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ABSTRACT

We present a new parallel algorithm for interactive and con-
tinuous collision detection between deformable models. Our
algorithm performs incremental hierarchical computations
between successive frames and parallelizes the computation
among multiple cores on current CPUs. The main compu-
tations include front building and updating and performing
the elementary tests between the triangle primitives. The
overall algorithm can perform inter- and intra-object colli-
sions at interactive rates on current commodity processors
on models with many tens of thousands of triangles. In prac-
tice, the performance of our algorithm almost scales linearly
with the number of cores.
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1. INTRODUCTION

Continuous collision detection(CCD) is an essential compo-
nent for physically-based high precision simulations, virtual
prototyping, and robotics. One of the main challenges is
to perform CCD computations at interactive rates on com-
plex models that are frequently used in these applications,
including cloth, soft-body, virtual characters.

There is extensive work on fast algorithms for CCD compu-
tations. Most of them are based on hierarchical representa-
tions and different methods have been proposed to accelerate
the computations. At a broad level, the efficiency of CCD
algorithms for deformable objects is mainly governed by the
following:

e Number of Elementary tests: For two triangles
which are potentially colliding, 15 elementary tests
(EE and VF) are needed to be checked to perform
CCD. Each elementary test reduced to solving a cubic

equation. As compared to discrete collision checking,
CCD is relatively more expensive.

e False positives: Most hierarchical CCD algorithms
result in a high number of false positives between the
triangle pairs.

e Self-collisions: Due to the random deformation of
simulation, self-collisions need to be examined to pre-
vent “leaks”, which, in many complex simulations, about
70% — 90% of running time for CCD algorithms can
be spent in handling self-collisions.

In this paper, we address the problem of designing paral-
lel algorithms that can exploit the capabilities of current
multi-core CPUs to design faster algorithms. One of the
challenges is to distribute the computation among multiple
cores. However, due to complexity of collision algorithms, it
is hard to estimate the load during the hierarchial traversal
and decompose the task evenly among different cores.

Main Results:

e An incremental CCD algorithm that exploits temporal
coherence between successive frames during the simu-
lation. A “front” is maintained to record the colliding
pairs computed during the pervious time step.

e We present efficient parallel techniques for front build-
ing and front updating. We also distribute the elemen-
tary tests among different cores and thereby present
an overall parallel CCD computation algorithm be-
tween deformable models. We have evaluated its per-
formance and scalability on a 16-core workstation on
different benchmarks.

2. RELATED WORK

Collision detection among objects is extensively studied in
computer graphics, simulation, animation and virtual reality
communities, so we focus our discussions on continuous col-
lision detection, incremental collision detection, and parallel
collision detection.

2.1 Continuous Collision Detection

Continuous collision detection has become a de factor tool
for high precision simulation to compute the exact contact
time during simulation time interval.



It has been applied for rigid bodies and articulated mod-
els extensively.For deformable objects, collision detection is
more difficult for the occurrences of self-collisions [23].

Recently many researchers have proposed algorithms to im-
prove the efficiency of CCD among deformable objects. By
using these bounding volumes, the number of false positives
is reduced. Tang et al. [22] used a table-based method to
remove redundant elementary tests caused by feature shar-
ing. Curtis et al. [3] proposed the concept of representative
triangle to remove these redundancies efficiently. Tang et al.
[20] used continuous normal cones and orphan set to remove
redundant tests between non-adjacent triangle pairs and ad-
jacent triangle pairs. By using continuous normal cones,
triangle meshes with relatively flat area are skipped from
self-collision detection. With orphan set, almost all the ele-
mentary tests involved by adjacent triangles are avoided [20].

2.2 Incremental Collision Detection
There is considerable prior work on exploiting temporal co-
herence to accelerate the process of collision detection. Lin

and Canny [13] presented an incremental algorithm for Voronoi

diagram based data structures. Ponamgi et al. [15, 16] ex-
tended this algorithm to general B-rep solid models and
polygonal models. Klowoski et al. [10] proposed the con-
cept of front tracking, to represent a temporal coherence
data structure for BVH with k-DOPs. The front also be
used for the sphere-based BVH [12] and for a convex hull
based BVH [4]. Continuing to these works, Tropp et al. [26]
designed an incremental algorithm for BVHs based on OBBs
and AABBs. Although good speedup gains, all these works
are limited to rigid objects under continuous motions.

2.3 Parallel Collision Detection

The detection of collisions is equal to traversing BVTT in
depth-first manner. Many researchers designed parallel algo-
rithm to accelerate depth-first traversal of BVTT. Rao and
Kumar [17] pointed out the efficiency of parallel depth-first
search is strongly influenced by the work distribution scheme
and architectural features. Kumar and Grama [11] analyzed
the scalability of several load balancing techniques for dif-
ference architectures. Reinefeld and Schnecke [18] compared
load balancing strategies of two depth-first search methods
and propose a scheme that uses fine-grained fixed-sized work
packets. Kitamura et al. [8] used static and dynamic load
balancing methods to acceleration colliding detection respec-
tively, and finds out the communication between processers
in the main cause for limited performance. Assarsson and
Stenstrom [1] achieved three times speedup on eight proces-
sors for collision detection of some industrially related test
scenes. It shows the superiority of applying some straight-
forward tricks to design a lock-free load distribution algo-
rithm. Grinberg and Wiseman [6] proposed a method to
extract parallelism by statically pre-processed task parti-
tion. Chen et al. [2] used tera-scale processors to accelerate
off-line physical simulation applications. Thomaszewski et
al. [24] and Selle et al. [19] accelerated collision detection
for cloth simulation on distributed memory architectures.
Thomaszewski et al. [25] used multi-threaded programming
to accelerate the implicit time integration and collision han-
dling for cloth-simulation. A stack is used to hold sub-tasks
during the traversal of BVIT, and frame coherence is used
to estimate load of sub-tasks. In parallel to our work, a self-
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Figure 1: Running flowchart: The flowchart of [20]
can be divided into 4 stages: BVH updating, BVTT
traversal and pair collecting, Non-adjacent pairs
processing, and adjacent pairs processing.

collision detection based task decomposition has been used
in [7] to map the computation to multi-core processors.

3. OVERVIEW

In this section, we introduce our notation and give an overview
of our approach.

3.1 Notations

BVH: Bounding volume hierarchies (BVHs) are used to
accelerate queries. We represent the scene containing de-
formable models by using a signle BVH, and perform inter-
section test from the root node of the BVH. our algorithm
is independent to the shape of bounding volume. It can
be axis aligned boxes (AABB) [27], k-DOPs [10], oriented
bounding boxes(OBB) [5], sphere [14], etc.

BVTT: A bounding volume test tree (BVTT) represents
the hierarchy of tests performed. Each node in the BVTT
corresponds to a single test between a pair of BVs or a self-
collision test of one BV. However, our formulation is different
from prior works [12, 4, 26, 28], and we also integrate self-
collisions in this formulation, so the overall BVTT is no
longer a binary tree. All the adjacent triangle pairs are not
recorded in the leaf nodes of the BVTT. Rather they are
processed separately by using an orphan set.

Front: A front of the BVTT is a set of tree nodes where
the traversal terminates during a given frame. It reflects
collision occurrence at a given simulation time step.

3.2 Efficiency Bottlenecks

A key to designing a good parallel algorithm is to parallel
the components where most of the running time in the serial
algorithm is spent. In order to identify the bottlenecks in
a serial algorithm, we analyze the time breakdown during
various stages of the single-threaded implementation in [20].

As shown in Fig. 1, the overall CCD algorithm for deformable
models can be divided into 4 stages:

e Updating BVH: recompute the bounding volumes for
features (faces, edges, and vertices), and update the
BVH structure to reflect model deformations.

e BVTT traversal & pair collecting: traverse the BVTT
in depth-first manner, performing bounding volume
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Figure 2: Running time of each component: This
figure shows the running time ratio of each stage on
several benchmarks.

tests, and collect potential colliding non-adjacent tri-
angle pairs.

e Non-adjacent pair processing: All these potential col-
liding pairs collected are tested for overlap by execut-
ing the elementary tests on these pairs.

e Adjacent triangle pairs: By testing the precalculated
“Orphan Set” [20], all elementary tests associated with
adjacent triangle pairs are performed.

Based on experiments of several benchmarks, the ratios of
running time of each stage are shown in Fig. 2.

As shown by Fig. 2, by using the “Orphan Set”, the run-
ning time spent on adjacent pairs is negligible. Its ratios are
below 0.4% in all our benchmarks. As a result, we mainly
focus on developing good parallel techniques for the other
three stages. In practices, developing parallel algorithms for
BVH updating and non-adjacent pair processing are rela-
tively easy. The main challenge is parallelization of BVTT
traversal & pair collecting stage.

3.3 Our Approach

Instead of using the 4-stage algorithm described above, we
first present an incremental CCD algorithm for deformable
objects, which rather consists of three stages. Based on this
incremental formulation, we propose a scheme to parallelize
it effectively on multi-core architectures .

4. INCREMENTAL CCD FOR DEFORMABLE

MODELS

We present an incremental algorithm that exploits temporal
coherence between successive frames of a simulation. The
main idea is to maintain a front which records collision in-
formation at the last simulation time step, and we update
that information to check for collisions during the current
frame.

4.1 Orphan Set based Front Reduction

In order to record the information about collisions at the last
simulation time step, we store three kinds of node within
front during at the traversal of BVTT: {N;, M;}, {N;, L;},
and {L;, L;}. Here, N; and M; stand for the internal nodes
of the global BVH, L; and L; stand for leaf nodes of the

global BVH. In {N;, M;} and {N;, L;}, their nodes’ bound-
ing volumes do not overlap, so the tree traversal terminates
at these nodes. {L;, L;} represent the leaf node pairs.

All the potentially colliding triangle pairs that satisfy bound-
ing volume tests can be classified into two categories based
on their connectivity: adjacent triangle pairs and non-adjacent
triangle pairs [20]. Moreover, all the non-adjacent triangle
pairs are skipped during the BVTT traversal phase, and are
processed separately by using “Orphan set” formulation.

We store the non-adjacent pairs in a front. All the adjacent
pairs are removed from the front and processed separately.
By deleting the node pairs containing adjacent triangle pairs,
the size of the front can reduce by 60% — 80%.

4.2 Front Building

The initial front is built by traversing the BVTT in top-
down manner. The algorithm performs self-collision check-
ing from the root node of the BVH . During the traversal of
the BVTT, all leaf node pairs that contain the non-adjacent
triangle pairs are recorded into the front. Given any inter-
nal node of the BVTT, if their bounding volumes do not
overlap, they are also recorded into the front. This step is
applied recursively till the traversal terminates.

4.3 Front Updating

As the objects deform during the simulation, the front needs
to be updated accordingly. At the next simulation time step,
all the colliding pairs are recollected by following rules:

e All {L;, L;} pairs are tested again;

e All {N;, M} pairs are tested again. If the bounding
volumes do not overlap, they can be skipped. Other-
wise, the algorithm checks their children for overlap;

e {N;,L;} is tested again. If the bounding volumes do
not overlap, the traversal can be skipped. Otherwise,
their children are checked for overlap.

In order to maintain a valid front, two operator “sprouting”
and “pruning” are used in [12, 4, 26]. The front is sprouted
to the level at which the bounding volumes do not overlap
or the traversal reaches the leaf nodes. We do not used the
pruning operator, since it is a relatively expensive operation.
Only sprouting operator is used when scanning the front. If
during two or three consecutive simulation time steps the
front does not increase in length, this indicates that the
quality of the front is decreasing, and we rebuilt a front
from scratch.

So we are using a deferred rebuilding strategy to maintain
the front. The front is updated using sprouting operator
for several consecutive simulation time steps, then it will be
rebuild.

4.4 Benefits

By using the incremental algorithm based on the front, the
collisions are detected starting from the front, and these is
no need to traversal the BVTT again. So the costs of full
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Figure 3: Running stages of the incremental CCD
algorithm: BVH updating, Front building, Front up-
dating, Non-adjacent pairs processing, and adjacent
pairs processing.

BVTT traversal and its associated bounding volume tests
are saved, and the overall performance improves. The num-
bers of bounding volume test are reduced by 53% — 63%
compared to the 4-stage algorithm, and the overall running
time are reduced by 68% — 88%.

Now the overall flowchart is composed by five stages, as
shown in Fig. 3. The stage named as BVTT traversal &
pair collecting in Fig. 1 now is replaced by two stages: Front
updating and Front building.

S. PARALLEL CONTINUOUS COLLISION
DETECTION

5.1 Parallelism Analysis

For all the stages in Fig. 3, BVH updating and non-adjacent
triangle pairs processing is relatively easy to parallelize on
multiple cores. Adjacent triangle pairs processing only takes
a small fraction of the total running time. The main bot-
tlenecks in terms of a good parallel algorithm are the two
stages: front building and front updating.

5.2 Parallel Front Building

The front computation is performed during the depth-first
traversal of the BVTT. We use a list to buffer the colli-
sion tasks and self-collision tasks during the BVTT traver-
sal. Later, these tasks are executed in parallel. As shown
in Fig. 4, the front building is decomposed into a serial of
inter-object collision and self-collision tasks.

For all these tasks, we use the number of bounding volume
tests as a metric to estimate its cost. For the self-collision
tasks, this number remains unchanged during simulation. In
order to perform collisions between the BVH nodes, we used
the method in [9] to evaluate the cost dynamically.

Base on the metric, we decide whether a task need to be
decomposed further. And all such tasks are executed in
parallel.

5.3 Parallel Front Updating

All the node pairs in the front are updated in parallel ac-
cording to their categorization: {N;, M;}, {N;,L;}, and
{L;,L;}. For each category, the update cost of node pairs
are approximately equal, and thereby the algorithm achieves
good scalable performance.

Self-collision task
—_—

Figure 4: Task decomposition of front building: The
collision tasks (blue nodes) and self-collision tasks
(green nodes) are buffered in a list (red line). Then
these tasks are executed in parallel.

6. IMPLEMENTATION AND PERFORMANCE

6.1 Experimental Platform

In this section, we describe our implementation and high-
light the performance of our algorithm on many benchmarks.
We have implemented our algorithm on a Intel Xeon ma-
chine with 16 cores (X7350 at 2.93 GHz) and 16 GB of
RAM using Visual Studio 2005. OpenMP is used as API
for multi-threaded programming. We use k-DOPs (specifi-
cally 18-DOPs) as bounding volumes.

Five benchmarks described in [21] are used: Cloth-ball(92K),
N-body(34K), Princess(40K), BART(4K), and Flamenco(49K).

In Cloth-ball, Princess, and Flamenco benchmarks, there
are a lot of self-collisions. In the N-body and BART bench-
marks, only inter-object collisions exist.

All the benchmarks have multiple simulation steps. We per-
form CCD between each discrete steps and compute the first
time-of-contact between those discrete positions.

6.2 Performance

We get good acceleration on the benchmarks. In our par-
allel implementation, we only build the front from scratch
during the first time step. During the subsequent simulation
time steps, we only update the front literately. So the over-
all performance is governed by the following three stages:
BVH updating, front updating, and non-adjacent pairs pro-
cessing. For all the benchmarks, the overall running time
of our parallel algorithm is reduced by 76% — 82% by fully
utilizing the computation ability of 16-cores. The sub-linear
acceleration rate is a side prove of good scalability.

The speed-up of our parallel algorithm on the cloth-ball
benchmark is shown in Table. 1. The running time ratios of
all the stages decrease as the number of core increase. For
all the benchmarks, we get 4X — 6X speedups by using 8
cores, and get 5X — 8X speedups by using 16 cores.
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Figure 5: Parallel speed-up of the cloth-ball bench-
mark: When the core number is increasing, execu-
tion time of all stages are reducing. And the overall
running time is reduced to 21.4% when all the 16
cores are used. It takes 73ms per frame to compute
all the collisions.

7. COMPARISON AND LIMITATIONS

Comparison: As the kernel of an incremental algorithm,
our front is similar to the notion of separate list described
in [28].In terms of processing the self-collisions, Weller and
Zachmann [28] skip all the adjacent triangle pairs while our
algorithm processes them in a uniform frame work. This
is critical for high-precision simulations. By processing the
self-collisions efficiently, our algorithm offers improved per-
formance over prior algorithms [24, 25, 19].

Comparing to prior parallel collision detection algorithms,
such as [6, 2, 25], our algorithm avoids the difficulties of
dynamic task partitioning on BVTT. The benefits of using
a front-based approach aries due to two reasons. On one
hand, the running time of bounding volume test and BVH
traversal are reduced. Moreover, we obtain good parallel
performance in terms of front building and front updating.

Limitations: As an incremental algorithm, the memory
overhead can be high due to explicitly maintaining the front.
As the number of colliding pairs increase, the length of the
front are grow significantly. Moreover, we do not observe a
linear speedup as a function of the number of cores in our
benchmarks.

8. CONCLUSION AND FUTURE WORK

In this paper, we proposed an incremental CCD algorithm
for deformable models by integrating the concept of front.
Then based on it, parallelism is extracted for each stage of

Cores Updating | Non-adjacent | Updating | Running
front pairs BVH time
1 core 100% 100% 100% 100%
2 cores 64.42% 69.45% 57.99% 60.55%
4 cores 40.98% 52.85% 33.86% 37.34%
6 cores 35.25% 43.49% 24.09% 28.46%
8 cores 31.16% 38.43% 19.64% 24.06%
10 cores 31.75% 40.41% 17.33% 22.73%
12 cores 32.26% 40.34% 15.09% 21.27%
14 cores 31.12% 40.73% 13.63% 20.04%
16 cores 28.74% 40.46% 12.78% 18.94%

Table 1: Running time of each stage of the Princess
benchmark: By utilizing all the 16 cores, sub-linear
acceleration is achieved on the overall running time.

the incremental algorithm. And good parallel CCD algo-
rithm is designed. We observed sub-linear acceleration rate
on a serial of practical benchmarks.

There are many avenues for future work. First, we only
build the front once at the beginning of simulation. It will
be interesting to rebuild the front after K frames during
the process of simulation. In this way, the quality of front
can be improved at cost of front buildings, which can be
amortized over multiple frames. Second, we would like to
devise methods to reduce the memory overhead.

As an extension of this work, we have used a front-based
task decomposition(FBD) [21] to design an improved contin-
uous collision detection algorithm between deformable ob-
jects, and achieve 7X and 13X speedups on 8 cores and 16
cores respectively.
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