as well as PolyDepth. From the comparison
results shown in Figure 11, we observe that our method is faster

and more accurate than PolyDepth (especially for deep penetra-
tions), as PolyDepth uses a local optimization scheme which tends
to be sensitive to the choice of initial guess. The ground truth of
Lien’s offline method is more accurate or smoother than our online
method. However, it is more time consuming and is limited to trans-
lational PD computation.

8 Limitations and Conclusions

We have presented a novel approach to the computation of transla-
tional and generalized PD between polygonal models. The main
idea is to sample the configuration space and approximate the
contact space based on machine learning classifiers. We use support
vector machines to approximate the contact space, and the runtime
PD query is reduced to nearest neighbor computation. Further-
more, we use active learning techniques to select the samples during
precomputation. The overall approach is general and applicable to
all polygonal models. We have demonstrated the interactive perfor-
mance of our algorithm on complex, non-convex models and have
also used them for collision response in game physics engines. To

0

10

20

30

0 100 200 300 400 500 600 700 800

ti
m

e
 (

m
s
)

Ours

PolyDepth

(a) (b)

0

50

100

150

P
D

 M
a
g
n
it
u
d
e

PolyDepth

PD by [Lien 2009]

(c)

0

10

20

30

40

50

P
D

 E
rr

o
r(

%
)

PolyDepth

Ours

(d)

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800

ti
m

e
 (

m
s
)

Ours

PolyDepth

(e) (f)

0

50

100

150

P
D

 M
a
g
n
it
u
d
e

PolyDepth

PD [Lien 2009]

(g)

0

10

20

30

40

50

60

70

80

90

100

P
D

 E
rr

o
r(

%
) PolyDepth

Ours

(h)

Figure 11: The performance and accuracy comparison with PolyDepth [Je et al. 2012] on bunny-bunny (first row, from (a) to (d)) and
dragon-dragon (second row, from (e) to (h)) benchmarks. (a) computational time (on average, the time for bunny-bunny benchmark is 0.10ms
based on our algorithm vs. 7.15ms in PolyDepth; the time for dragon-dragon benchmark is 0.12ms based on our algorithm vs. 9.86ms in
PolyDepth); (b) accuracy comparison between our interactive algorithm vs. offline algorithm based on Minkowski sum [Lien 2009]; (c)
accuracy comparison of PD computation between PolyDepth vs. offline algorithm based on Minkowski sum [Lien 2009]; (d) our global PD
algorithm (blue) has lower error as compared to PolyDepth that performs local optimization.

the best of our knowledge, this is the first approach that is able to
compute global and reliable PD between rigid models at interactive
rates.

Our approach has a few limitations. The precomputation phase is
performed for every object pair in the simulation. In the worst case,
its complexity can grow as a quadratic function of the number of
objects in the simulation. The accuracy and running time of our
learning phase is a function of the combinatorial complexity of the
contact space and the sampling scheme. It is possible that our
method may not generate sufficient number of samples in small,
isolated components of contact space, or may take a high number
of iterations. The overall approach is probabilistic, and all our error
bounds are derived in terms of expected error. Many times the solu-
tion to the penetration depth problem (Section 3.1) is not unique or
differentiable. Since we compute a bounded-error approximation
of PD, there could be multiple solutions that satisfy those error
bounds. This discontinuity in PD formulation and computation
can cause instability in collision response for haptic rendering, and
our approach can be extended to compute continuous penetration
depth [Zhang et al. 2013]. In complex rigid-body simulations with
multiple objects, global PD computation can improve the accuracy
of the simulation, but cannot guarantee that it is totally collision-
free.

There are many avenues for future work, including overcoming
the stated limitations. The basic components of our learning and
run-time phases, such as SVM learning, collision detection, and
nearest-neighbor computation, can be accelerated using GPU paral-
lelism. We can use other active learning techniques to improve
the sampling as well as other classifiers or learning techniques
to improve the accuracy or convergence of LCS. It would be
useful to derive tight theoretical error bounds (e.g., Theorem 1) for
active learning algorithms based on exploitation-and-exploration. It
would also be useful to extend the approach to articulated models
that takes into account self-collisions between various links. In
order to handle deformable models, we would like to develop incre-
mental techniques that can refine the contact space approximation
for deforming objects. It would be useful to this approach for other

PD formulations, such as penetration volume [Weller and Zach-
mann 2009], which can result in continuous response forces. We
also need improved algorithms for collision response that can guar-
antee collision-free simulations for interactive applications.

Acknowledgements

This research is supported in part by ARO Contract W911NF-10-1-
0506, NSF awards 0917040, 0904990, 1000579 and 1117127 and
Intel. We are also grateful to the reviewers for their feedback.

References

AGARWAL, P. K., GUIBAS, L. J., HAR-PELED, S., RABI-
NOVITCH, A., AND SHARIR, M. 2000. Computing the pene-
tration depth of two convex polytopes in 3D. In Proceedings of
Scandinavian Workshop on Algorithm Theory, 328–338.

BARAFF, D., AND WITKIN, A. 2001. Physically Based Modeling.
ACM SIGGRAPH Course Notes.

BOTTOU, L., AND LIN, C.-J. 2007. Support vector machine
solvers. In Large Scale Kernel Machines, L. Bottou, O. Chapelle,
D. decoste, and J. Weston, Eds. MIT Press, 301–320.

CATTO, E., 2010. Box2D: A 2D physics engine for games. http:
//box2d.org.

COHN, D., ATLAS, L., AND LADNER, R. 1994. Improving gener-
alization with active learning. Machine Learning 15, 2, 201–221.

COUMANS, E., 2010. Bullet physics library. http://
bulletphysics.org.

DOSHI, F., BRUNSKILL, E., SHKOLNIK, A., KOLLAR, T., AND
ROHANIMANESH, K. 2007. Collision detection in legged loco-
motion using supervised learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems.

GILL, P. E., MURRAY, W., AND SAUNDERS, M. A. 2005.
SNOPT: An SQP algorithm for large-scale constrained optimiza-
tion. SIAM Review 47, 1, 99–131.

http://box2d.org
http://box2d.org
http://bulletphysics.org
http://bulletphysics.org

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996.
OBBTree: a hierarchical structure for rapid interference detec-
tion. In Proceedings of SIGGRAPH, 171–180.

GUENDELMAN, E., BRIDSON, R., AND FEDKIW, R. 2003.
Nonconvex rigid bodies with stacking. ACM Trans. Graph. 22,
3, 871–878.

HANNEKE, S. 2013. A statistical theory of active learning. Foun-
dations and Trends in Machine Learning, 1–212.

HEIDELBERGER, B., TESCHNER, M., KEISER, R., MLLER, M.,
AND GROSS, M. H. 2004. Consistent penetration depth esti-
mation for deformable collision response. In International Fall
Workshop on vision, modeling and visualization, 339–346.

HUANG, S.-J., JIN, R., AND ZHOU, Z.-H. 2010. Active learning
by querying informative and representive examples. In Proceed-
ings of Advances in Neural Information Processing Systems.

JE, C., TANG, M., LEE, Y., LEE, M., AND KIM, Y. J. 2012.
PolyDepth: Real-time penetration depth computation using iter-
ative contact-space projection. ACM Trans. Graph. 31, 1 (Feb.),
5:1–5:14.

KARASUYAMA, M., AND TAKEUCHI, I. 2009. Multiple incre-
mental decremental learning of support vector machines. In
Proceedings of Advances in Neural Information Processing
Systems.

KIM, Y. J., LIN, M. C., AND MANOCHA, D. 2002. DEEP:
Dual-space expansion for estimating penetration depth between
convex polytopes. In Proceedings of International Conference
on Robotics and Automation, 921–926.

KIM, Y. J., OTADUY, M. A., LIN, M. C., AND MANOCHA, D.
2002. Fast penetration depth computation for physically-based
animation. In Proceedings of SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, 23–31.

LARSEN, E., GOTTSCHALK, S., LIN, M. C., AND MANOCHA,
D. 2000. Fast proximity queries with swept sphere volumes.
In International Conference on Robotics and Automation, 3719–
3726.

LIEN, J.-M. 2008. Covering minkowski sum boundary using
points with applications. Computer Aided Geometric Design 25,
8, 652–666.

LIEN, J.-M. 2009. A simple method for computing minkowski sum
boundary in 3D using collision detection. In Algorithmic Foun-
dation of Robotics VIII, vol. 57 of Springer Tracts in Advanced
Robotics. Springer Berlin / Heidelberg, 401–415.

MOHRI, M., ROSTAMIZADEH, A., AND TALWALKAR, A. 2012.
Foundations of Machine Learning. The MIT Press.

MUJA, M., AND LOWE, D. G. 2009. Fast approximate nearest
neighbors with automatic algorithm configuration. In Interna-
tional Conference on Computer Vision Theory and Application,
331–340.

MURPHY, R. F. 2011. An active role for machine learning in drug
development. Nature Chemical Biology 7, 6, 327–330.

NAWRATIL, G., POTTMANN, H., AND RAVANI, B. 2009.
Generalized penetration depth computation based on kinemat-
ical geometry. Computer Aided Geometric Design 26, 4 (May),
425–443.

PAN, J., CHITTA, S., AND MANOCHA, D. 2011. Probabilistic
collision detection between noisy point clouds using robust

classification. In Proceedings of International Symposium on
Robotics Research.

REDON, S., AND LIN, M. C. 2006. A fast method for local pene-
tration depth computation. Graphical Tools 8, 1, 63–70.

TANG, M., LEE, M., AND KIM, Y. J. 2009. Interactive Hausdorff
distance computation for general polygonal models. ACM Trans.
Graph. 28, 3, 74:1–74:9.

TANG, M., MANOCHA, D., OTADUY, M. A., AND TONG, R.
2012. Continuous penalty forces. ACM Trans. Graph. 31, 4,
107:1–107:9.

TONG, S., AND KOLLER, D. 2002. Support vector machine
active learning with applications to text classification. Journal
of Machine Learning Res. 2, 45–66.

VAN DEN BERGEN, G. 2001. Proximity queries and penetration
depth computation on 3D game objects. In Game Developers
Conference.

VAPNIK, V. N. 1995. The Nature of Statistical Learning Theory.
Springer-Verlag New York, Inc., New York, NY, USA.

WANG, B., FAURE, F., AND PAI, D. K. 2012. Adaptive image-
based intersection volume. In Proceedings of SIGGRAPH, 97:1–
97:9.

WANG, D., LIU, S., ZHANG, X., AND XIAO, J. 2012.
Configuration-based optimization for six degree-of-freedom
haptic rendering for fine manipulation. IEEE Transactions on
Haptics 5, 4, 332–343.

WELLER, R., AND ZACHMANN, G. 2009. Inner sphere trees for
proximity and penetration queries. In Proceedings of Robotics:
Science and Systems.

ZHANG, L., KIM, Y. J., AND MANOCHA, D. 2007. A fast and
practical algorithm for generalized penetration depth computa-
tion. In Robotics: Science and Systems.

ZHANG, L., KIM, Y. J., VARADHAN, G., AND MANOCHA, D.
2007. Generalized penetration depth computation. Computer-
Aided Design 39, 8, 625–638.

ZHANG, X., KIM, Y. J., AND MANOCHA, D. 2013. Continuous
penetration depth. Computer-Aided Design. to appear.

