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Abstract— We present a new time-integrator for modeling the
frictional dynamics of articulated bodies. Our formulation rep-
resents the configuration of the articulated body using position
variables and then uses those variables to model the friction
forces between the articulated body and the environment. Our
approach corresponds to a Newton-type optimization scheme
that is guaranteed to converge so that it is stable with large
timestep sizes. We evaluate the accuracy and stability of our
time-integrator by comparing it with a conventional formu-
lations based on the Newton-Euler equation and demonstrate
the benefits on standard controller-optimization applications.
We achieve 3 − 5 times speedup over a Newton-Euler-based
simulator on a CPU. Our approach can be easily parallelized
on a GPU and results in additional 4 − 15 times performance
improvement.

I. INTRODUCTION

Articulated body dynamics is widely used in various
applications, including forward/inverse dynamics, kinody-
namic motion planning, controller optimization, reinforce-
ment learning, etc. These problems have been extensively
studied in robotics and dynamics, and many solvers have
been proposed based on the Newton-Euler equation. In fact,
such solvers are also implemented in standard toolboxes such
as Dart [20], Drake [32], Mujoco [33], etc. However, in
certain applications including offline controller optimization,
policy search [29], and sampling-based motion planning
[23], [10], articulated body simulation is regarded as one
of the major computational bottlenecks. This is because a
large number of random samples are chosen simultaneously,
where each sample corresponds to a trajectory generated by
the simulator. Consequently, the total number of simulated
timesteps can reach a few millions in a typical reinforcement
learning application. One technique to reduce the number of
timesteps is to use a larger timestep size. However, conven-
tional articulated body simulators based on the Newton-Euler
equation can become unstable under a large timestep size [2].
Another technique to improve the performance of articulated
body simulators is to parallelize them on commodity parallel
processors (e.g. GPUs).

Some of the widely used articulated body simulators per-
form time integration based on the Newton-Euler equation.
During each simulation step, the equation is locally lin-
earized and time-integrated using linear multistep algorithms
such as the Runga-Kutta method. This algorithm can be
adopted in the Euclidean space or the space of Lie algebra
[6]. Unfortunately, it is not clear that the resulting solvers
are stable under large timestep sizes. This is because that
small timestep sizes ensure the sufficient accuracy of the
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local linearization [2]. It is also difficult to parallelize such
solvers because they require sequential algorithms to resolve
the frictional contacts that occur between the rigid body
and obstacles in the environments. The handling of these
contacts induces a set of complementarity conditions, and
the exact resolution of these conditions is performed using
sequential algorithms, such as a quadratic programming or a
linear complimentary solver [31].

Our formulation is based on recent advances in position-
based dynamics (PBD) [7], which represents an articulated
body’s configuration using only position variables in the
Euclidean space. Based on this representation, PBD tends
to be stable under arbitrarily large timesteps. This is because
the PBD simulation step corresponds to a Newton-type
optimization that is guaranteed to converge under certain
conditions [14], [4], [27]. In addition, PBD solvers are
relatively simple to implement because they only involve
evaluation of objective functions. Due to these features, PBD
has been successfully parallelized on a GPU [1]. However,
prior PBD solvers have been mainly limited to rigid bodies
or articulated models without frictional contacts.

Main Results: We present a novel PBD-based time inte-
grator for frictional articulated body dynamics. We modify
the optimization-based PBD formulation to time integrate
friction forces in a fully implicit manner. We refer to our
technique as position-based frictional dynamics (PBFD).
PBFD is based on two novel techniques. We start from the
complementarity conditions resulting from the conventional
dry friction model [31] and approximate friction forces
using position-based functions. We show that the position-
based functions approximate dry friction forces arbitrarily
well under certain conditions. However, these position-based
functions are non-integrable and cannot be represented as
objective energies. Therefore, they cannot be used directly in
the original optimization-based PBD framework. To address
this, our second technique includes the use of a new objective
function that accounts for non-integrable forces, referred to
as gradient-level objective function. Finally, we show that
a conventional Newton-type optimizer will always bring the
gradient level objective function to a local minimum, which
corresponds to an articulated body configuration that satisfies
Newton’s laws at the next time instance.

We evaluate our PBFD formulation by comparing it with
conventional PBD formulation and the Newton-Euler-based
formulation on two standard simulation benchmarks: box
sliding on ground and chain falling on slope. We compare
their accuracy in terms of the friction force computation and
stability under various timestep sizes. We also demonstrate
that the accuracy of our simulator is sufficient for controller
optimization applications using two reinforcement learning
benchmarks. We show that the trained controller performs



well on both our PBFD simulator and the conventional
Newton-Euler-based simulator. Our PBFD simulator results
in 3 − 5 times faster simulation on a CPU. The GPU paral-
lelization of our gradient-level objective function evaluation
results in an additional 4 − 15 times speedup over the CPU
implementation.

The rest of the paper is organized as follows. After review-
ing related work in Section II, we formulate the conventional
articulated body dynamics problem in Section III. Our PBFD
formulation is described in Section IV-B and we present
our efficient optimization algorithm in Section V. Finally,
we highlight the performance on various benchmarks in
Section VI.

II. RELATED WORK

We briefly review related works in articulated body dy-
namics, frictional contact models, position-based dynamics,
and applications to robotic control.

Articulated Body Dynamics: The governing equation of
a rigid body is the Newton-Euler equation. An articulated
body’s governing equation is derived by formulating the
Newton-Euler equation in the joint parameter space [12],
[26]. Many discretization schemes have been proposed for
this governing equation, and they vary in terms of accuracy
and efficiency. The most widely used scheme in standard
toolboxes is the simple linear multistep method [31], [34],
which linearizes the governing equation in the Euclidean
space. A more accurate set of methods is based on geometric
integrators [18], [6], which linearize the governing equations
in the space of Lie algebra. However, such geometric inte-
grators have not been widely used in contact-rich scenarios.

Frictional Contact Models: Modeling frictional contacts
is a central problem in dynamics. Prior methods to model
friction can be categorized into complementarity-based mod-
els [31], [34], penalty-based models [8], and smooth approx-
imate models [25], [28]. Complementarity-based models are
the most popular in robotics due to their accuracy. However,
solving for these complementarity conditions can be slow,
and the underlying algorithms tend to be sequential. Fast ap-
proximate solvers for the complementarity conditions, such
as iterative projection [5], staggered projection [17], and local
methods [16], have been proposed, but their convergence
properties are not well understood. Penalty-based models are
much simpler to formulate and implement, but their accuracy
is case-dependent and sensitive to the choice of parameters.
The smooth approximate models [25], [28] formulate friction
forces as a smooth and differentiable function and the
resulting algorithms work well with continuous optimization
techniques. However, we show that all the prior smooth
approximate models may not be accurate because the friction
forces can be underestimated.

Position-based Dynamics: PBD is regarded as a dis-
cretization scheme that represents all the variables and their
finite differences using the articulated body’s position in
the Euclidean space [3]. PBD was originally proposed to
model fluid dynamics [24] and elastic deformations [4]. In
[28], PBD was extended to articulated body dynamics under

minimal coordinates. A nice feature of PBD is that the
underlying simulation algorithm corresponds to a numerical
optimization [14], [4], [15] under certain conditions. There-
fore, an off-the-shelf numerical optimizer can be used as a
simulator, leading to simpler implementation and improved
stability under large timestep sizes. However, it is still
difficult for prior PBD algorithms to handle friction forces
in a robust manner.

Robotic Control Applications: The recent surge in deep
learning and statistical models has resulted in the devel-
opment of new control algorithms for complex dynamic
systems such as articulated humanoids [9], [19], [30]. A
common point in these algorithms is that they train robust
controllers by injecting noise into the system and optimize
the controller performance in these noisy scenarios. Such
noises can be injected in different ways, such as perturbations
to the control signals, system dynamics, or observations.
The magnitude of these noises is generally much larger
than the discrepancy between an accurate simulator and a
less accurate one. As a result, it is possible to use slightly
less accurate, but more efficient PBD simulators for such
applications.

III. PROBLEM FORMULATION

In this section, we formulate the articulated body simula-
tion problem. More details are given in [28], [31].

A. Newton-Euler’s Equation

As illustrated in Figure 1 (a), an articulated body A’s
configuration is represented using joint parameters, θ. For
each rigid body R in A, we denote V = (vT wT )T as its
linear/angular velocity and assume V = Jθ̇. We denote M6×6

as the generalized mass matrix in the world coordinates,
and F = (fT τT )T as the external force/torque. With these
symbols, R’s dynamics are governed by the Newton-Euler
equation parameterized using θ and can be expressed as:

JTMJθ̈ + (JTMJ̇ + JT (0
[ω])MJ)θ̇ + JTF = 0, (1)

where [ω] is the cross product matrix. Throughout the paper,
we present our PBFD method using a single rigid body R.
The governing equations for the entire A can be derived
by concatenation. For numerical simulation, the prominent
method is to discretize Equation 1 into a sequence of time
instances, n∆t, with uniform interval ∆t. We denote the
timestep indices using subscripts. For example, with first-
order finite difference, we assume:

(Jθ̇)n+1 ≈ Jn(θn+1 − θn)/∆t. (2)

B. Position-based Dynamics

If we evaluate a continuous point p on R, its position is the
function p(θ) and Equation 2 is p’s instantaneous velocity.
Instead, PBD uses p’s average velocity over ∆t:

(Jθ̇)n+1 ≈ (p(θn+1) − p(θn))/∆t, (3)
which is illustrated in Figure 1 (b). Note that Equation 2 is
a linearization of Equation 3 at time n∆t, which is accurate
only when θn+1 − θn is small. This linearization limits the
ability of Equation 2 to handle large timestep sizes, while



p(θn+1)

p(θn)

RR

θ1

θ2

(a) (b) Fig. 1: (a): The configuration
of A is represented using joint
parameters θ at time instance
n∆t. (b): At the time instance
(n + 1)∆t, A moves to a new
configuration (dashed line). The
average velocity of any point
p ∈ R is defined as (p(θn+1) −
p(θn))/∆t (red line) in the
PBD formulation.

Equation 3 can always be interpreted as the average velocity
of p over the period of ∆t in the Euclidean space, regardless
of how large ∆t is. Under this interpretation, the governing
equation of R is derived by taking an integral over R as
follows:
0 = ∫R

∂p(θn+1)
∂θn+1

T
[ρ (p(θn+1)−2p(θn)+p(θn−1))

∆t2
− fp(θn+1)]dp, (4)

where ρ is the mass density and fp(θ) is the external force
density, see [] for more details. The terms in the bracket are
derived from Newton’s second law for each point p and the
multiplication by ∂p(θ)

∂θn+1

T
on the left ensures that all the points

move as one rigid body. A remarkable feature of Equation 4
is that its right-hand side is the derivative of the following
objective function, E(θ):

E(θn+1) = I(θn+1) + P (θn+1),

I(θn+1) = ∫
R

ρ

2∆t2
∥p(θn+1) − 2p(θn) + p(θn−1)∥2dp,

∂P (θn+1)
∂θn+1

= −∫
R

∂p(θn+1)
∂θn+1

T

fp(θn+1)dp. (5)

In E(θ), the first term I(θ) models the inertia of R, and
the integral in I(θ) can be evaluated analytically (we refer
readers to [28] for its derivation). The second term models
external forces, and PBD assumes that fp(θ) is the force of
a conservative energy, P (θ).

In conclusion, simulation in the PBD framework is equiv-
alent to the following optimization:

θn+1 = argmin
θ

E(θ), (6)

which is easy to implement using an off-the-shelf numerical
optimizer. In addition, the following lemma ensures that
a local minimum can always be computed under some
assumptions:

Lemma 3.1: If P (θ) ∈ C1 is bounded from below, then
a Newton-type solver will always bring E(θ) to a local
minimum.

Proof: Since I(θ) is a composition of smooth functions
(joint transformations), we have I(θ) ∈ C∞. We also have
I(θ) ≥ 0. Therefore, combined with P (θ), E(θ) ∈ C1 is
also bounded from below. The convergence of a Newton-type
solver under these conditions is shown, e.g., in Theorem 3.2
of [35].
Lemma 3.1 combined with PBD’s independence of local
linearization provides a strong support for its stability under
large timestep sizes.

C. Contact Handling

Since a robot frequently interacts with the environment, a
robust articulated body simulation algorithm needs to handle
frictional contacts. In this paper, we restrict ourselves to the
dry friction model. Using Equation 1 and Equation 2, we
simultaneously solve for the external force f and the velocity
Jθ̇ for each contact point. In this case, the dry friction model
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Fig. 2: The penetration
depth, d(p(θ)), at point p
is the magnitude of the
blue vector. We plot the
change of d(p(θ)) as the
red curve, which is a piece-
wise smooth function. Here
the obstacle is the hatched
area and n is the unit out-
ward contact normal.

can be conveniently formulated as two complementarity
conditions [31]:

0 ≤ J⊥θ̇ ∧ f⊥ ≥ 0

0 ≤ µf⊥ − ∥f∥∥ ∧ ∥J∥θ̇∥ ≥ 0, (7)
where ⊥ and ∥ are the normal and tangential components of
the force or velocity, respectively. µ is the friction coefficient.
The first condition ensures that normal forces are unilateral
and are just sufficient for an inelastic collision. The second
condition ensures that friction forces are in the frictional
cone, and that they are on the cone boundary only when there
is relative motion. However, modeling these complementarity
conditions is difficult in the PBD framework because all ex-
ternal forces are modeled implicitly as conservative energies
and are not solved explicitly. In addition, it is known that
friction forces are not conservative forces.

IV. POSITION-BASED FRICTIONAL DYNAMICS (PBFD)

Since PBD uses position variables, our idea is to model
contact forces at point p using only the position variables.
We first discuss the modeling of normal forces, f⊥p (θ), in
Section IV-A. Then we analyze previous inaccurate tangen-
tial force models used by PBD in Section IV-B. Finally,
the core techniques of our PBFD formulation are derived
in Section IV-C.

A. Normal Force Model for PBD

To represent f⊥p (θ) using position-based variables, we
assume that f⊥p (θ) is a function of the penetration depth
d(p). In this paper, we use the following relationship:

f⊥p (θ) = d(p(θ))αn, (8)
where n is the unit outward contact normal. α is a constant
coefficient that dictates the speed of normal force growth as
the penetration depth increases. In addition, we can modify
the smoothness property of f⊥p (θ) by changing α. Equation 8
is fully compatible with the PBD framework because it has
a conservative energy form:

P ⊥(θ) = 1

α + 1
∫
R

d(p(θ))α+1dp. (9)

In practice, the integral in Equation 9 is replaced with
a summation over the set of points found by a contact
detector. It is easy to verify that Equation 8 and Equation 9
satisfy Equation 5. The remaining issue is that d(p) is only
piecewise smooth, and it is C0 globally as illustrated in
Figure 2. Fortunately, the property used by Lemma 3.1 would
still hold based on the following lemma:

Lemma 4.1: If α > 0, then d(p(θ))α+1 ∈ C1, P ⊥(θ) ∈ C1,
and Lemma 3.1 holds when P (θ) = P ⊥(θ) in Equation 5.



Proof: Since d(p(θ))α is piecewise smooth, its gradient
is:
∂d(p(θ))α+1

∂θ
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(α + 1) [ ∂p(θ)
∂θ

T
n]d(p(θ))α d(p(θ)) > 0

0 otherwise
.

However, when d(p(θ)) → 0 in the first case, d(p(θ))α → 0.
Therefore, the point where d(p(θ)) = 0 is also continuous
and d(p(θ))α+1 ∈ C1. It is obvious that P ⊥(θ) ∈ C1. Finally,
Lemma 3.1 holds because P ⊥(θ) ≥ 0, i.e. this function is
bounded from below.
However, it is more difficult to model tangential forces
because they depend on both the tangential velocity and the
normal force.

B. Tangential Force Model for PBD

We notice that the tangential force always acts to damp the
velocity. Therefore, we could introduce a velocity damping
force to approximately model the friction using the following
conservative energy formulation:

∫
R

∥(I − nnT )(p(θ) − p(θn))∥β+1dp, (10)

where I−nnT represents a projection matrix to the tangential
plane and β is a constant coefficient with similar function
as α. Note that every conservative force has an equivalent
energy form, but an energy form does not necessarily cor-
respond to a conservative force. For example, Equation 10
corresponds to a dissipative force pointing in the opposite
direction of the tangential velocity. This is because Equa-
tion 10 acts to minimize the difference between p(θ) and
p(θn), which is proportional to the velocity at p according
to Equation 3. However, Equation 10 does not approximate
the dry friction model because it applies the friction force
even when p is not in contact, i.e. f⊥p (θ) = 0. To respect the
fact that the magnitude of f∥ is upper bounded by µf⊥, a
simple idea is to weight Equation 10 using f⊥. Since f⊥ is
proportional to d(p(θ)) in our formulation, we multiply the
integrands in Equation 9 and Equation 10 to get the following
conservative energy for tangential forces:
P ∥(θ) = ∫

R

∥(I − nnT )(p(θ) − p(θn))∥β+1d(p(θ))γ+1dp, (11)

where γ a constant coefficient with similar function as α. At
this point, we can model both the normal and friction forces
by setting P (θ) = C⊥P ⊥(θ)+C∥P ∥(θ) and Lemma 3.1 holds
for this P (θ) if α,β, γ > 0, following a similar argument
as that in Lemma 4.1. Here we introduce two additional
constant coefficients C⊥,C∥. Variants of this P (θ) have been
used in [28] for articulated body simulation.

However, one of our key observations is that Equation 11
is still not accurate because it does not approximate the
dry friction model in any sense, and the friction forces are
considerably underestimated. To see this, we evaluate the
partial derivatives, ∂P

∥
(θ)

∂θ
, to derive the corresponding forces

of P ∥(θ):
∂P ∥(θ)
∂θ

= −∫
R

∂p(θ)
∂θ

T

(f∥p(θ) + f∗p (θ))dp,

f∥p(θ) ≜ −(β + 1)(I − nnT )(p(θ) − p(θn)) (12)

∥(I − nnT )(p(θ) − p(θn))∥βd(p(θ))γ+1,

f∗p (θ) ≜ (γ + 1)n∥(I − nnT )(p(θ) − p(θn))∥β+1d(p(θ))γ .
From these equations, we find that P ∥(θ) corresponds

to two force terms. The first force, f∥p (θ), is the desired

tangential friction force. However, the second force, f∗p (θ),
is an undesired term. Intuitively, f∗p (θ) means that a contact
point will produce larger normal forces to R with larger
tangential speed, which does not correspond to any physical
phenomena. In our benchmarks, f∗p (θ) produces large non-
physical normal forces for fast moving R. As a result, f∗p (θ)
will erroneously reduce d(p(θ)), which in turn reduces
f∥p (θ).

C. Corrected Tangential Force Model for PBFD

In this section, we present a corrected tangential force
model. Our idea is to simply remove the second force, f∗p (θ)
which was a result from P ∥(θ), and retains only f∥p (θ).
However, this treatment is incompatible with the prior PBD
framework because f∥p (θ) alone is not integrable, and it
cannot be written in an energy form. This difficulty leads
us to develop a generalized version of PBD, called gradient-
level PBD. Our core idea is that, instead of minimizing
E(θ), we minimize GE(θ) ≜ 1

2
∥∂E(θ)

∂θ
∥2. Indeed, under mild

assumptions, these two objective functions are equivalent due
to the following lemma:

Lemma 4.2: If P (θ) ∈ C2, then a Newton-type solver
minimizing GE(θ) will converge to a local minimum of
GE(θ). If E(θ) is locally convex, then a Newton-type
solver minimizing GE(θ) will converge to zero, i.e. a local
minimum of E(θ).

Proof: For the first claim, if P (θ) ∈ C2, then E(θ) ∈
C2, ∂E(θ)

∂θ
∈ C1, and GE(θ) ∈ C1. Combined with the fact

that GE(θ) ≥ 0, the convergence of the Newton-type solver
follows from Lemma 3.1. For the second claim, we have
∂GE(θ)
∂θ

= ∂2E(θ)
∂θ2

∂E(θ)
∂θ

. On convergence, ∂GE(θ)
∂θ

= 0, but
E(θ) being locally convex implies that ∂2E(θ)

∂θ2
is of full

rank, so that we have ∂E(θ)
∂θ

= 0 and GE(θ) = 0.
Lemma 4.2 imposes a stronger assumption on the smooth-
ness of P (θ). However, Lemma 4.2 generalizes PBD to
the case of non-integrable force terms while still casting
the simulation as an optimization with convergence guar-
antee. This property satisfies our need to handle the non-
integrable tangential force f∥p (θ). In summary, we propose
to set P (θ) = C⊥P ⊥(θ), which only accounts for normal
force. During each simulation step, we solve the following
minimization problem:

GE(θ) = 1

2
∥∂E(θ)

∂θ
−C∥ ∫

R

∂p(θ)
∂θ

T

f∥p (θ)dp∥2

θn+1 = argmin
θ

GE(θ), (13)

which adds tangential forces, f∥p (θ), as a non-integrable
term. We call this formulation the position-based frictional
dynamics (PBFD) model. In order for Lemma 3.1 to hold
for Equation 13, we need P ⊥(θ) ∈ C2 and f∥p (θ) ∈ C1.
Following a similar argument as Lemma 4.1, this requires
α > 1, β, γ > 0.

D. PBFD and Dry Friction Model

Compared with the dry friction model, which has only
one parameter µ, PBFD has five parameters α > 1, β, γ >



0,C⊥,C∥. These two models coincide when µ,C⊥,C∥ →∞
at the same time. In this case only static contact occurs, and
both models ensure that the tangential velocity is exactly
zero, because otherwise GE(θ) → ∞ in the PBFD model.

However, these two models would exhibit different be-
haviors in the case of sliding contacts. In this case, the dry
friction model will apply a force ∥f∥∥ = µf⊥ independent of
the relative tangential velocity between R and the obstacle.
However, PBFD will apply a velocity dependent force f∥p (θ)
due to the presence of (p(θ) − p(θn)) in Equation 12.

V. OPTIMIZATION ALGORITHM FOR PBFD
We presented our PBFD formulation (Equation 13) in the

previous section. In this section, we present our optimization
algorithm based on that formulation and compare its perfor-
mance with the original PBD algorithm (Equation 6). We
consider three broad categories of optimization algorithms:

● LM optimizer [21] using gradient and accurate Hessian.
● LM optimizer [21] using gradient and JTJ-approximate Hes-

sian (JTJ-LM).
● LBFGS optimizer [22] using only gradient.

In short, given an objective function GE(θ), an LM opti-
mizer requires the user to provide both ∂GE(θ)

∂θ
, ∂2GE(θ)

∂θ2

and updates θ according to:

θ ≜ θ − (∂
2GE(θ)
∂θ2

+ λI)−1 ∂GE(θ)
∂θ

, (14)

where λ is the diagonal regularization tuned by LM internally
to ensure convergence. JTJ-LM takes the same steps but
requires only an approximate Hessian denoted as ∂2GE(θ)

∂θ2
.

There are many ways to approximate the true Hessian. In
particular, JTJ-LM assumes that GE(θ) can be written as a
sum of squared functions, and the Hessian is approximated
by linearizing each function. For example, in the case of
Equation 13, JTJ-LM uses the following approximate Hes-
sian:
∂2GE(θ)
∂θ2

= ∂
∂θ

[∂E(θ)
∂θ

−C∥ ∫R
∂p(θ)
∂θ

T
f∥p (θ)dp]

T
∂
∂θ

[∂E(θ)
∂θ

−C∥ ∫R
∂p(θ)
∂θ

T
f∥p (θ)dp],

where the term related to ∂3E(θ)
∂θ3

is ignored. As long as
∂2GE(θ)
∂θ2

is symmetric and positive semi-definite, JTJ-LM
will converge to a local minima. Finally, the LBFGS op-
timizer only requires the computation of ∂GE(θ)

∂θ
and it

approximates ∂2GE(θ)
∂θ2

internally.

A. GPU Parallelization for the JTJ-LM Algorithm

To further accelerate the performance of the JTJ-LM al-
gorithm, we use GPU parallelization. Our parallel algorithm
is based on the assumption that multiple trajectories must
be computed simultaneously and independently so that a
multi-threaded acceleration can be used to provide additional
speedup. This assumption is true for reinforcement learning
[9] and online feedback control [11] applications. Specifi-
cally, we assume that an application needs to compute a set
of K trajectories, each from a different initial configuration
θk1 , where 1 ≤ k ≤K. Our parallel algorithm runs on a GPU
chip with M cores. Instead of having each core simulating
a separate trajectory, we instead let ∣θ∣ cores work together
to simulate a single trajectory, where ∣θ∣ is the number of
DOFs in A. In this way, the cost of matrix-matrix production

and matrix inversion can be performed in parallel, and their
cost can be reduced from O(∣θ∣3) to O(∣θ∣2), according to
[13]. This formulation assumes ∣θ∣ ≪ M , which is true for
most modern GPU models with more than 1000 cores. As a
result, a single GPU chip can compute ⌊M/∣θ∣⌋ trajectories
in parallel.

An additional improvement in our parallel algorithm is
that, instead of having each group of ∣θ∣ cores evaluate
Equation 14 until convergence, we have each group evaluate
Equation 14 once during each call to the GPU. As a result, all
the GPU core groups are performing the same computation
and no core suffers from starvation while waiting for other
cores. The entire picture of GPU scheduling is illustrated in
Figure 3.｛
｛
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Fig. 3: We illustrate our GPU scheduling algorithm. In
this case, we compute three trajectories from three initial
configurations, θ1,2,31 . Each GPU core is a gray box, and
every ∣θ∣ cores work together to simulate a single trajectory
(shown as a black arrow). Each timestep in each trajectory
involves evaluating Equation 14 multiple times until conver-
gence. Each evaluation is illustrated as a colored block on the
right. The evaluations used in a single timestep are marked
with the same color. For example, it takes 2 iterations for
the first trajectory to find θ12 , but it takes 7 iterations to find
θ22 , etc. During each call to the GPU, we only compute one
block for all the trajectories, instead of computing all the
blocks with the same color.

B. Time Complexity

We first analyze the time complexity of each iteration in
an optimization algorithm. The common steps of one itera-
tion are to first compute the gradient and/or (approximate)
Hessian and then solve the linear system. We know from
[28] that, on both CPU and GPU, computing ∂E(θ)

∂θ
has

complexity O(∣θ∣) and computing ∂2E(θ)
∂θ2

has complexity
O(∣θ∣2). Computing ∂3E(θ)

∂θ3
has complexity O(∣θ∣3) at least.

Solving the linear system takes O(∣θ∣3) on CPU and O(∣θ∣2)
on GPU. Note that a matrix inversion using branch-induced
sparsity has complexity O(∣θ∣2) on CPU [12], but it cannot
be used to solve a general JTJ form matrix. Finally, comput-
ing derivatives of GE(θ) will require higher order derivatives
of E(θ). For example, the computation of ∂GE(θ)

∂θ
involves

evaluating ∂2E(θ)
∂θ2

. The time complexities of all six cases
are summarized in Table I. Of the six choices, the costliest
one is to use LM for solving Equation 13, which involves
complex third order derivative evaluation and is clearly
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Fig. 4: The two benchmarks we
use to evaluate the performance
of different optimizers. (a): fixed
10-link chain with no contacts.
(b): floating 10-link chain falling
on the ground. We evaluate the
five different optimization algo-
rithms listed in Table I, except
LM+Equation 13. For each of
the five choices, we plot the
number of iterations taken by the
optimizer to convergence (c,d),
and the computational time to
finish the optimization (e,f) for
each timestep.

much costlier than other choices. Therefore, we exclude it
from our comparisons. In summary, our PBFD formulation
does require higher-order derivative computations than the
PBD formulation, but the time complexity of the JTJ-LM
algorithm is the same for both formulations.

As illustrated in Figure 4, we use two benchmarks to
evaluate the performance of different optimizers. Our first
benchmark is a 10-link chain under gravity with one end
fixed, where no contact forces are involved, so that Equa-
tion 6 coincides with Equation 13. In our second benchmark,
the 10-link chain has a floating base and falls on the ground
under gravity, where contact forces are involved. The time
cost of the five choices listed in Table I are plotted against
timestep indices. From the plots in Figure 4, we can see that,
although each iteration of LBFGS is faster in theory, many
more iterations are needed (off the chart in Figure 4 (c,d))
and the overall performance of LBFGS is worse than that of
LM (Figure 4 (e,f)). For PBD, JTJ-LM generally converges
faster than LM because each iteration is cheaper. Finally,
each iteration of PBFD is more costly than PBD using JTJ-
LM but the difference is marginal. In Section VI, we always
use JTJ-LM as our underlying optimizer.

VI. RESULTS AND ANALYSIS

We use two implementations of our algorithm based on
the multi-trajectory assumption. Our first implementation is
on a 4-core CPU (Intel i7-4790 3.6G) of a desktop machine,
where each core runs a single thread simulating a single tra-
jectory. Note that each iteration of (JTJ-)LM optimization on
the CPU takes O(∣θ∣3) due to a serial matrix inversion. Our
second implementation is on a 3584-core GPU (Nvidia Titan-
X) with every ∣θ∣ cores simulating a single trajectory. In this
case, each iteration of (JTJ-)LM optimization takes O(∣θ∣2).
In this section, we evaluate the accuracy and efficiency of
the PBFD formulation using a set of benchmarks. Our PBFD
formulation requires five parameters α > 1, β, γ > 0,C⊥,C∥.
In all our experiments, we set α = 2, β = γ = 1 and only tune
the last two parameters.

In our first benchmark (Figure 5), we compare the friction
forces predicted using the dry friction model (Equation 1
and Equation 7), the PBD formulation (Equation 6), and

our PBFD formulation (Equation 13). We simulate a 2D
box sliding on the ground with an initial horizontal velocity
and plot the change in sliding distance against the change
in friction coefficients. The friction coefficient is µ for the
dry friction model and C∥ for both the PBD and PBFD
formulations. Ideally, the sliding distance should consistently
decrease as the friction coefficient increases. Both the dry
friction model and our PBFD formulation can regenerate
the ideal behavior. However, due to the underestimation
of friction forces in PBD formulation, which is discussed
in Section IV-B, the sliding distance erroneously increases
when the friction coefficient is beyond a certain threshold.
On the other hand, as we increase the timestep sizes, the
simulator based on the Newton-Euler equation will become
unstable but our PBFD formulation always predicts stable
sliding distances. Finally, Figure 5 shows that, in order to
achieve a same sliding distance, the value of C∥ in PBFD
formulation is quite different from the value of µ in the dry
friction model. Currently we use Figure 5 to lookup C∥ based
on a desired sliding distance.

In our second benchmark (Figure 6 (a)), we compare
our PBFD formulation and the Newton-Euler-based solver
in terms of computational efficiency using three metrics.
Our first metric is the timestep size (Figure 6 (b)). PBFD
formulation only provides acceleration under a large timestep
size. In our specific benchmark, Newton-Euler-based solver
can only take ∆t < 0.0025s, while our PBFD solver can take
∆t = 0.1s. Under this setting, the speedup is 3X. When we
use a safer timestep size for the Newton-Euler-based solver,
i.e., ∆t = 0.001s, the speedup is 5X. Our second metric is
the average number of contact points. We observe that as the
number of contact points increases, the computation time of
Newton-Euler-based solver increases considerably because
more complementarity conditions (Equation 7) need to be
solved, while the performance of the PBFD solver is almost
invariant to the number of contact points (Figure 6 (c)). Our
last metric is the frictional coefficient (Figure 6 (d)). We
observed that the performance of both models are almost
invariant to the friction force coefficient change, although
the fluctuations in the Newton-Euler solver is more evident.

Our third benchmark demonstrates the performance of



Optimizer Objective Substep: Compute ∂E(θ)
∂θ

Substep: Compute (JTJ) Hessian Substep: GPU Matrix Inversion Total
LM Equation 6 O(∣θ∣) O(∣θ∣2) O(∣θ∣2) O(∣θ∣2)
JTJ-LM Equation 6 O(∣θ∣) O(∣θ∣2) O(∣θ∣2) O(∣θ∣2)
LBFGS Equation 6 O(∣θ∣) / / O(∣θ∣)
Optimizer Objective Substep: Compute ∂GE(θ)

∂θ
Substep: Compute (JTJ) Hessian Substep: GPU Matrix Inversion Total

LM Equation 13 O(∣θ∣2) O(∣θ∣3) O(∣θ∣2) O(∣θ∣3)
JTJ-LM Equation 13 O(∣θ∣2) O(∣θ∣2) O(∣θ∣2) O(∣θ∣2)
LBFGS Equation 13 O(∣θ∣2) / / O(∣θ∣2)

TABLE I: The time complexity of each iteration of optimization, including the complexity of each substep. “/” means a
certain substep is not required by the particular optimizer.
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Fig. 5: (a): We simulate a box sliding on the ground with an initial velocity of 1m/s, using different formulations. We plot
the box’s sliding distance against the change in the parameter controlling the strength of the friction forces. The parameter
is µ for the dry-friction model and C∥ for the PBD and PBFD formulations. (b): In both our PBFD formulation and the dry-
friction model, the sliding distance consistently decreases as the parameter increases (green, red). In the PBD formulation,
however, the sliding distance increases after the parameter exceeds a certain threshold due to the underestimation of friction
forces (blue). (c): As we use larger timestep sizes, the underestimation of friction forces in PBD becomes more obvious.
(d): When we further increase timestep sizes, the sliding distance of the dry friction model becomes unstable (green), while
our PBFD formulation is still stable.
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Fig. 6: (a): A 10-link chain sliding off a slope. (b): Time cost to compute a 10 seconds trajectory plotted against timestep
size. For the Newton-Euler solver, the simulator is stable only when ∆t < 0.0025s. (c): Time cost plotted against the average
number of contact points (more contact points derived by refining the mesh). (d): Time cost plotted again the frictional
coefficient (µ for the dry friction model, C∥ for the PBFD formulation).

our solver in reinforcement learning applications. We select
two famous RL benchmarks from [9], 2D-hopper and 3D-
walker. For each benchmark, we train a neural-net controller
using our PBFD formulation. We then test the neural-net
controller using a conventional formulation (Equation 1 and
Equation 7). Each iteration of RL takes 37 seconds for the
2D-hopper and 125 seconds for the 3D-walker on CPU. On
GPU, each iteration of RL takes 6 seconds for the 2D-hopper
and 31 seconds for the 3D-walker. The convergence of the
RL algorithm is plotted in Figure 7, and the average reward
achieved using the conventional formulation is drawn as the
red bar, which is close to the best reward achieved using our
PBFD formulation. This result supports our claim that the
accuracy of PBFD formulation is comparable to conventional
formulation on controller optimization applications.

Finally, we demonstrate the speedup of GPU paralleliza-
tion over the multithread CPU implementation. Our GPU
implementation only provides speedup when multiple trajec-
tories are simulated simultaneously. Therefore, in Figure 8,
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Fig. 7: We run two RL benchmarks, 2D-hopper (a) and
3D-walker (b). For each benchmark, we train a neural-
net controller using our PBFD model. The convergence
history of RL is plotted for each benchmark. Finally, we
test the neural-net on a conventional formulation, achieving
the reward shown as the red bar.

we plot the average computational time of GPU over CPU
with respect to the number of trajectories (K), and with
respect to the number of DOFs (∣θ∣). On Nvidia Titan-X,
the speedup ranges from 4− 15 times. We also observe that,
as the number of simulated trajectories increases, more GPU
cores are used to simulate the additional trajectories so that
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Fig. 8: (a): Average computational time to simulate one
timestep on GPU/CPU plotted against the number of DOFs
(∣θ∣). The average is taken over 200 trajectories (K = 200),
each with 1000 timesteps. (b): Average computational time
to simulate one timestep on GPU/CPU plotted against the
number of trajectories (K), each with 1000 timesteps. On
Nvidia Titan-X, the speedup over the multithread CPU
implementation ranges from 4 − 15 times. When more tra-
jectories are simultaneously simulated, more GPU cores are
used leading to faster computation on average (blue arrow).

the average solve time for one timestep decreases, as shown
in Figure 8 (b).

VII. CONCLUSION AND LIMITATIONS

We present PBFD: a new PBD formulation that takes
friction forces into account. PBFD is based on a non-
integrable gradient-level PBD formation that adds friction
forces as a non-integrable term. In a series of tests on prac-
tical benchmarks, PBFD performed consistently well, while
PBD fails in terms of friction force estimation. We present
practical algorithms to optimize the PBFD objective function
and show that this algorithm can be easily parallelized on
GPU to achieve 4−15 times performance improvement over
a multithread CPU implementation. Finally, we show that the
accuracy of the PBFD solver is sufficient for certain robotic
applications such as reinforcement learning by comparing
the performance of a trained controller on both the PBFD
formulation and the conventional formulation based on the
Newton-Euler equation.

Our method has two main drawbacks. First, the entire
PBD/PBFD framework is based on velocity estimation in
the Euclidean space (Equation 3). However, it has been
shown, e.g., [18], that respecting the Lie-group structure
of the configuration space will lead to improved accuracy.
Therefore, combining the PBFD formulation with Lie-group
representation of velocity is a promising direction of future
work. A second drawback is that our friction model is
different from the dry friction model and involves five param-
eters that must be tuned to achieve the highest accuracy. In
practice, we observe that the performance is only sensitive
to the last two parameters C⊥ and C∥. This also induces
future work on exploring other friction models in the PBD
framework.
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