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Abstract— We present a simple algorithm for approximating
the free configuration space of robots with low degrees of freedom
(DOFs). We represent the free space as an arrangement of contact
surfaces. We approximate the free space using an adaptive
volumetric grid that is computed by performing simple geometric
tests on the contact surfaces. We use an isosurface extraction
algorithm to compute a piecewise-linear approximation to the
boundary of the free space. We prove that our approximation is
topologically equivalent to the exact free space boundary. We also
ensure that our approximation is geometrically close to the exact
free space boundary by bounding its two-sided Hausdorff error.
We have applied our algorithm to compute the free configuration
space for the following instances: (1) a 2D polygonal robot with
translational and rotational DOFs navigating among polygonal
obstacles, and (2) a 3D polyhedral robot translating among
polyhedral obstacles. In practice, our algorithm works well on
robots with three DOFs.

I. INTRODUCTION

Configuration space is a fundamental concept in robotics
[17], [18]. Consider a robot R navigating among a stationary
rigid obstacle O. The configuration space C of R is the set of
all possible positions and orientations that R can assume. The
underlying idea of configuration space is to represent the robot
as a point in C and to map the obstacles to C. The obstacle O
maps to a region

CO = {q ∈ C : R(q) ∩ O 6= ∅},

in C, where R(q) is the subset of W occupied by R at the
configuration q. CO is called the C-obstacle region or the
forbidden region. The set

F = C \ CO

is called the free configuration space or the free space.
Configuration space reduces the problem of motion planning
of a dimensioned robot into the problem of planning the
motion of a point within the robot’s free space. Configuration
space has played a crucial role in helping understand motion
planning problems, and led to the development of many
motion planning algorithms. The problem of configuration
space computation is to compute the free space F . In this
paper, we present an algorithm to compute an approximation
of F , and give geometric and topological guarantees on its
accuracy.

Configuration space computation is a classic problem in
algorithmic robotics and computational geometry. This prob-
lem arises in several important applications such as motion
planning [1], [8], [18]–[20], collision detection and distance
computation [3], [5], layout and containment problems in
manufacturing [2], spatial reasoning [28], assembly and task
planning [23], and tolerance analysis and mechanism design
[12].

A general approach for configuration space computation
proceeds by enumerating contact surfaces for every pair of
features from the robot R and the obstacle O. A contact
surface of a geometric feature (vertex, edge, face) of R and a
similar feature (vertex, edge, face) of O is defined as the set of
points in the configuration space that represent configurations
of R at which contact is made between these specific features.
The set Γ of contact surfaces define an arrangement A(Γ).
The free space F consists of certain cells in this arrangement.
Therefore, F can be computed by computing A(Γ) [1], [10],
[14], [19]. The combinatorial complexity of the entire F
can be O(nk) where n is the number of contact surfaces in
Γ and k is the dimension of the configuration space [22].
Complexity bounds for F are also known for certain specific
cases of configuration spaces. For instance, in the case where
R is a non-convex polygon with p edges, translating and
rotating in a polygonal environment bounded by m edges,
the maximum complexity of F is Θ((pm)3). Similarly, if R
is a non-convex polyhedron with p polygons, translating in
a polyhedral environment bounded by m polygons, then the
maximum complexity of F is Θ((pm)3) [22].

A major bottleneck in using the above approach is ar-
rangement computation. Arrangement computation reduces to
computing intersections between pairs of surface primitives
and is prone to problems in accuracy and robustness [11]. Two
additional factors contribute to the difficulty of arrangement
computation. First, the number of surface primitives in the
arrangement can be high: the arrangement may have O(n2)
surfaces, where n is the number of features in the two objects.
In our applications, the arrangement may consist of several
thousands of surface primitives. Second, the surfaces in the
arrangement are non-linear in configuration space of robots
with rotational degrees of freedom. Computing intersections
between non-linear primitives is difficult to implement and



expensive in practice. Therefore, we avoid exact free space
computation.

Main Results

We present a simple algorithm to approximate F . Our algo-
rithm enumerates a set of contact surfaces whose arrangement
defines F . Instead of explicitly computing the arrangement,
we approximate F by generating an adaptive volumetric grid
in the configuration space C. Our algorithm ensures that every
grid cell satisfies two simple geometric tests: a complex cell
test and a star-shaped test. These two tests are sufficient
to capture the topology of F . The resulting grid serves as
an implicit representation of F . The main benefit of our
representation is that it eliminates the need for arrangement
computation. We compute an approximate boundary of F by
performing isosurface extraction on the grid using Marching
Cubes. This yields a piecewise linear approximation to ∂F
– the boundary of F . Our approximation is topologically
equivalent to ∂F : in particular, it has the same number of
connected components and identical genus. We also bound
the two-sided Hausdorff distance between ∂F and our approx-
imation. We have implemented the algorithm and applied it to
compute free space approximation for the following instances:
(1) a 2D polygonal robot with translational and rotational
DOFs navigating among polygonal obstacles, and (2) a 3D
polyhedral robot translating among polyhedral obstacles. As
compared to prior approaches, our algorithm is relatively
simple to implement.
Organization: The rest of the paper is organized in the
following manner. We give a brief overview of prior work
in free space computation in Section 2. Section 3 describes
a representation of the free space and gives an overview of
our approach. Section 4 presents an approach for computing
topology preserving surface approximation. Section 5 presents
an application of this approach to the problem of free space
computation. Section 6 describes its implementation and high-
light its performance.

II. PREVIOUS WORK

The problem of free space computation has been well
studied. This problem can be reduced to computing the ar-
rangement of contact surfaces. The arrangement computation
problem is ubiquitous by nature, and it arises in a number of
applications. A survey of different algorithms and complexity
bounds for arrangements computations is given in [7], [22].

The maximum complexity of the entire F can be O(nk)
where n is the number of contact surfaces in Γ and k is the
dimension of the configuration space [22]. For applications
such as motion planning, it is not necessary to compute
the entire F ; it is sufficient to compute a single connected
component of F . Halperin and Sharir [9] showed that the
combinatorial complexity of a single cell of an arrangement
of n surfaces in three dimensions is O(n2+ε), for any ε > 0,
where the constant of proportionality depends on ε and on the
maximum degree of the surfaces. Some of the major issues
in the implementation of arrangement computation algorithms

are accuracy and robustness problems. It is quite hard to
enumerate all degenerate configurations, especially when the
primitives (i.e. the contact surfaces) are non-linear primitives.

Few practical algorithms have been proposed for the case of
a planar rigid robot with translational and rotational degrees
of freedom [1], [19], [20]. These algorithms compute F
by using a discrete number of slices along the orientation
parameter (rotational degree of freedom). The boundary of ∂F
is composed of ruled surface patches generated by contacts
between a moving vertex R and an obstacle edge of O or
between a moving edge of R and an obstacle vertex of O.
Avnaim et al. [1] presented an algorithm for constructing F
in Θ((pm)3 log pm) time. Sacks [19], [20] used a similar
formulation and developed the first complete motion planning
algorithm that is practical for real-world applications. Sacks’s
algorithm is applicable to polygonal as well as curved primi-
tives. For polygonal primitives, testing for a criticality reduces
the problem to solving only a quadratic equation. In the worst
case, the algorithm may need to test for O(m3n3) criticality
conditions.

Many algorithms have been proposed for computing C-
obstacle of robots with only translational degrees of freedom.
In this case, the C-obstacle is equal to the Minkowski sum
of the obstacle and the robot (reflected about its origin).
Many algorithms have been proposed for Minkowski sum
computation [4], [6], [17], [26]. All of these algorithms reduce
the problem to computing either an arrangement or a union of
a large set of primitives, which can be difficult in practice. As
a result, some algorithms [26] compute only an approximation
to the Minkowski sum.

III. OVERVIEW

In this section, we describe a representation of the free space
followed by an overview of our approach.

A. Notation

We use the following notation in the rest of the paper. We
use lower case bold letters such as p, q to refer to points in
R

d.
The symbols R and O denote the robot and the obstacles

respectively. C denotes the configuration space. F denotes
the free space and ∂F denotes its boundary. To simplify
the exposition, we will assume that C is three-dimensional;
however, we note that our algorithm is general and applicable
to any configuration space dimension.

Our algorithm uses an adaptive volumetric grid – a spatial
subdivision of the configuration space C. The letter C denotes
a single cell in the grid. We assume a grid cell is a closed set
and consists of a cube-shaped voxel, six faces, twelve edges,
and eight vertices. We define a restriction of a set S to a grid
cell C as SC = S ∩ C.

A homeomorphism is a continuous bijective mapping with
a continuous inverse. Two objects are homeomorphic or topo-
logically equivalent if there exists a homeomorphism between
them.
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Fig. 1. Complex cell and Star-shaped Test Cases: This figure shows the different cases corresponding to the complex cell and star-shaped test. Figs (a),
(b), (c) and (d) show cases of complex voxel, complex face, complex edge, and topological ambiguity. The white and black circles denote positive and negative
grid points respectively. Fig. (e) shows the case where the isosurface is not star-shaped w.r.t a voxel. In Fig (f), the restriction of the isosurface to the right
face of the cell is not star-shaped.

Given a set Q, let d(p,Q) denote the distance between
a point p and Q under some suitable metric (typically Eu-
clidean). The one-sided Hausdorff distance between two sets
P and Q is defined as follows:

h(P,Q) = max{min d(p,Q) | p ∈ P}

Note that the above definition is not symmetric, i.e., h(P,Q)
is not necessarily equal to h(Q,P). The two-sided Hausdorff
distance is defined as:

H(P,Q) = max(h(P,Q), h(Q,P))

B. Free Space Representation

We assume that the robot R is a rigid or an articulated object
moving among stationary rigid obstacles O. We also assume
that the geometry of both R and O is accurately known. The
free space F is the set of configurations at which R does not
collide with O. The boundary of F , denoted as ∂F , consists
of those configurations of R at which R makes contact with
O, but does not penetrate into the interior of O. Therefore, ∂F
can be expressed in terms of a collection of contact surfaces
(C-surfaces), each being the locus of configurations of R at
which a specific feature of R is in contact with a feature of
O. We refer the reader to [14] for a detailed explanation of
C-surfaces. We note two important properties of C-surfaces:

Superset property: The set Γ of C-surfaces define an arrange-
ment in C. F is a collection of cells in this arrangement; a cell
corresponding to a connected component of F . Furthermore,
Γ is a superset of the boundary ∂F of free space, i.e., ∂F ⊆⋃
{γi ∈ Γ}.

Orientation property: We can assign an orientation to each
C-surface. We explain this with an intuitive argument. Con-
sider a C-surface γ generated by the contact between a robot
feature f1 and an obstacle feature f2. Points on one side of
γ correspond to the case where f1 has penetrated f2. These
points belong to C-obstacle. On the other hand, points on the
other side correspond to no overlap or contact between f1 and
f2. We orient γ by assigning a normal at p to point “towards
C-obstacle”. A more precise explanation of the orientation
property can be found in [25].

∂F can be obtained by computing the arrangement of Γ. For
a 3-dimensional configuration space, the set of 2-dimensional
cells in the arrangement provides a partition of the C-surfaces
into a set of surface components. Given such a partition, we
can combine a subset of the surface components to obtain ∂F .
However, this is not feasible in practice due to the difficulty

of arrangement computation. Therefore, we avoid exact free
space computation.

C. Our Approach

We compute an approximation to ∂F using distance field-
based techniques. We compute a signed distance field to ∂F . A
signed distance field D : R

3 → R is a continuous function that
at a point p measures the distance between p and ∂F under
a suitable metric (e.g., Euclidean). This value is positive or
negative depending on whether the point lies outside or inside
∂F .

A common way of representing the signed distance field is
to discretize the continuous distance field into discrete samples
– to compute the value of the distance field at the vertices
of a volumetric grid. We refer to this step as sampling of the
distance field. The grid is an approximate representation of the
distance field; the accuracy of the approximate representation
depends on the rate of sampling – the resolution of the grid.

The overall approach proceeds in the following steps:

1) Sampling: Generate an adaptive voxel grid and compute
the signed distance field at its grid points.

2) Reconstruction: Use some variant of Marching Cubes
algorithm [13], [16] to perform isosurface extraction
from the distance field. The extracted isosurface is a
piece-wise linear approximation to ∂F .

Two important advantages of the above approach are simplicity
and efficiency. Each step is easy to implement. A uniform grid
or an adaptive grid (e.g. octree) may be chosen. Isosurface
extraction is also reasonably straightforward; Marching Cubes
is both simple and fast. Many public domain implementations
of Marching Cubes [21] are available. Moreover, this approach
does not require arrangement computation.

IV. APPROXIMATE APPROACH

In our prior work [24], we presented an algorithm for com-
puting topology preserving isosurfaces and used it to perform
Boolean operations. We apply this algorithm to the problem
of free space computation. We provide a brief description of
this algorithm. It is based on the sampling and reconstruction
approach presented in Section III-C. Given a Boolean expres-
sion defined over a set of primitives, it generates an adaptive
volumetric grid. Let E denote the boundary of the final solid
defined by the Boolean expression. The algorithm starts with a
single grid cell that encloses E . It performs two tests, complex
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cell test and star-shaped test, to decide whether to subdivide
a grid cell.

Complex Cell Test
We define a voxel (face) of a grid cell to be complex if it

intersects E and the grid vertices belonging to the voxel (face)
do not exhibit a sign change (Figs. 1(a) & 1(b)). The sign of
a vertex is positive if it lies within E , negative otherwise. An
edge of the grid cell is said to be complex if E intersects the
edge more than once (Fig. 1(c)). It is well known that March-
ing Cubes produces topologically ambiguous output for certain
sign configurations (Fig. 1(d)). These sign configurations are
referred to as ambiguous sign configurations.

DEFINITION 1
1) Complex cell: A cell is complex if it has a complex

voxel, complex face, complex edge, or an ambiguous sign
configuration.

2) Complex cell test (C2) : A cell C satisfies C2 if C is
not complex.

Intuitively, C2 ensures that the surface intersects the grid
cell in a simple manner in most cases. If a grid cell does not
satisfy C2, it is subdivided and the algorithm is recursively
applied to each of its children cells.

Star-shaped Test
A surface E is star-shaped if there exists a point o ∈ R

3

(called guard) such that for any x ∈ E we have ox∩E = {x}.
Intuitively, the guard can “see” every point on a star-shaped
surface.

We now define the star-shaped property for a cell. We say
E is star-shaped with respect to (w.r.t) a voxel ϑ if there exists
a point o ∈ R

3 such that for any x ∈ Eϑ = E ∩ ϑ we have
ox∩Eϑ = {x}. Point o is a guard of Eϑ. A similar property is
also defined for the faces of the cell. We define E to be star-
shaped w.r.t a cell if it is star-shaped w.r.t the cell’s voxel, and
each of its faces.

DEFINITION 2
Star-shaped test (CF) : A cell C satisfies CF if E is star-
shaped w.r.t C.

If a cell does not satisfy CF, it is subdivided and the algorithm
is recursively applied to the children cells.

In this manner, by applying C2 and CF, the algorithm
generates a volumetric grid. It uses Marching Cubes to perform
isosurface extraction on the resulting grid. The extracted
surface is a piecewise-linear approximation to E .

In [24], we used max-norm distance computation, linear
programming, and interval arithmetic to perform the complex
cell and star-shaped tests. Performing these computations does
not require an explicit representation of E . They can be
performed even when E is defined as a Boolean combination
of a number of primitives. We refer the reader to [24] for
additional details.

V. FREE SPACE APPROXIMATION ALGORITHM

We apply the approximate algorithm described in Sec. IV
to the problem of free space computation. We generate an
adaptive volumetric grid in C by performing the complex cell
and star-shaped tests on ∂F . The computational techniques
presented in [24] to perform these tests assume that the desired
surface is defined as a Boolean combination over a set of
closed primitives. This assumption does not hold in the case
of free space computation: ∂F is defined as an arrangement
of C-surfaces. Furthermore, C-surfaces may have boundaries.

We present a set of techniques for performing complex
cell and star-shaped tests for free space computation. The
complex cell and star-shaped tests rely on a number of queries:
sign query, star-shaped query, and cell intersection query. We
first present techniques for answering these queries without
computing an explicit representation of ∂F . We then present
the adaptive subdivision algorithm that performs the complex
cell and star-shaped tests.

Fig. 2. Star-shaped Test: If in a cell C, all the C-surfaces satisfy the
contact surface condition (Equation 1), then ∂F ∩ C is star-shaped w.r.t o.
The arrows indicate the orientation of the C-surfaces.

A. Supporting Queries

Sign Query

Given a point q ∈ C, the sign query determines whether
q belongs to the free space, i.e., if q ∈ F . The definition
of the free space reduces this query to a collision check
between R(q) and the obstacles: q ∈ F if and only if R(q)
does not intersect any obstacle. Therefore, this query can be
implemented using a collision detection routine [15].

Star-shaped Query

Consider a grid cell C in the configuration space. The star-
shaped query answers the following question: is ∂F star-
shaped w.r.t C? We need to perform two tests on ∂F – (a)
star-shaped w.r.t voxel, and (b) star-shaped w.r.t. each face.
We present a conservative technique to perform both tests.
We exploit the fact that the C-surfaces form a superset of ∂F
(Superset property, Sec. III-B). This reduces the problem to
performing certain computations on the C-surfaces.

Let S be a voxel or a face of cell C. Let Γ denote the set
of all C-surfaces. For each C-surface γi ∈ Γ that intersects S,
compute the restriction γi,S = γi ∩S to S. Let ΓS denote the
resulting set of surfaces.

We can answer the star-shaped query provided S satisfies
the following condition:
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Contact Surface Condition:
Is there a point o ∈ S such that
For each γi,S ∈ ΓS the following holds:
for all x ∈ γi,S with normal nx we have

ox · nx > 0 (1)

See Fig. 2. If S satisfies the above condition, then we can
answer the star-shaped query. This is formally stated as the
following theorem.

THEOREM 1
Star-shaped test: Suppose S satisfies the contact surface con-
dition (Equation 1). Then

1) FS 6= ∅ ⇐⇒ o ∈ F .
2) If ∂FS 6= ∅, then ∂FS is star-shaped w.r.t o.

The proof of this result can be found in [25].
Theorem 1 reduces the star-shaped query on ∂F to verifying

the contact surface condition for the contact surfaces. We can
perform this verification using linear programming and interval
arithmetic based techniques, as described in [24].

The above test for star-shaped query is conservative: if a cell
C passes the test, then ∂F is star-shaped w.r.t C; however, the
converse is not true. It is possible for F to be star-shaped
w.r.t C even if the contact surface condition is not satisfied.
The main advantage of the test is that it does not require an
explicit representation of F . If C fails the above tests, then we
subdivide C and repeat the tests on the subdivided cells. While
this may result in some unnecessary subdivision, it preserves
the correctness of the algorithm.

Cell Intersection Query

The objective of cell intersection query is to test if ∂F
intersects the cell. Specifically, we need to test if ∂F intersects
a voxel, a face, or an edge of a cell. We refer to these three
tests collectively as cell intersection queries, and individually
as voxel, face, and edge intersection query.

Voxel/Face Intersection Query: Let S be a voxel or a face
of cell C. This query answers whether ∂F intersects S, i.e., if
∂FS 6= ∅. In general, this query is difficult without an explicit
representation of ∂F . We answer the intersection query in a
special case – when S satisfies the contact surface condition.
In this case, we use a test based on the following corollary of
Theorem 1.

COROLLARY 1
Cell Intersection query: Suppose S satisfies the contact sur-
face condition. Then

o ∈ F ∧ ΓS 6= ∅ ⇐⇒ ∂FS 6= ∅

The proof of this result can be found in [25].
We can check if o ∈ F using the sign query. To check if

ΓS 6= ∅, we need to test if any C-surface in Γ intersects S.

Algorithm 1 Adaptive Subdivision(C)
Input: Grid cell C
Output: An adaptive subdivision of C.

if (C passes the star-shaped test) then
o = origin of C
if o /∈ F then

return C
end if
if (C passes the complex cell test) then

return C
end if

end if
Subdivide C into children cells Ci

for each child Ci do
Adaptive Subdivision(Ci)

end for

This can be done using either max-norm distance computation
and interval arithmetic based techniques, as described in [24].

Edge Intersection Query: Consider an edge e with endpoints
a and b. This query computes the number of points at which
∂F intersects e. If the number of intersection points is greater
than 0, then e is intersected by ∂F .

We exploit the superset property of contact surfaces. We
compute the intersection of e with all the contact surfaces. Let
I = {p1,p2, . . . ,pk} denote the resulting set of intersection
points. Since the contact surfaces are a superset of ∂F , some
of these intersection points may not belong to ∂F . We perform
a test on each pi to check if it belongs to ∂F .

Assume that the intersection points in I are sorted along
the edge: Point pi is closer to a than pi+1. Define p0 = a

and pk+1 = b. Compute a set of points {q0, . . . ,qk} where
qi = (pi+pi+1)/2. Point pi belongs to ∂F if either qi−1 ∈ F
or qi ∈ F , which can be tested using the sign query.

B. Adaptive Subdivision Algorithm

We generate a spatial subdivision of the configuration space
C in the form of an adaptive volumetric grid. The algorithm
starts with a single grid cell that bounds all the contact
surfaces. The algorithm performs both complex cell test and
star-shaped test on the grid cell. If both the tests pass the grid
cell is returned as a leaf node of the adaptive grid. Otherwise
the grid cell is subdivided and the algorithm is recursively
applied to its children cells. The algorithm terminates when
all the grid cells satisfy the complex cell and star-shaped tests.

Below we give details of the complex cell and star-shaped
tests. We impose an order in which the two tests must be
applied: we require that the star-shaped test be executed before
the complex cell test. The reason for imposing this order will
be evident below.

Star-shaped Test

The star-shaped test performs two tests on ∂F – (a) star-
shaped w.r.t voxel, and (b) star-shaped w.r.t. each face. We use
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(a) Adaptive Subdivision (b) Reconstruction

Fig. 3. Fig. (a) highlights our adaptive subdivision algorithm in 2D. The
figure shows an arrangement of oriented contact surfaces and the C-obstacle
space (shown in gray). Cell ABCD does not satisfy either the star-shaped
or complex cell tests and therefore gets subdivided. Cell EBNF satisfies
both the tests and hence does not get subdivided. The adaptive subdivision
continues until all the grid cells satisfies the two tests. Fig. (b) shows the result
of applying Marching Cubes to the grid generated in Fig. (a). The resulting
surface (shown in green) is topologically equivalent to the boundary of the
free space.

the star-shaped query presented in Sec. V-A to perform these
tests.

If any of these tests result in the negative, we subdivide the
cell and apply the algorithm recursively to the new cells.

Complex Cell Test

We perform the complex cell test on a cell C only when
C has already satisfied the star-shaped test. This means C
satisfies the contact surface condition (Equation 1). Hence we
can use Corollary 1 to perform the cell intersection query
on C. We take advantage of this fact while performing the
complex cell test.

To check whether a cell is complex, we perform the follow-
ing tests:

• Complex Voxel/Face: We use the cell intersection query
to check whether ∂F intersects a voxel or face of the cell.
If ∂F intersects the voxel (face), then we determine if the
voxel (face) is complex by checking for a sign change
at the cell vertices. The signs at the cell vertices are
computed using the sign query. If ∂F does not intersect
the voxel (face), then the voxel (face) is not considered
complex.

• Complex Edge: We use the edge intersection query to
test if an edge is complex. An edge is complex if the ∂F
intersects the edge in more than one point.

• Ambiguity: We use the signs at the grid vertices to
resolve cases corresponding to face and voxel ambiguity.

If any of these tests results in the affirmative, the cell is com-
plex, and we subdivide it and apply the algorithm recursively
to the new cells.

Alg. 1 shows the pseudo-code of our adaptive subdivision
algorithm. Fig. 3 illustrates the algorithm in 2D.

C. Geometric and Topological Guarantees

The adaptive subdivision algorithm generates an adaptive
volumetric grid such that every grid cell satisfies the complex
cell and star-shaped tests. In [24], we have shown that this
is a sufficient condition for topology preserving isosurface
extraction: applying Marching Cubes to such a grid produces a
piecewise-linear approximation A that is topologically equiv-
alent to ∂F . In particular, A has the same number of con-
nected components and genus as ∂F . Furthermore, we have
also described a simple extension to the adaptive subdivision
algorithm that bounds the Hausdorff distance H(A, ∂F), also
referred to as the Hausdorff error. The main idea is to check
if a cell satisfies the following test:

DEFINITION 3
Hausdorff test (Cε) : Given an ε > 0, a cell C satisfies Cε if

H(AC , γi,C) < ε ∀ γi ∈ Γ such that γi,C 6= ∅

where γi,C = γi ∩ C is the restriction of γi to C.

If every grid cell bounding ∂F satisfies Cε, then we can show
that H(A, ∂F) is bounded by ε. This property is used in the
subdivision algorithm to obtain a bounded Hausdorff error. A
detailed explanation of this technique can be found in [25].

The following guarantees follow from the results in [24].

THEOREM 2
If every cell in the volumetric grid satisfies C2, CF, and Cε then

1) Geometric Guarantee: Given any ε > 0, our algo-
rithm outputs a free space approximation A such that
H(A, ∂F) < ε.

2) Topological Guarantee: Our free space approximation
A is topologically equivalent to ∂F .

Together, the geometric and topological guarantees ensure an
accurate free space approximation.

VI. IMPLEMENTATION AND RESULTS

In this section, we describe the implementation of our algo-
rithm and demonstrate its performance on configuration space
generation examples. We used C++ programming language
with the GNU g++ compiler under Linux operating system.
Table I highlights the performance of our algorithm on these
models. All timings were obtained on a 2 GHz Pentium IV
PC with a GeForce 4 graphics card and 1 GB RAM.

Complexity Performance
Model Num of Edges # Surf Grid Gen Isosurface Free Space Size

Obstacle Robot size (s) (s) size
Assembly 224 224 256 6 1.8 22,928

Maze 30 24 1,550 12 1.68 21,402
Gears 36 72 3,929 212 3.2 66,389

TABLE I
Performance: This table highlights the performance of our algorithm on

different models. The model complexity is provided in terms of the number

of edges of the polygonal objects. The table shows the number of contact

surfaces, the time for grid generation, the time for isosurface extraction,

and the size of the free space boundary.
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Fig. 4. Configuration space of a planar robot capable of translation and rotation This figure highlights application of our free space approximation
algorithm. The top left image shows a gear-shaped robot R navigating amongst two gear-shaped obstacles (O1 & O2) shown in gray. The start and goal
configurations of the robot are shown in red and green respectively. Several intermediate configurations are also shown. The bottom left image is a color-
coded image of the C-surfaces. The two images on the right show two views of our free space approximation (drawn translucently). The images also show a
collision-free path that was computed using the star-shaped roadmap algorithm [27].

Fig. 5. The top image shows a non-convex planar robot navigating through
a maze. The robot is capable of both translation and rotation. The bottom
image shows our approximation to the robot’s free space.

We demonstrate the application of our algorithm to two
examples. Fig. 5 shows a robot navigating within a maze
model. The free configuration space is defined in terms of
1, 550 contact surfaces. The figure shows a view of our free
space approximation.

Fig. 4 shows another example of a gear-shaped robot
navigating among two gear-shaped obstacles. We enumerated
a set of 3, 929 contact surfaces. We computed a collision-free
path for this example using the star-shaped roadmap algorithm
[27], which is a deterministic sampling algorithm for complete
motion planning. The images show the path superimposed onto

the free space approximation.
Fig. 6 shows an application of our algorithm to 3D

translational assembly planning. The figure shows our free
space approximation.

Table I lists the time in computing the boundary of the free
configuration space. The table also shows the complexity of
the grid size and the boundary of free configuration space.

A. Limitations

Our algorithm assumes that the free space does not have
any tangential contacts. A tangential contact occurs when two
C-surfaces touch each other at a point thus forming a narrow
passage of width zero in the free space. This may occur in
cases where the robot must touch an obstacle in order to
pass through a narrow passage to reach the goal configuration.
Dealing with such degenerate cases is a difficult problem.

A bottleneck in our approach is the large number of C-
surfaces. Typically, our method enumerates O(n2) C-surfaces
where n is the number of features in the robot and the
obstacles. Many of these C-surfaces lie within C-obstacle and
do not contribute to the actual boundary of the free space,
thus adding an unnecessary overhead to the algorithm. We
can alleviate this problem by using better culling techniques
to eliminate such C-surfaces [29].

Our algorithm is not specific to a fixed configuration space
dimension. In theory, it is applicable to robots with arbitrary
DOF. However, the theoretical complexity and the implemen-
tation complexity grow considerably with DOF.
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Fig. 6. This example demonstrates the application of configuration space
approximation algorithm to assembly planning. There are two parts each with
pegs and holes. The goal is to assemble the two parts so that the pegs of one
part fit into the holes of the other. We applied our free space approximation
algorithm to this example. The images on the right show two views of the free
configuration space approximation (one solid and one wireframe). The images
also show a collision-free path computed using the star-shaped roadmap
algorithm [27].

VII. CONCLUSIONS AND FUTURE WORK

We have presented a practical algorithm for approximat-
ing the free configuration space of robots with translational
and rotational degrees of freedom. Unlike previous methods,
our algorithm avoids computing an arrangement of the C-
surfaces. Instead, we use a grid-based method to compute a
geometrically close and topologically correct approximation.
The algorithm is simple to implement in practice.

There are many avenues for future work. For some appli-
cations, a robot is allowed to be in contact with the obstacles.
We would like to extend our algorithm to accommodate
this. We are interested in application of our algorithm to
higher degrees of freedom (e.g. 6-DOF) configuration space
computation. It is possible to extend our current algorithm to
approximate the configuration space of curved planar objects.
The contact surface generation step of our algorithm will need
to be extended: this could be done similarly to the approach
presented in [19]. Finally, we would like to improve the
adaptive subdivision algorithm by making our approach less
conservative, thus improving the overall performance of our
algorithm.

ACKNOWLEDGMENT

This project was supported in part by ARO Contracts
DAAD19-02-1-0390 and W911NF-04-1-0088, NSF awards
0400134 and 0118743, ONR Contract N00014-01-1-0496,
DARPA/RDECOM Contract N61339-04-C-0043 and Intel.
Young J. Kim was supported in part by the grant R08-2004-
000-10406-0 of KRF, the STAR program of MOST, the Ewha
SMBA consortium and the ITRC program.

REFERENCES

[1] Francis Avnaim and J.-D. Boissonnat. Practical exact motion planning
of a class of robots with three degrees of freedom. In Proc. of Canadian
Conference on Computational Geometry, page 19, 1989.

[2] Karen Daniels and Victor Milenkovic. Multiple translational contain-
ment: Approximate and exact algorithms. pages 205–214, 1995.

[3] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the
intersection-depth of polyhedra. Algorithmica, 9:518–533, 1993.

[4] E. Flato and D. Halperin. Robust and efficient construction of planar
minkowski sums. In Abstracts 16th European Workshop Comput. Geom.,
pages 85–88, 2000. Eilat.

[5] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects. Internat. J. Robot.
Autom., 4(2):193–203, 1988.

[6] L. Guibas and R. Seidel. Computing convolutions by reciprocal search.
Discrete Comput. Geom, 2:175–193, 1987.

[7] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 21, pages
389–412. CRC Press LLC, Boca Raton, FL, 1997.

[8] D. Halperin. Robust geometric computing in motion. International
Journal of Robotics Research, 21(3):219–232, 2002.

[9] D. Halperin and M. Sharir. Almost tight upper bounds for the single
cell and zone problems in three dimensions. 14:385–410, 1995.

[10] D. Halperin and M. Sharir. Arrangements and their applications in
robotics: Recent developments. In K. Goldberg, D. Halperin, J.-C.
Latombe, and R. Wilson, editors, Algorithmic Foundations of Robotics,
pages 495–511. A. K. Peters, Wellesley, MA, 1995.

[11] C. Hoffmann. Robustness in geometric computations. Journal of
Computing and Information Science in Engineering, 1:143–156, 2001.

[12] Leo Joskowitz and Elisha Sacks. HIPAIR: Interactive mechanism
analysis and design using configuration spaces. In ACM Symposium
on Computational Geometry, pages V5–V6, 1995.

[13] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite
data. ACM Trans. on Graphics (Proc. SIGGRAPH), 21(3), 2002.

[14] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[15] M. Lin and D. Manocha. Collision and proximity queries. In Handbook
of Discrete and Computational Geometry, 2003.

[16] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. In Computer Graphics (SIGGRAPH
’87 Proceedings), volume 21, pages 163–169, 1987.
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