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Abstract

We present a novel parallel algorithm for fast continuous collision detection (CCD) between deformable models using multi-core
processors. We use a hierarchical representation to accelerate these queries and present an incremental algorithm that exploits
temporal coherence between successive frames. Our formulation distributes the computation among multiple cores by using fine-
grained front-based decomposition. We also present efficient techniques to reduce the number of elementary tests and analyze the
scalability of our approach. We have implemented the parallel algorithm on 8 core and 16 core PCs, and observe up to 7X and 13X

speedups respectively, on complex benchmarks.
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1. Introduction

Fast continuous collision detection (CCD) is an important
problem that arises in physically-based simulation, virtual en-
vironments and robot motion planning. CCD can check for col-
lisions between the discrete positions of the objects by comput-
ing an interpolatory motion and reducing the problem of colli-
sion checking to finding roots of non-linear polynomial equa-
tions [1]. In practice, CCD also is used to compute the first time
of contact between the discrete instances.

In this paper we mainly deal with fast CCD computation be-
tween non-rigid models, where the scene may consist of break-
ing objects or objects undergoing deformable motion. This
problem has been studied in the literature and many efficient
algorithms are known. However, current methods are unable to
offer interactive performance (i.e. tens of milliseconds or less)
on complex benchmarks.

One of the goals of this paper is to exploit the current archi-
tectural trends for faster collision queries. Recent and future
commodity processors are becoming increasingly parallel. At
a broad level, there are two kinds of commodity processors:
multi-core CPUs that include the best performing serial cores
and many-core processors (e.g., GPUs) that are designed with
the goal of achieving higher parallel code performance. These
processors have different characteristics, and in this paper we
limit ourselves to using multi-core CPUs to accelerate CCD
queries. This is orthogonal to recent work on using GPUs for
faster collision detection.

Most of the current computers, including desktops and lap-
tops, have dual or quad core processors. Moreover, high-end
desktop workstations used for CAD/CAM or virtual prototyp-
ing may consist of 8-16 cores. The number of core is expected
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to increase at the rate corresponding to Moore’s Law. Given
these architectural tends, there is relatively little work on de-
veloping faster algorithms for CAD/CAM systems and inter-
ference computations that can exploit the multiple cores.

One of the main challenges in developing efficient paral-
lel collision detection algorithm is balancing the load evenly
among multiple cores and obtain high memory and cache
throughput. Most prior collision detection algorithms use
bounding volume hierarchies to accelerate the computations. In
case of deformable models, the traversal cost of the hierarchies
can vary considerably based on the relative configuration of the
primitives of the models. This can result in varying loads and
irregular access patterns. One of the challenges is to design
parallel hierarchy traversal algorithms that can work well on all
different configurations and can scale well with the number of
core.

Our parallel approach is based on recent work on CCD be-
tween deformable models [2, 3]. Specifically, we present a
novel parallel CCD algorithm that maps well to current multi-
core CPU architectures. Our algorithm performs incremental
computations that utilize coherence between successive frames
and also checks for self-collisions among deformable models
(Fig. 1). We use the notion of BVTT (bounding volume traver-
sal tree) and maintain a BVTT front. This front is updated in an
incremental manner and is used to decompose the overall com-
putation into sub-tasks among multiple cores. We also present
efficient parallel techniques to adaptively update the front and
reduce the number of elementary test between the primitives.

Main Contributions:
1. We extend prior front-based incremental algorithms for
rigid models to deformable models by including self-
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Figure 1: Self-collisions among deformable models: A large number of self-
collisions appear on the waving skirt. The colliding areas are highlighted.

collision checking. A 2-3 tree representation is used for
the resulting BVTT instead of the conventional binary tree
representation, and we show that our algorithm can reduce
the traversal cost significantly.

2. We present adaptive strategies to compute the BVTT front
by proposing new metrics, and reduce the number of el-
ementary test between the primitives based on orphan
sets [3].

3. We present a highly scalable parallel CCD algorithm using
front-based decomposition (FBD), and observe almost lin-
ear speedups with the number of core on a 16-core work-
station. The algorithm tends to minimize the synchroniza-
tion overhead between different threads and uses cache-
friendly layouts for improved performance.

4. We analyze the complexity and scalability of the FBD al-
gorithm, and compare with prior parallel algorithms. We
show that our FBD algorithm offers improved theoretical
and empirical performance.

The parallel CCD algorithm has been tested on many com-
plex benchmarks with 4K — 92K triangles that correspond to
deformable simulations, breaking objects and N-body simula-
tions. As compared to an optimized serial implementation [3],
we obtain 6.4X — 7.7X speedups on a 8-core workstation, and
10.1X—13X speedups on a 16-core workstation. In practice, our
algorithm can check for all collisions, including self-collisions,
at 5.3ms — 32.5ms per frames on these benchmarks. To the best
of our knowledge, this is the fastest known algorithm for paral-
lel collision detection running on commodity systems.

Organization:

The rest of the paper is organized as follows: Sec. 2 gives a
brief survey of prior work in CCD and parallel collision detec-
tion. We introduce our notation and address some issues in the
design of parallel collision detection algorithms in Sec. 3. The
overall parallel CCD algorithm is presented in Sec. 4, and we

analyze its performance in Sec. 5. We present implementation
details and the results from benchmarks in Sec. 6. We com-
pare its performance with prior approaches and highlight some
limitations in Sec. 7.

2. Related Work

Collision detection problem has been extensively studied in
computer graphics, simulation, computational geometry and
robotics literature. We refer the reader to some recent surveys
[4, 5, 6]. In this section, we give a brief overview of hierarchical
methods, CCD and parallel algorithms.

2.1. BVH for Deformable Models

Bounding volume hierarchies have been widely used for col-
lision detection. Different hierarchies are characterized based
on the choice of bounding volumes including spheres[7, 8, 9],
axis-aligned bounding boxes (AABBs)[10], oriented bounding
boxes (OBBs)[11], or discretely oriented polytopes (k-DOPs)
[12]. These hierarchies can be computed in top down or bottom
manner. Recently, there has been considerable interest in devel-
oping fast techniques to update the hierarchies for deformable
models. Many techniques based on refitting and selective re-
structuring of the hierarchies have been proposed [13, 14, 15].

2.2. Continuous Collision Detection

Many efficient algorithms have been designed for continu-
ous collision detection (CCD) between rigid [16], articulated
[17, 18] and deformable models [19, 20, 3]. Most of these ap-
proaches linearly interpolate between the vertices of the model
and compute the first time of contact based on hierarchical
culling and performing elementary tests between the triangle
pairs.

2.3. Incremental Collision Detection

Many researchers have exploited spatial and temporal coher-
ence for faster collision detection in interactive applications.
The main idea is to perform incremental collision computa-
tions between the successive frames. These include incremental
methods for convex polytopes [21, 22] and convex hulls [23].
Some hierarchical algorithms maintain a front in the hierarchy
and use the front for faster traversal [12, 24, 23, 25]. Most of
these techniques have been used to accelerate collision check-
ing between rigid models. An event-based algorithm [26] and
kinetic separation lists [27] are proposed for deformable mod-
els.

2.4. Parallel Collision Detection and Simulation

Different algorithms have been proposed to use the parallel
capabilities of commodity processors to accelerate collision de-
tection. These include GPU-based algorithms that utilized the
rasterization capabilities of many-core GPUs for faster interfer-
ence computations [28, 29]. Some of the recent work includes
faster computation of hierarchies using multi-core CPUs [30]
or many-core GPUs [31, 32].



A key component in collision checking is traversing the hi-
erarchies. This corresponds to traversing the resulting BVTT
(bounding volume traversal tree) [33] in a depth-first manner.
Many researchers have designed parallel algorithm to accel-
erate depth-first hierarchical traversals and these methods can
be applied to collision detection. Rao and Kumar [34] showed
that the efficiency of parallel depth-first search is strongly in-
fluenced by the work distribution scheme and architecture fea-
tures. The scalability of different load balancing techniques is
also analyzed [35]. Reinefeld and Schnecke [36] compared load
balancing strategies of depth-first search methods and proposed
a scheme that uses fine-grained fixed-sized work packets. Static
and dynamic load balancing methods are used in [37] to accel-
erate collision detection based on communication between the
processors.

Assarsson and Stenstrom [38] demonstrated three times
speedup on eight processors for collision detection between
CAD models undergoing rigid motions. Gringerg [39] pro-
posed a method to extract parallelism by using static task parti-
tion for collision checking on computing clusters.

There have been considerable efforts on developing faster al-
gorithms for physical simulation using multiple cores or dis-
tributed architectures. Chen et al. [40] have demonstrated the
benefit of using many-core architectures for collision detection
and physical simulation for a limited set of models. Faster col-
lision detection algorithms for cloth simulation have been pre-
sented for distributed memory architectures [41, 42]. Multi-
threaded techniques are used in [43] to accelerate implicit time
integration and collision handling for cloth simulation. A self-
collision detection based task decomposition has been used in
[44] to map the computation to multi-core processors.

3. Notation and Parallel Hierarchical Computation

In this section we introduce our notations and present a sim-
ple scheme to parallelize the hierarchical algorithm.

3.1. Notation and Background

Collision detection among geometric models is accelerated
using bounding volume hierarchies of the models. Our ap-
proach is also based on computing and updating bounding vol-
ume hierarchies. After the traversal, we perform overlap tests
between the primitives. For the rest of the paper, we assume that
the primitives are triangles and we perform continuous tests,
i.e., elementary tests between them to check for collisions based
on linearly interpolating motion between the vertices of the tri-
angles. We use the following terms in the rest of the paper.

BVHs: Bounding volume hierarchies (BVHs) are used to ac-
celerate collision and proximity queries. We represent the
scene containing deformable models using a single BVH.
We check for self-collisions and inter-object collisions by
starting from the root node of the BVH and traversing the
hierarchy. Our traversal algorithm is independent of the
underlying bounding volumes.

Figure 2: BVH, BVTT, and BVTT front: The scene is organized as a single
BVH (upper part). The BVTT and a front of BVTT at a given simulation time
step are shown in the lower part. The self-collision queries are also performed
by this BVTT.

BVTT: A bounding volume test tree (BVTT) represents the
hierarchy of overlap tests performed during the traver-
sal. BVTT is a representation which is primarily used
for design and analysis of collision detection algorithms
[45, 23, 33, 27]. We extend the prior formulation to han-
dle self-collisions and deformable models. Each node in
the BVTT represents a single overlap test between a pair of
bounding volumes (BVs) or a self-collision test on one of
the BVs. As a result, the BVTT is no longer a binary tree,
and some internal nodes of our BVTT could have three
children nodes.

BVTT Front: A front of the BVTT is a set of internal and
leaf nodes where the traversal terminates while performing
a collision query during a given time instance. The front
reflects how much of the tree is traversed for each instance
of the collision query.

An example of a BVH, the corresponding BVTT and the
BVTT front are shown in Fig. 2. In this case, the entire scene
consisting of deforming models is organized as a single BVH
(e.g., the upper part). The traversal during the collision query is
represented as a BVTT (the lower part). The nodes where the
traversal of the BVTT terminates are stored as a BVTT front
(shown in gray).

3.2. CCD Computation

There is extensive literature on fast algorithms for CCD
computation between rigid, articulated and deformable mod-
els. However, current algorithms are unable to achieve interac-
tive performance (i.e. 20 frames a second or more) on complex
models due to following reasons [19, 20, 3]:

¢ Elementary tests: An exact CCD test between two tri-
angles reduces to solving root of univariate polynomial



equations. For the simplest case of linear interpolating
motion, a CCD test reduces to performing 15 elementary
tests between the features (i.e., faces, edges, and vertices):
9 VF tests and 6 EE tests. Each elementary test reduces
to solving a cubic equation, and takes about 3 usec on
average [28] on a single core. In practice, the CCD test
between triangles is about 140X slower than discrete col-
lision detection test which involves overlap tests between
edges and faces (about 0.3 usec per triangle pair [46]).

e Self-collisions: Since the deformable motion and topolog-
ical changes can result in self-collisions, the features of
adjacent triangles in a mesh need to be tested for colli-
sion. In many cases, checking for self-collisions can take
50% — 90% of the total collision query time [28].

e False positives: The hierarchical approaches use bound-
ing volumes (e.2. AABBs, K-DOPs, OBBs, etc.) for
culling away primitives that are not in close proximity.
However, the continuous formulation of the motion com-
bined with self-collisions leads to a very high number of
pairwise tests and false positives [47, 20]. Even with tight
fitting bounding volumes, such as k-DOPs, current algo-
rithm can result in more than 90% of the overlap tests as
false positives [47].

Our goal is to improve the performance by designing a new
CCD algorithm that maps well to current multi-core processors.
The key to design a good parallel algorithm is to balance the
load evenly among the cores. Our approach is based on the
serial hierarchical algorithm described in [3]. The algorithm
consists of four stages:

e Updating BVH: It involves recomputing the bounding
volumes of the features, and update the BVs so that they
enclose the underlying model hierarchically.

e BVTT traversal & pair computation: Traverse the
BVTT in a depth-first manner, perform bounding volume
tests, and collect potentially colliding non-adjacent trian-
gle pairs.

e Non-adjacent pair tests: Perform elementary tests on
non-adjacent triangle pairs which pass bounding volume
tests.

e Adjacent pair tests: Use the orphan set formulation [3]
to perform necessary elementary tests between adjacent
pairs.

Based on our experiments of several benchmarks of one of
the fastest serial implementation, the percentage of the running
time spent in each stage are shown in Table 1. These bench-
marks are described in Sec. 6.2.

3.3. Parallel Hierarchical Computation (PHC)

As shown by Table 1, by using orphan set, the running time
spent on adjacent pairs is negligible. Its ratios are below 0.4%
for all the benchmarks. An orphan set [3] is a subset of feature

Stage Princess | Flamenco | N-body | Cloth-ball
Fig. 14 Fig. 15 Fig. 16 Fig. 17

BVH Updating | 48.15% 14.74% 19.91% 24.96%

BVTT 39.45% 39.4% 37.10% 45.26%

traversal

Non-adjacent 12.03% 45.45% | 42.96% 29.68%

pairs

Adjacent pairs 0.32% 0.35% 0.01% 0.09%

Table 1: Running time ratio: This table shows the running time ratio of each
stage of a serial CCD algorithm [3] on different benchmarks.

Figure 3: Parallel CCD with PHC: PHC collect all the collision query sub-
tasks (green nodes) by breadth-first scanning of BVTT. Then all the sub-tasks
will be executed in parallel.

pairs belonging to adjacent triangles which are not been tested
during the processing of non-adjacent triangle pairs. By only
testing on the orphan set, the number of elementary tests for
adjacent triangles can be reduced by 99.9%. The orphan sets
are computed by analyzing the connectivity of meshes.

In terms of other three stages, BVH updating and non-
adjacent pair processing are relatively simple to parallelize on
multiple cores. On the other hand, parallelization of BVTT
traversal & pair computation is relatively difficult. As a result,
the main challenge for parallel collision detection is to come
up with appropriate parallel techniques for BVTT traversal and
computing the potentially overlapping pairs.

The simplest parallel algorithms for CCD computations are
based on extending the conventional parallelization methods to
this problem [41, 42, 43, 44]. The resulting approach is PHC,
which stands for parallel hierarchical computation.

In the second stage of the algorithm, i.e., stage BVTT traver-
sal & pair computation in [3], PHC needs to first traverse the
BVTT in breadth-first order, collect all the collision query sub-
tasks and put them in a stack. Then all the sub-tasks in the
stack are executed in parallel on multiple processors or cores.
An example of the performance of PHC is shown in Fig. 3.

However, such an approach (i.e. PHC), consists of a serial
part corresponding to breadth-first traversal of BVTT and col-
lecting the sub-tasks. In practice, such a naive approach has
two major bottlenecks:

e Evaluation of collision query: Due to the dynamic na-
ture of deforming models, it is hard to estimate or evaluate
the computation load of collision query between two BVH
nodes. A poor estimate would result in load imbalance and
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Figure 4: Speedup of PHC based parallel CCD: For the benchmarks, the
speedups are varying from 3.7X to 5.1X when all the 16 cores are used.

the cost of a collision query can highly vary based on the
relative configuration of the primitives.

e Scalability: To achieve good parallelization, PHC needs
to allocate enough sub-tasks to keep all the cores busy.
In such cases, the breadth-first traversal becomes a serial
overhead in terms of scaling the computation on a large
number of cores.

We have implemented a PHC based parallel CCD algorithm,
and observed 3.7X —5.1X speedups for our benchmarks on a 16
core-workstation (Fig. 4). Furthermore, the approach doesn’t
scale well with the number of cores. As a result, we need an
improved hierarchy based algorithm for faster parallel collision
detection.

4. Parallel Continuous Collision Detection using FBD

In this section, we present a novel parallel CCD algorithm
using front based decomposition (FBD). It is based on a novel
front-based algorithm for deformable models, and uses a front
to perform improved task decomposition among multiple cores.

4.1. Our Approach

In order to design a parallel algorithm that scales well with
the number of core, several characteristics of the current multi-
core CPUs need to be taken into account:

e Synchronization overhead: Thread synchronization can be
fairly expensive on multi-core processors especially for in-
teractive applications. As a result, our goal is to design an
algorithm that has low synchronization overhead.

o Fine-grained task decomposition: A key issue in the de-
sign of collision detection algorithms for many-core CPUs
is designing an appropriate fine-grained task decomposi-
tion scheme. The underlying task decomposition should
adapt based on the relative configuration of the primitives
and able to balance the load among the different cores.

v

BVH updating

L*

Front Tracking

%

Adjacent pairs
processing

Figure 5: Our new hierarchical CCD algorithm with three stages: BVH up-
dating, front tracking, and adjacent pairs processing. Different execution modes
are used for each stage respectively according to the underlying computation.

e Cache-friendly memory layouts: The cores on modern
multi-core processors often share some of the on-chip
caches. This can result in a slow down as multiple threads
attempt to access the same memory locations. We use
cache-friendly memory layouts of BVH and the BVTT
front to improve cache utilization and thus boost runtime
performance.

Given these constraints, we design a three-stage parallel col-
lision detection algorithm for deformable models . The three
stages are shown in Fig. 5. In order to eliminate the synchro-
nization bottleneck, the two stages in the original serial algo-
rithm, BVTT traversal and non-adjacent pair processing, are
merged into a single stage, known as the BVTT front tracking.
In this stage, we use FBD to perform fine-grained task decom-
position and achieve good scalability.

The pseudo code description of the parallel algorithm per-
forming continuous collision detection at each simulation time
step are shown in Alg. 1. At the first stage, BVH updating, we
calculate the coordinates of vertices at current time step(Line
3), update BVs of features based on the new coordinates (Line
4), and refitting the BVH using the updated BVs. At the second
stage, front tracking, we update the BVTT front incrementally
(Line 9), and perform collision query based on the BVTT front
(Line 10). Finally, at the third stage, adjacent pairs process-
ing, we handle self-collisions caused by adjacent triangle pairs
using orphan set (Line 13).

For all these three stages, different execution modes are used
according to the characteristics of their underlying tasks: For
BVH updating, the structure of BVH stays unchanged during
the simulation. So we used static task partitioning to parallelize
it. Dynamic task partitioning is used for BVTT front tracking
due to the dynamic nature of deforming models. In our cur-
rent formulation, we perform adjacent-pair processing in serial
because it takes less than 0.4% of the total running time.

A key component of our algorithm is efficient computation
of BVTT front for deformable models. We use two techniques,
orphan-set based front reduction and adaptive front rebuilding,
to compute the BVTT front at each frame of the simulation.
Finally, we use cache-friendly memory layouts for the BVH
and BVTT front. The layout of BVH is compute only during the



Algorithm 1 Parallel CCD: Parallel continuous collision detec-
tion at current simulation time step ¢;.
Input: vertex coordinates V;_;, BVH B;_;, and BVTT front L;_;
at previous time step, orphan set O.
Output: vertex coordinates V;, BVH B;, BVTT front L; at cur-
rent time step, collision information.

1: // Stage 1: BVH Updating, executing in parallel by

. // static task partitioning.

: CalclnterpolatedVertices(t;, V)

: UpdateFeatureBoundingVolumes(V;, Vi_1)
: RefitBVH(B,;, B;_1)

. // Stage 2: Front Tracking, executing in parallel by
:// dynamic task partitioning.

: FrontTracking(L;, L;—1, B;)

: CollisionQuery(L;)

—_ = =
N = 2

/] Stage 3: Adjacent pairs processing, executing in serial.
: DoOrphanSet(O)

—_
(95}

initial building stage and is fixed for the rest of the simulation,
while the layouts of BVTT fronts are computed dynamically at
each frame of the simulation.

4.2. BVTT for Deformable Models

Hierarchical collision detection is performed by traversing
the BVTT. The BVTT nodes where the traversal terminates are
represented by a BVTT front. The BVTT nodes in prior work
are defined as collision nodes: i.e., node {k, j}, where k and j
are different BVH nodes for the two models been tested [45, 23,
33, 27]. So the BVTT formulation is a binary tree, and it can
only be used to detect inter-object collisions.

In order to efficiently process intra-object collisions as well,
we extend the concept of BVTT by introducing self-collision
nodes and therefore, some nodes thereby can have three chil-
dren:

Self-collision nodes of BVTT: A self-collision node {n, n} of
a BVTT correspond to the self-collision queries for a particu-
lar node n in a BVH B. If n is not a leaf node of B, {n,n} in
the BVTT will have three children: a self-collision node {n —
left,n — left}, a self-collision node {n — right,n — right},
and a collision node {n — left,n — right}.

As a result, the BVTT for deformable models is no longer
a binary tree. It becomes a special case of 2-3 tree, i.e., the
BVTT is composed of collision nodes and self-collision nodes,
a collision node has two children, while a self-collision node
has three children.

4.3. Front based Decomposition (FBD)

By using the BVTT for deformable models, we can handle
both inter-object and intra-object collisions in a unified man-
ner. As shown in Fig. 6, we use front tracking to perform the
collision queries in an efficient manner by utilizing temporal
coherence. Specifically, we track the front between successive
frames and use incremental computations to update it.

Figure 6: Front based decomposition: Since nodes of previous BVTT front
can be updated independently, current BVTT front can be tracked fully in par-
allel.

As the objects deform or move during the simulation, the
BVTT front needs to be updated correspondingly. In order to
maintain a valid front, two operator “sprouting” and “pruning”
are used [24, 23, 25]. These two operators correspond to the
expanding and shrinking of BVTT front respectively. By using
sprouting operator, a front is sprout to the level where bound-
ing volumes are disjoint or leaf nodes in the tree are reached.
Pruning the two sibling BVTT nodes whose parent is disjoint
recursively generates more compact front as well as reduced
computation load.

The sprouting of each front node is independent of each
other. This make it suitable for parallel processing. The prun-
ing operator need to search for sibling nodes in the BVTT front,
is hard for parallel execution.

In practice, we do not use any pruning operator since it will
affect the parallel performance. Instead, we use the sprouting
operator to track the BVTT front incrementally, and a adaptive
rebuilding strategy is used to compute more compact BVTT
front.

During the tracking of the BVTT front, the nodes that need
to be sprouted are flagged as invalid, and their descendants will
be traversed in a depth-first manner to check for collisions. The
nodes where traversal terminate will be inserted into the current
BVTT front.

Due to the temporal coherence in a simulation, the com-
putational load of updating each node is approximately bal-
anced. Therefore, FBD is a good fine-grained task decompo-
sition method. It overcomes the drawbacks of PHC, and can
provide potentially scalable performance.

4.4. Parallel Collision Query

A collision query is preformed by scanning current BVTT
front. For a BVTT node {N;, N;} in the BVTT front, if both
N} and N, l’, are leaf nodes of the BVH, it is further checked for
collision by performing exact elementary tests (Alg. 2).

Based on front tracking, the collisions are detected from the
nodes that are contained in the front. In this case, we don’t need
to traverse the entire hierarchy from the BVTT’s root node.



Algorithm 2 CollisionQuery(L): Collision query by scanning
current BVTT front L.
1: for node {N, N}} in L do

a

if IsLeaf(N)) AND IsLeaf(N}) then

2
3 // Perform exact elementary tests.
4: ElementaryTest(N;, N;)

5 end if
6: end for

100.00%
90.00%
80.00%

70.00%
60.00% H Cloth-ball
50.00% ® Flamenco
40.00% N-bod
30.00% . Y

’ ) H Princess
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Number of bounding overall running time
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Figure 7: Benefits of front tracking: According to the experiments on a serial
of benchmarks, the number of bounding volume test is reduced by 37% — 47%,
and overall running time is reduced to 12% — 21% compared to [3] by front
tracking.

This reduces the runtime overhead. In our benchmarks, we ob-
served that the number of bounding volume tests can reduce by
37% — 47%, and overall running time decreases by 12% —21%
in a serial implantation, as shown in Fig. 7.

Another benefit of front tracking is that it provides a good ap-
proach to perform fine-grained task decomposition of the col-
lision query over multiple cores. Since the nodes of a BVTT
front are updated independently, it is easy to execute them in
parallel on multiple cores.

In order to achieve high throughput, we need to fully uti-
lize the computational power of all the cores. By using FDB,
the task of collision query is broken into a set of front node
updating sub-tasks which can be executed independently. As
shown in Fig. 8§, all the nodes of the BVTT front are organized
as blocks and manage the threads using dynamic load balanc-
ing. Initially the blocks are send to the idle threads. When a
thread finishes the computation on its block, a new block is as-
signed to the thread and thereby keeps the thread busy.

4.5. Adaptive Front Rebuilding

The initial BVTT front is built by traversing the BVTT in
a top-down manner. The pseudo code description of the algo-
rithms are give in Alg. 3 and Alg. 4. The building algorithm
starts by checking for self-collision from the root node of the
BVH (Alg. 3). During the traversal of the BVTT, all leaf node
pairs containing triangle pairs are inserted into the front (Line
3 of Alg. 4). In terms of internal nodes of the BVTT, if their
bounding volumes do not overlap, those node pairs are inserted
into the front (Line 9 of Alg. 4). The front building algorithm
proceeds recursively until the traversal is terminated.

BVTT Front
OO OO +Twan]
o e ek

Figure 8: Parallelized front tracking: With FBD, a collision query is decom-
posed into a set of fine-grained tasks. Nodes of the BVTT front are organized
into groups, and handled by different threads using dynamic load balancing.

Algorithm 3 FrontBuild(Node N): Building the front while
checking self-collisions at a BVH node N i
1: if IsLeaf(N') then
2 return // Skip leaf nodes.
3: end if
4: /| Check the descendants.
5
6
7

. FrontBuild(N' —left)
. FrontBuild(N —right)
. FrontBuild(N' —left, N’ —right)

After updating the BVTT front during a sequence of simula-
tion time steps, the front contains many phantom nodes. These
nodes that are flagged as invalid by sprouting operators and
ideally these nodes should be removed by pruning operators.
Although the collision query results are not affected by these
phantom nodes, these nodes can consume high memory and re-
sult in unnecessary computations.

Our algorithm tends to estimate when does the BVTT front
has a high number of phantom nodes. We use the following
analysis to evaluate the quality of the BVTT front.

The process of front updating can be formulated as:

Liyi =Li+Si1 — By (D
where:

e [,y and L; are the BVTT fronts at current and previous
simulation time steps respectively;

e S, are the nodes inserted by the sprouting operator;

e B;, are the nodes flagged as invalid by the sprouting op-
erator.

Let us assume that the front L; updated for k simulation time
steps. From Equation 1, the L;; can be expressed by:

k k
Ly — L = Z Siv— Z Biy (2)
=1 =1



Algorithm 4 FrontBuild(Node N;,N}): Building the front
while checking for collisions between two BVH nodes N’ and
Nj.

b

. if IsLeaf(N)) AND IsLeaf(V}) then

—_

2. if N not adjacent to N; then
3: FrontAdd(N,, N,) // Record into front.
4: return
5. endif
6: end if
7.
8: if BoundingBoxTest(N;, N}) == NoOverlap then
9:  FrontAdd(Ng, N,) // Record into front.
10:  return
11: end if
12:
13:

14: if IsLeaf(N! ) then

15:  FrontBuild(N., N} —left)
16:  FrontBuild(N,, N, —right)
17: else

18:  FrontBuild(N, —left, N})
19:  FrontBuild(V, —right, N,)
20: end if

We evaluate the quality of the BVTT front using the follow-
ing metrics:

I35, Sl
(Ligp) = 2120 3)
Qiilisd) = =7
k
. B;
OuLivy) = 12 el 4
I Lkl
where:

e || Z;‘:l Bi11]| is the number of nodes flagged as invalid dur-
ing the k simulation time steps;

o |l Zle S+l is the number of nodes inserted during k sim-
ulation time steps;

e ||L;.«|| is the total number of front nodes.

When Q) (L) or Q>(L;4x) are greater than specified thresh-
olds, e.g., 30% and 45% respectively in our implementation,
our algorithm rebuilds the BVTT front as opposed to updating
it.

4.6. Orphan-set based Front Reduction

All the adjacent triangle pairs can not be culled by bounding
volume tests, and they bring a large number of elementary tests.
The BVTT front L can be represented as:

L=A+B,+ B, 5)
where:

e A is the set of internal pairs {N,, M,}: N, or M, is not a
leaf node of the BVH;

e B, is the set of adjacent leaf pairs {Nj, M},}: N and M), are
leaf nodes of the BVH, and N,, is adjacent to M,,.

e B,, is the set of non-adjacent leaf pairs {N,, Mp}: N, and
M), are leaf nodes of the BVH, and N, is not adjacent to
M,.

All the adjacent leaf pairs that cannot be culled by bounding
box overlap tests, so B, tends to be a large subset of L. In
our benchmarks, the ratio of the size of B, to the size of L is
typically between 20% to 40%.

Based on the property of the orphan set, following theorem
is used to effectively cut down the size of BVTT front:

Orphan-set based Front Reduction Lemma : By inserting
only the non-adjacent pairs By, into a reduced colliding front L
and processing the orphan set separately, the BVTT front L in
Equation 5 can be reduced to:

L =A+B,, +OF (6)
where:

e A and B,, are the internal pairs and non-adjacent leaf
pairs of L respectively;

e OF is the orphan set of the models.

Proof. All the nodes of B, correspond to adjacent pairs. The
orphan set OF includes all the elementary tests between adja-
cent pairs. So:

OF > B, )
By substituting this relation in Equation 5, we get:
L=A+B,+OF>L=A+B,+Buy (8)

As aresult, all the collisions can be computed by only perform-
ing overlap tests on the reduced BVTT front L, and it doesn’t
affect the accuracy of the algorithm. O

By not considering the node pairs that correspond to adjacent
triangle pairs (B,), we reduce the memory overhead of BVTT
front, and lessen computation load. The size of BVTT front can
shrink by about 20% — 40% of the original length, as shown in
Fig. 9. This results in improved performance for both the serial
as well as the parallel CCD computation algorithm. Specifi-
cally, we observed up to 17% improvement in the overall per-
formance of our parallel algorithm.

4.7. Parallel BVH Updating

The entire scene is organized as a single BVH. We use the
refitting algorithm to update the BVH as the objects undergo
non-rigid motion. We use the following equation to evaluate
the cost of refitting an internal node of the BVH:

T(Iu) = Nu * Cu (9)
where:
e ], is an internal node of the BVH;

e N, is the number of nodes in the subtree rooted at 1,,;
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Figure 9: Orphan-set based front reduction: By removing all the nodes con-
taining adjacent triangle pairs from the colliding front, the length of the collid-
ing front shrinks by about 20% — 40% of the original length. We observed up
to 17% improvement in the overall performance of our parallel algorithm.

e C, is cost of recalculating the bounding volume for a sin-
gle node. It is a constant value for all the nodes.

The values of N, and C, depend on the type of bounding
volumes (BVs). For simple BVs, such as spheres or AABBs,
C, tends to be low. For more complex BVs, such as, OBBs or
k-DOPs, the C, is relatively more expensive.

Since the structure of the BVH is fixed during the various
frames, N, remains constant. Therefore, we perform static task
decomposition at the preprocessing stage, and distribute the re-
fitting computation evenly among different cores [48, 44].

4.8. Cache-friendly BVTT Layouts

High speed caches are used to cover the performance gap be-
tween the processor and memory. Multi-core processors enable
an application to run multiple threads simultaneously. When
large amount of data is processed, these threads have to com-
pete for memory bandwidth and shared caches. As the number
of threads increase, cache-accesses can become more expensive
and can become a efficiency bottleneck [49]. Cache-efficient
layouts of BVHs [50] have been proposed to get improved per-
formance of collision detection between massive models. But
there is no former work on the cache-competition problem in
multi-core environment during the process of collision detec-
tion.

In our FBD based parallel CCD algorithm, BVHs and BVTT
fronts are the primary data structures that are frequently ac-
cessed by multiple threads. We compute the memory layout
and improve cache utilization based on following observations:
The BVHs are frequently visited during the updating of BVTT
fronts. For anode {N!, NJ} of current BVTT front, and sub-trees
rooted at N’ and N are further traversed on spouting operator.
When the front is updating in parallel by multiple threads, a
good memory layout of BVHs and BVTT fronts is needed to
fully utilize the high-speed cache by minimizing data exchange
between cache and memory.

We store the BVH in depth-first order as a linear array
(Fig. 10), and store the nodes of the BVTT front in an ordered
list (Fig. 11). By rearranging the front nodes in this manner, the
data locality is improved when a block of nodes is processed by
the same core.

Figure 10: Memory layout of the BVH: The BVH in Fig. 2 is stored in depth-
first order as a linear array.

BVTT Front

i
+|e,F|—>|g,h|—>|g,F|—>|g,e|—>|h,C|“’| i’j|

Figure 11: Memory layout of the BVTT front: The nodes of the BVTT front
in Fig. 2 are stored in the order of its belonging BVH nodes.

o

As compared to a parallel CCD algorithm with a pointer-
based BVH and unsorted BVTT fronts, these memory layouts
further improves the performance by 7% — 14% without any
other modification to the runtime code on a 16-core machine
running 16 threads.

5. Analysis

We have presented two parallel CCD algorithms. These in-
clude the basic PHC algorithm in Sec. 3 and the FBD algorithm
in Sec. 4. In this section, we analyze the scalability of these
algorithms and show that FBD offers improved theoretical and
empirical performance.

For the serial algorithm, its computation load Ty can be for-
mulated as:

T,=C/+Cp+C, (10)
where:
e (,is the cost of BVTT traversal,
e ()}, is the cost of bounding volume overlap tests;
e C, is the cost of elementary tests between the primitives.

The first task in PHC algorithm is traversal and decompo-
sition of the problem into sub-tasks, and executing each sub-
task in parallel. In this case, C, and C}, are represented as:
C,=C,+C,and C, = Cp, + Cp, where:

e C, and C, are the costs of BVTT traversal and bounding
volume overlap test, respectively, in the first part corre-
spond to traversal and collecting the sub-tasks;



) C‘, and éb are the costs of BVTT traversal and bounding
volume overlap tests within all the sub-tasks;

The computation cost of PHC based algorithm is:

C,+Cp+0C,
N

where N is the number of core'.

By using FBD, the first step of traversing the BVTT from
the root node is eliminated. Since all the nodes of the BVTT
front are tracked in parallel, the computation load of FBD based
algorithm can be formulated as:

S *Cp+C,
N

where S is the ratio of reduced bounding volume overlap tests.
In practices, S is always a constant less than 1 and its actual
value depends on the benchmark. In our benchmarks, S is be-
tween 53% to 63%.

Computation Overhead of PHC and FBD Theorem:
Computation overhead of PHC (Tpgc) is always greater than
of FBD (Tgpp), and Tpyc is directly proportional to Trpp by a
factor of N, i.e., L5 = O(N), where N is the number of core.

Trac=Ci+Cp +

Y

TFBD = (12)

ZPHC

> Trp

Proof. The computation load of PHC based and FBD based
parallel CCD algorithm can be expressed as:

Trne  N#*(C+Cp)+Ci+Cy+C,
Trep S %Cp+C,
. N=-D=#(C+C)+C+ G+ C,
B S Cy+C,
_ (N—1)*(C‘t+éb)+Ct+(l—S)*Cb+1
S *xCp+C,
= (N-D=*Ki+Ky+1 (13)
where K| and K, are two constants depending on the bench-
mark:
K = ¢ +6
S xCp+C,
Ci+(1-8)*Cp
K2 = -
S*Cp+C,
Equation 13 shows that the computation overhead of PHC

Truc
Trap

proportional to Trpp by a factor of N (% = O(N)).

always greater than of FBD ( > 1). And Tpyc is directly

O

In practice, we get results shown in Fig. 12. By using FBD,
the running time of PHC is reduced by 40% with 8 cores, and
reduced by at most 48% with 16 cores. As aresult, PHC doesn’t
scale well with the number of core.

From Equation 11 and Equation 12, we can see the differ-
ence between their performance as the number of core increase:
The speedup of PHC based algorithm is limited by the cost of
task-collection and traversal, i.e., C‘, and éb, while FBD based
algorithm has better scalability by the number of core.

!The analysis assumes that there is no overhead for parallel execution with
multiple cores.
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Figure 12: Performance comparison between PHC and FBD: The running
time are shown as the comparison ratio between FBD and PHC. By using FBD,
the running time of PHC is reduce by 40% with 8 cores, and reduce by 48%
with 16 cores.

6. Implementation and Results

In this section, we describe our implementation and highlight
the performance of our algorithm on multiple benchmarks.

6.1. Performance

We have implemented our algorithm on a Intel Xeon PC with
four X7350 processors(quad-core CPU at 2.93 GHz), i.e., a to-
tal of 16 cores, and 16 GB of RAM using Visual Studio 2005.
OpenMP is used as multi-threaded programming API. We use
k-DOPs (specifically 18-DOPs) as bounding volumes for better
culling efficiency comparing to AABBs or spheres. The BVHs
are built in a top-down manner by recursive longest-axis spatial-
median splitting.

6.2. Benchmarks

Five different benchmarks, which arise from different type of
simulations and have varying characteristics, are used to mea-
sure the performance of our algorithm. These include:

e Princess (40K triangles, Fig. 14): A dancer with flowing
skirt sits on the floor, resulting in many inter- and intra-
object collisions.

e Flamenco (49K triangles, Fig. 15): A fiery flamenco
dancer wearing colorful skirt with ruffles. This benchmark
has a high number of self-collisions.

e N-body (34K triangles, Fig. 16): A scene with hundreds
of spheres and cones that are colliding with each other.

e Cloth-ball (92K triangles, Fig. 17): A piece of cloth drops
on top of a ball and curls around resulting in a high number
of self-collisions.

e BART (4K triangles, Fig. 18): A set of triangles under
mostly unstructured, random movement. Since it has high
depth complexity and overlapping primitives, this scene is
one of the worst cases for collision query as well as hier-
archy updates. It is part of the BART animated ray tracing
benchmark from [51].
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Figure 13: Speedups of FBD based parallel CCD: Almost linear accelerations
are achieved when the number of core increase. The speedups are varying from
10.1X to 13X when all the 16 cores are used.

Figure 14: Speedups on the Princess benchmark: The speedups are 6.4X
using 8 cores and 10.2X on the 16 cores. It takes 5.3ms per frame to compute
all the collisions by using all the 16 cores.

All the benchmarks have multiple simulation steps. We per-
form CCD between discrete steps by using linearly interpola-
tion motion between the vertices of the triangles and compute
the first time-of-contact along the resulting trajectory.

6.3. FBD Performance

‘We observe considerable speedups in all our benchmarks by
using multiple cores. Fig. 13 show the speedups of all the 5
benchmarks as the number of core vary. By fully utilizing all
the 16 cores, the speedups of overall running time are varying
from 10.1X to 13X. When 8 cores are used, the speedups are
between 6.4X to 7.7X. In practice, almost linear speedups are
achieved when the number of core increase. As the number of
core increases to 16, the overhead of parallel execution, includ-
ing thread synchronization, scheduling, cache competition, etc.,
increases and thereby results in a slightly sub-linear speedup.
Fig.14 - Fig.18 show the detailed performance for each bench-
mark.

7. Comparison and Limitations

In this section, we compare our approach with prior tech-
niques and highlight some of its limitations.
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Figure 15: Speedups on the Flamenco benchmark: The speedups are 7.7X
using 8 cores and 13X on the 16 cores. It takes 27ms per frame to compute all
the collisions by using all the 16 cores.

Scenes Query time of | Query time of | Query time of
Our algorithm [3] [29]
Princess 53 55 500
Flamenco 27 350 N/A
N-body 11.6 117 N/A
Cloth-ball 325 340 800
BART 204 212 N/A

Table 2: Performance and Speedup: This table shows the average query time
(ms) of our method, the serial implementation of [3], and the GPU-based tech-
nique of [29].

7.1. Comparison

By updating BVTT front incrementally and in parallel, our
algorithm achieves 6.4X—7.7X speedups on 8 cores and 10.1X—
13X speedups on 16 cores comparing to one of the fastest serial
CCD algorithm reported [3]. Our former PHC based work [2]
only achieves 4X — 6X speedups on 8 cores.

Some GPU algorithms has been design to improve the per-
formance of CCD by performing occlusion queries [28] or com-
puting 3D distance fields [29] on graphics hardware. In these
algorithms, only some computing-intensive parts are executed
in parallel on GPUs, and the performance is governed by the
readbacks and occlusion queries, which don’t scale well.

Our parallel algorithm shows better scalability by fully paral-
lelizing all the stages of CCD, and appears to have a lower over-
head by avoiding transferring data between GPUs and CPUs.
Table 2 shows the average CCD time of our algorithm ( when
all 16 cores are used), the serial implementation [3], and GPU-
based technique [29].

The notion of incrementally maintaining the colliding front
has been used by many authors [45, 23, 12, 33, 27]. Most of
the earlier algorithms are limited to handle rigid models and
we extend it to self-collisions of deformable models. Our ap-
proach to handle self-collisions between adjacent pairs is differ-
ent from that of [27]. We integrate self-collision detection into



Figure 16: Speedups on the N-body benchmark: The speedups are 6.6X
using 8 cores and 10.1X on the 16 cores. It takes 11.6ms per frame to compute
all the collisions by using all the 16 cores.

Figure 17: Speedup on the Cloth-ball benchmark: The speedups are 6.68X
using 8 cores and 10.5X on the 16 cores. It takes 32.5ms per frame to compute
all the collisions by using all the 16 cores.

the BVTT, perform adaptive rebuilding of the front, and signif-
icantly reduce the size of the BVTT front using orphan sets. As
a result, our approach achieves considerable performance im-
provement over prior algorithms designed for cloth simulation
or deformable collisions [41, 43, 42].

In terms of comparison to prior parallel collision detection
algorithms [39, 40, 43, 44], our algorithm uses a different task
decomposition approach. Specifically, we parallelize updating
of the BVTT front. There are two major benefits of using such
a front formulation. On one hand, the running time of bound-
ing volume overlapping tests and BVH traversal is consider-
ably reduced for deformable models. Secondly, it provides a
good fine-grained task decomposition strategy for paralleliza-
tion which is useful for parallel execution on modern multi-
core/many-core processors.

7.2. Limitations

Our approach has many limitations. Firstly, the front for-
mulation increases the memory overhead. Even for the BART
benchmark with 4K triangles, it takes about 17M B to store the
colliding front between successive frames. The length of the
BVTT front can grow considerably if there are a high number
of close proximities. Secondly, the speedup obtained by our
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Figure 18: Speedup on the BART benchmark: The speedups are 6.6X using
8 cores and 10.4X on the 16 cores. It takes 20.4ms per frame to compute all the
collisions by using all the 16 cores.

approach increases sub-linearly as the core number is above 10.
When the core number is growing high, the overhead of parallel
execution emerges in our current benchmarks and offsets most
of the benefit of parallel execution. The overhead results in
sub-linear improvement with the number of core. However, we
expect almost linear speedups on more complex models with
higher number of triangles.

8. Conclusion and Future Work

In this paper, we present a parallel CCD algorithm for de-
formable models. Our formulation maintains the colliding front
which takes into account inter-object collisions as well as self-
collision by performing adaptive rebuilding. Furthermore, we
combine it with the orphan set formulation to reduce the num-
ber of elementary test. In practice, the FBD algorithm can re-
sults in considerable improvement in the performance of colli-
sion detection algorithm using multiple cores. We parallelize
the algorithm over multiple cores. Our algorithm achieves
quasi-linear acceleration on a number of benchmarks and we
observe 6.4X —7.7X speedups in the overall running times on 8
cores, and 10.1X — 13X speedups on 16 cores.

There are many avenues for future work. We would like
to improve the performance and try to achieve close to linear
speedups. This may involve strategies to overcome the par-
allelization penalty when the number of core increases. Sec-
ondly, we would like to use our algorithm for other applications
that require real-time performance such as haptic rendering. Fi-
nally, we would like to extend this approach to other proximity
queries, including distance computation.

8.1. Parallelization on GPU architectures

Our current algorithm is primarily designed for multi-core
CPUs. It would be interesting to extend this approach to many-
core GPUs. However, GPUs have smaller caches and they tend
to hide the latency by using larger number of threads. As a
result, we may have to modify the algorithm and take these fea-
tures into account.
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