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Abstract— We present an efficient algorithm for complete mo-
tion planning that combines approximate cell decomposition
(ACD) with probabilistic roadmaps (PRM). Our approach
uses ACD to subdivide the configuration space into cells and
computes localized roadmaps by generating samples within
these cells. We augment the connectivity graph for adjacent
cells in ACD with pseudo-free edges that are computed based
on localized roadmaps. These roadmaps are used to capture the
connectivity of free space and guide the adaptive subdivision
algorithm. At the same time, we use cell decomposition to check
for path non-existence and generate samples in narrow pas-
sages. Overall, our hybrid algorithm combines the efficiency of
PRM methods with the completeness of ACD-based algorithms.
We have implemented our algorithm on 3-DOF and 4-DOF
robots. We demonstrate its performance on planning scenarios
with narrow passages or no collision-free paths. In practice, we
observe up to 10 times improvement in performance over prior
complete motion planning algorithms.

I. INTRODUCTION

Motion planning is a well-studied problem in robotics and
related areas. In this paper, we address the problem of
complete motion planning of rigid or articulated robots
among static obstacles. A complete motion planner either
computes a collision-free path from the initial configuration
to the goal configuration or concludes that no such path
exists.

Many approaches have been developed for motion planning
among static obstacles. An important concept for motion
planning is the configuration space, namely C, where the
robot is represented as a point, and the obstacles in the scene
are mapped to configuration space obstacles or C-obstacles,
O. The problem of finding a collision-free path for a robot
can be mapped to computing a path for the point in the free
space F=C\O. Most prior approaches can be classified based
on how they represent or compute the free space F .

Some of the earlier exact algorithms for complete motion
planning include criticality-based algorithms, exact cell de-
composition and roadmap computation [6], [18]. However,
due to the difficulty of computing the exact representation
of F , most implementations of these algorithms are limited
to low-DOF robots or special shapes.

Most practical algorithms for complete motion planning of
general robots are based on approximate cell decomposition
(ACD) [4], [18]. ACD algorithms are resolution-complete:
they can either find a collision-free path or conclude that
no such path exists provided the number of subdivisions
is high or small resolution parameters are chosen. The
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Fig. 1. Benefits of our hybrid algorithm: This example highlights that our
hybrid algorithm can combine both benefits of ACD and PRM. First row:
(a) In ACD, to capture the connectivity of the free space within this mixed
cell, many subdivisions are required; (b) A localized roadmap within this
cell can well capture its connectivity by only a few samples, and thereby can
improve the overall performance of the planning algorithm of ACD. Second
row: (c) It is difficult for PRM methods to sample in the narrow passage;
(d) The structure of the cell decomposition can be used to generate more
samples in the narrow passage.

basic ACD method subdivides C into rectangular cells in
a hierarchical manner. By using cell labelling algorithms
[31], each generated cell is labelled as one of three types:
empty if it lies completely in F , full if it lies completely
in O, or mixed otherwise. Then ACD algorithms construct
a connectivity graph to represent the adjacency among cells
and utilize it for finding a collision-free path or checking for
path non-existence [18], [31]. In practice, these algorithms
can generate a large number of mixed cells. Moreover, the
complexity of the subdivision algorithm increases exponen-
tially with the dimension of C. As a result, most prior ACD
implementations are limited to 3-DOF robots.

The practical motion planning algorithms for high-DOF
robots are based on sampling-based approaches, including
the probabilistic roadmap (PRM) method and its variants.
Because of their simplicity and efficiency, these algorithms
have been successfully used to solve many high-DOF motion
planning problems. However, these algorithms may not ter-
minate when no collision-free path exists in the free space.
Their performance can degrade when the configuration space
has narrow passages.

Main Results: We present a novel approach that combines
the completeness of ACD with the efficiency of PRM for
motion planning among static obstacles. We compute a local-
ized roadmap within each mixed cell of ACD by generating
random samples. Our algorithm augments the connectivity
graph of ACD by using pseudo-free edges to represent the
inter-connectivity of localized roadmaps between adjacent



cells. The localized roadmaps along with the augmented
connectivity graph provide an effective representation for ap-
proximating the free space. This approximate representation
is incrementally refined by using either spatial subdivision
or sampling, and is useful for both path computation and
checking for path non-existence.

The combination of ACD and PRM results in many benefits.
We use the knowledge of mixed cells to guide the sampling
in narrow passages in C, and thereby improve the efficiency
of the sampling algorithm. Similarly, we use the connectivity
of localized roadmaps to perform adaptive subdivision and
reduce the number of generated cells. Overall, the combi-
nation of localized roadmaps and ACD provides us with a
compact representation of C that is used for path computation
as well as path non-existence queries.

We have implemented this algorithm and applied it to many
3-DOF and 4-DOF motion planning scenarios. Compared to
prior PRM algorithms, our hybrid approach can easily handle
narrow passages and check for path non-existence. Moreover,
compared to prior ACD algorithms, we perform much fewer
subdivisions. This can reduce the overall memory overhead
and improve the runtime performance by up to ten times in
our benchmarks. The main limitation of our approach comes
from the underlying complexity of ACD, and our approach
may not be practical for high-DOF robots.

Organization: The rest of the paper is organized as follows.
In Section II, we briefly survey related work on motion
planning. In section III, we give an overview of our hybrid
approach and introduce the key data structures. Section
IV gives the details of localized roadmap computation and
subdivision algorithms. We describe our implementation in
Section V and highlight its performance on many bench-
marks. In Section VI, we discuss the limitations of our
method and compare its performance with prior approaches.

II. PREVIOUS WORK

Motion planning has been extensively studied for several
decades. A detailed survey of these algorithms can be found
in [6], [18], [19].

A. Complete Motion Planning
Some of the earlier algorithms for complete motion planning
compute an exact representation of the free space F . These
include criticality-based algorithms such as exact free-space
computation for a class of robots [2], [7], [10], [16], [21],
roadmap methods [5], and exact cell decomposition methods
[25]. Recently, a star-shaped roadmap representation of F
has been proposed and applied to low-DOF robots [29].
However, due to the difficulty of exact geometric compu-
tation, no practical and efficient implementations of these
algorithms are known for high-DOF robots [11].

B. Probabilistic Roadmap Methods
The probabilistic roadmap approach (PRM) [15] and its
variants are the most widely used path planning algorithms
for many practical applications. A good summary of this

topic as well as its analysis can be found in [13]. The PRM-
based algorithms attempt to capture the connectivity of F
by randomly sampling F and connecting the samples to
form a roadmap. These algorithms are relatively simple to
implement and have been successfully applied to high-DOF
robots. However, PRM methods may not terminate when no
collision-free path exists. Moreover, due to the nature of
probabilistic sampling, these algorithms may fail to find a
path, especially when the free space has narrow passages. In
order to address the issue of the narrow passages, a number
of sampling strategies have been proposed, including dense
sampling along obstacle boundaries [1], medial axis-based
sampling [9], [24], [30], visibility-based techniques [26],
using workspace information [17], [28], dilation of free space
[12], and using filtering strategies [3], [27]. However, all
these methods are probabilistically complete: if a solution
exists, the planner finds one in bounded time with high
probability; otherwise, the planner may not terminate.

C. Approximate Cell Decomposition

A number of algorithms based on Approximate Cell De-
composition (ACD) have been proposed [4], [32]. The ACD
algorithms attempt to partition C into a collection of cells
similar to exact cell decomposition. Unlike exact cell de-
composition, the cells in ACD have a simple shape (e.g.
rectangoloids) and each cell is labelled as empty, full or
mixed. The ACD algorithms compute a collision-free path
using a conservative approximation of F , i.e. a subset of
F , or check for path non-existence using a representation of
a superset of F . In order to reduce the number of cells in
ACD, techniques such as first graph cut method [18] have
been devised, in which only the mixed cells along the current
searching path instead of all mixed cells are subdivided. In
[20], a lazy cell labeling method is presented to improve the
performance of ACD algorithms. However, in this variant,
the property of resolution-completeness is not preserved any
more.

One of the main challenges in ACD algorithms is cell
labelling. The cells can be labelled based on contact surface
computations [32]. However, this method is difficult to
implement and prone to degeneracies. Robust cell labelling
methods based on workspace distance and generalized pen-
etration depth computation have also been proposed [23],
[31].

D. Hybrid Motion Planning Algorithms

Many hybrid approaches have been proposed for efficient
motion planning by combining different methods [8], [11],
[14], [22]. In particular, Hirsch and Halperin [11] presented
a hybrid method that combines exact motion planning with
probabilistic roadmaps, and applied it to planning the motion
of two discs moving among polygonal obstacles. At a broad
level, our algorithm follows a similar design, but there are
significant differences and we highlight them in Section VI.



III. PRELIMINARIES AND OVERVIEW

In this section, we give a broad overview of our hybrid
planning algorithm. We also introduce the key data structures
used in our algorithm.

At a broad level, our algorithm performs adaptive decom-
position of C into rectangular cells similarly to the previous
ACD methods, and uses efficient labelling algorithms [31]
to classify them as empty, full or mixed cells. The main
bottleneck in previous ACD methods lies in dealing with
a large number of cells. Most of the cells are classified as
mixed cells, and they are recursively subdivided till their size
is less than a threshold. This is due to three reasons. First, the
exact boundary of the free space is complex and not aligned
with the cell boundaries (Fig. 1). Therefore, many levels of
subdivisions are needed to compute a good approximation of
the free space. Secondly, most cell labelling algorithms tend
to be conservative, i.e. some of the empty or full cells are
classified as mixed. Finally, the complexity of the subdivision
algorithm increases as an exponential function of the number
of DOFs. As a result, most prior implementations of ACD
algorithms have been limited to 3-DOF robots.

In order to address these problems, we augment the cells with
localized roadmaps, which tend to capture the connectivity
of the free space within each mixed cell. Furthermore,
we attempt to connect the localized roadmaps of adjacent
cells using pseudo-free edges. Within each mixed cell, the
roadmap provides a compact representation of its connec-
tivity, while a pseudo-free edge captures the connectivity
of the localized roadmaps between two adjacent cells. As
a result, there is a high probability that we can compute
a path through these mixed cells and assign them a lower
priority in terms of adaptive subdivision. Overall, our hybrid
algorithm performs fewer subdivisions compared to prior
ACD algorithms.

Our hybrid method also improves the performance of PRM
algorithms. Since we only generate random samples in the
mixed cells at any level in the subdivision, our approach
automatically computes more samples near or in narrow
passages. Compared to prior PRM approaches, this results
in an improved sampling strategy. Moreover, by using ACD
for path non-existence queries, our hybrid algorithm is
resolution-complete.

A. Notation
We use symbol A to denote a robot and B to represent the
static obstacles. Let qinit and qgoal represent the initial and
goal configurations of the robot for a given motion planning
query. Let us denote the approximate cell decomposition of
configuration space as P , and use ci to represent each cell
in P .

B. Localized Roadmaps
In our approach, a small fraction of mixed cells are as-
sociated with localized roadmaps. For each empty cell, a
trivial roadmap with only a single sample in its center is
constructed. We also implicitly maintain a global roadmap
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Fig. 2. Pseudo-free edges and connectivity graph: ACD sub-
divides the C-space, and classifies the resulting cells as empty,
such as c1, full such as c7 or mixed such as c3. The connectivity
graph G is a dual graph to ACD and each empty or mixed cell
is mapped to a vertex in G. There are three types of edges in our
connectivity graph G. Two adjacent empty cells, such as c1 and
c2 are connected by a free edge (v1, v2). Two non-full cells are
connected by a pseudo-free edge such as (v3, v4) if their localized
roadmaps can be connected as the right figure shows; otherwise,
they are connected by an uncertain-edge such as (v5, v6).

M for P , including all the localized roadmaps Mc associate
with each cell c; i.e., M ⊃ ∪Mc where Mc 6= φ.
In addition, for two adjacent cells ci and cj , if there is
a collision-free path to connect their associated localized
roadmaps Mci

and Mcj
, this path is added to M (Fig. 2).

Details of this computation are given in Section IV-C.

C. Connectivity Graph
As a dual graph of P , the connectivity graph G represents the
connectivity between the cells in P . The graph is defined as
follows: each non-full (empty or mixed) cell in P is mapped
to a vertex v in G; if two non-full cells ci and cj in P
are adjacent to each other, their corresponding vertices, vi

and vj , respectively, are connected by an edge e(i, j) in
G. Furthermore, an edge e(i, j) is classified into one of the
following three types (Fig.2):

• Free: If ci and cj are both empty, e(i, j) is a free
edge. This implies that there exits a collision-free path
between any configuration q0 in ci to any configuration
q1 in cj .

• Pseudo-free: If e(i, j) is not a free edge, but two
localized roadmaps Mci

and Mcj
associated with ci and

cj can be connected by a collision-free path, e(i, j) is
called a pseudo-free edge. The existence of a pseudo-
free edge can be checked by any local planner. Its
existence indicates that it is highly likely that there exists
a collision-free path between any free configuration q0

in ci and free configuration q1 in cj .
• Uncertain-edge: If e(i, j) is neither free nor pseudo-

free, it is classified as an uncertain-edge. Since the
localized roadmaps Mci

and Mcj
can not be connected

by local planning, it is unlikely that there exist a
collision-free path between any free configuration q0

in ci and any free configuration q1 in cj .

We further define some of the subgraphs of G as follows:
the free connectivity graph Gf is a subgraph of G that only
includes all free edges of G. The pseudo-free connectivity



Does the path yield a 
collision-free path? 

Search on Gsf ;
Is there a path?

Report a collision
 free path

Search on G ;
Is there a path?

No

Stage I

Stage II

No

Yes

No

Yes

Yes

Search on Gf ;
Is there a path?

Input

Yes

Sampling and Cell Decomp. 

Sampling and Cell Decomp. 
Report path 

non-existence

No

2

3

4

5

1

2

Locate the vinit and vgoal
1

Fig. 3. Flowchart of our hybrid planner. Our algorithm consists of
two stages. The algorithm is executed iteratively until a collision-
free path is found in stage I, or the path non-existence is detected
in stage II.

graph Gsf is a subgraph of G that includes both all the free
edges and the pseudo-free edges. The three types of connec-
tivity graphs represent different levels of approximations of
the free space F and are used by the path planning algorithm.
More specifically,

• G represents the adjacency among free or mixed cells,
which form a superset of the free space F . Therefore,
the graph is useful for deciding path non-existence,
because no path found in G implies that there is no
collision-free path in F .

• Gf represents the adjacency among all free cells, which
forms a conservative approximation or a subset of F .
It is useful for finding a collision-free path for A.

• Gsf represents the adjacency among all free cells
and a portion of mixed cells. They represent a good
approximation of the free space for path queries, since
a free edge (or a pseudo-free edge) among two adjacent
cells indicates there must be (is likely) a collision-free
path between any pair of free configurations in the two
cells. We compute localized roadmaps to capture the
connectivity for this approximation, and use them for
path queries.

IV. HYBRID PLANNING ALGORITHM

In this section, we describe our hybrid motion planning
algorithm in detail, with an emphasis on computation and
use of data structures introduced in the previous section.

A. Algorithm

Fig. 3 shows a flowchart of our algorithm, which consists
of two stages: finding a collision-free path and checking for
path non-existence. These two stages are executed iteratively
until a collision-free path is found or the path non-existence

is detected. Starting with an initial, coarse and uniform ap-
proximate cell decomposition P of C, our algorithm proceeds
in the following manner.

I. Collision-free Path Computation

1) Locate the cells in P that contain qinit and qgoal;
denote their corresponding vertices in G as vinit and
vgoal, respectively.

2) Search Gf to find a path that connects vinit and vgoal.
If a path is found, it represents a collision-free path
for the given motion-planning query, since the space
represented by Gf is a conservative approximation of
F . More details are given in Sec. IV-B.

3) If no path is found in Gf , we search the graph Gsf for
a path to connect vinit and vgoal. If no path is found
in Gsf , this means that there is no collision-free path
within the current approximation of F represented by
Gsf . Therefore, our algorithm proceeds to Path Non-
existence. Determination Stage.

4) If a path, say Lsf , is found in Gsf , it suggests that
a collision-free path may exist. In order to verify the
existence, we search over the union of all localized
roadmaps associated with the cells along the path
Lsf . If a collision-free path is found, our algorithm
terminates. More details are given in Sec. IV-B.

5) If no path can be computed, we identify critical
cells along the path Lsf , which break the reachability
between qinit to qgoal (see Sec. IV-C). Additional
samples are generated in the critical cells to improve
their localized roadmaps. After that, we perform one
level of subdivision on these cells and update the
graphs G, Gf and Gsf . Next, the algorithm returns
to the Path Computation Stage.

II. Checking for Path Non-Existence

1) We perform a graph search on G to find a path connect-
ing vinit and vgoal. If no path can be found in G, our
algorithm can safely conclude that the given planning
query has no solution, since the space represented by
the graph G is a superset of F .

2) Otherwise, we compute a path L in G to connect vinit

and vgoal, and perform sampling and cell subdivisions
on the critical cells along L (see also Sec. IV-C). The
algorithm then updates the connectivity graphs and
returns to the Path Finding Stage.

B. Computing a Collision-free Path

Our algorithm checks for a collision-free path by performing
searches on Gf and Gsf . If a path Lf is found as a result
of graph search on Gf , we can report a collision-free path
for the planning query by connecting the given initial and
goal configurations to the path Lf . Otherwise, we search for
a path in Gsf , and verify whether the found path Lsf yields
a collision-free path.

Let PLsf
be a sequence of cells in P corresponding to the

vertices in Lsf . Let MLsf
be a subgraph of M that lies



within PLsf
. To verify whether Lsf can yield a collision-

free path, we first search over MLsf
. If no path is found

in MLsf
, then we search the entire roadmap M. If no

collision-free path is found within M, this implies that the
current PRM representation is not fine enough to compute a
collision-free path. Therefore, we need a more accurate (or
finer) representation of F .

C. Improved Sampling and Cell Subdivision

If the Path Computation Stage of the algorithm is not able
to find a collision-free path in Gf or Gsf , we generate
additional samples for M and subdivide the cells in P
(i.e., step 5 of Stage I). A simple algorithm would generate
additional samples for all mixed cells in PLsf

and further
subdivide them. In order to perform this step more efficiently,
we identify the critical cells and only generate additional
samples and perform cell subdivision on these cells. More
specifically, the critical cells are defined as those cells, where
the roadmap MLsf

is disconnected with respect to qinit to
qgoal.

Overall, the use of critical cells results in adaptive sampling
and fewer subdivisions. First of all, there may exist cells in
C-obstacle that actually separate a part of free space. These
types of cells are useful in terms of checking for path non-
existence. Therefore, we can concentrate on classifying these
cells by performing additional sampling and subdivisions.
Moreover, poor sampling in one of these cells can result in
a disconnected localized roadmap, and therefore, these cells
are good candidates to receive additional samples.

Critical cell computation: In order to identify the critical
cells in the set PLsf

, we use a propagation algorithm based
on depth first search (DFS). The time complexity of this
algorithm is linear to the size of MLsf

. As Fig. 4 shows,
we denote the cells along the path Lsf as c1, c2, ..., cn

(n=5), and their corresponding vertices in Lsf are vinit, v2,
..., vn−1, vgoal. The algorithm searches MLsf

from q =
qinit using DFS, and set the reachable flags of its descent
samples as true (initially, the flag for every sample is false).
When DFS stops, we check whether the reachable flag of
qgoal has been set. If not, the algorithm searches for a cell
ci, which contains at least one reachable sample and has
the largest index i. The cell ci is a critical cell, since the
roadmap MLsf

is disconnected in this cell w.r.t. qinit and
qgoal. If vi is not equal to vgoal, we iterate this process to
find more critical cells. Since Lsf is computed from Gsf , vi

should have a pseudo-free edge with its adjacent vertex vi+1

in Lsf . Furthermore, this pseudo-free edge is realized by a
local path between a sample qm in ci with a sample qn in
ci+1. Therefore, we can resume DFS search from q = qm.
This process continues until vi is equal to vgoal.

Critical cell computation for path non-existence: In the
stage corresponding to path non-existence computation, if a
path L is found in G, we need to refine our representation of
F . For this purpose, one known technique is first graph cut
[18], which only subdivides the cells along the L, instead
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vinit
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Pseudo-free connectivity graphCells along Lsf

Fig. 4. Critical cell computation: The cells c2 and c4 are classified
as critical cells, since there the roadmap M is disconnected. We
identify such cells using a propagation algorithm based on DFS.
Note that since the roadmaps in c2 and c3 are connected by an
edge, their corresponding vertices v2 and v3 are connected by a
pseudo-free edge too.

of mixed cells in P . In our algorithm, we further reduce
the number of subdivisions by identifying the critical cells
along L. More specifically, a cell c along L is critical if there
exists more than one connected graph component in Mc; two
adjacent cells on the path L are critical, if there is no free
edge or pseudo-free between them. Only these critical cells
are further subdivided and extra samples are generated to
update their localized roadmaps.

V. IMPLEMENTATION AND PERFORMANCE

We have implemented our hybrid planner and tested its
performance on 3-DOF and 4-DOF robots in difficult mo-
tion planning scenarios. In this section, we address some
implementation issues. We analyze the performance of our
planner, and compare it with priori complete motion planning
algorithms.

A. Implementation
We generate an adaptive subdivision of the configuration
space C, and use C-obstacle and Free-cell query algorithms
[31] to label the cells during subdivision. Our formulation of
the adaptive subdivision framework is general for arbitrary
dimensional C, and we have tested it on 3 and 4 dimensional
C.

The two main computational components in our algorithm
are graph search and localized roadmap computation. In
order to search for a shortest path in the connectivity graph
G, we assign different weights to different types of edges.
The underlying idea is to assign a higher weight (i.e. a lower
priority) to the uncertain edges, so that the search algorithm
tends to find a path through the free edges and pseudo-free
edges. This results in a path with fewer uncertain edges and
results in fewer subdivisions. In our current implementation,
the weight of a free edge is set as zero and the weight
of a pseudo-free edge is also set as zero. The weight of
an uncertain edge e(i, j) is set as the distance between the
centers of cells ci and cj .

For the localized roadmap computation, more samples are
generated for mixed cells than free cells. In our experiments,
the maximum number of free samples in each mixed cell,
Nm, is set as 5. The maximum trial number of random
samples used to generate each free sample, Ntrial, is 5. For
each free cell, we only need to generate a sample at its center.



Fig. 5. Five-gear with narrow passage benchmark. The left figure shows a 3-DOF planning problem with narrow passages. There are
five gear-shaped static obstacles on the plane. The problem is to move the gear-shaped robot from the red placement (left-upper corner)
to the green placement (right-bottom corner). Shown in the left and middle figures, where 3 dimensional C-space is illustrated together
with the workspace, our approach can generate samples in the narrow passage, and the global roadmap constructed can capture the
connectivity in the free space well. The middle figure also highlights the roadmap for the free space. The figure in the right shows the
histogram of the number of cells in different levels of subdivisions.

(sec) Five-gear Star Star(no-path) Notch
Total timing 33.855 16.197 48.453 102.076

Cell labelling 4.025 9.562 31.793 20.915
Sampling 5.313 0.265 1.096 5.147

Link computation 8.829 4.172 14.345 27.623
Gf , Gfs search 1.123 0.462 2.037 3.185

G search 5.472 1.218 6.139 13.574
Subdivision 9.093 0.518 6.130 31.632

TABLE I
PERFORMANCE: THIS TABLE HIGHLIGHTS THE PERFORMANCE

OF OUR ALGORITHM ON DIFFERENT BENCHMARKS. WE SHOW

THE BREAKUP OF TIMINGS AMONG DIFFERENT PARTS OF THE

ALGORITHM. THE FIVE-GEAR IS A 3-DOF BENCHMARK AND

THE REST ARE 4-DOF BENCHMARKS.

B. Results
We have tested our hybrid planner on different bench-
marks. Our current implementation is not optimized. We also
compare our algorithm with the complete motion planning
algorithm presented in [31]. The performance and various
statistics are summarized in tables I and II. All timings are
generated on a 2.8GHZ Pentium IV PC with 2G RAM.
1) 3-DOF five-gear with narrow passage benchmark: This
is a difficult 3-DOF motion planning problem. There are
narrow passages for this benchmark, and the boundary of
C-space for this benchmark is very complex. Our hybrid
planner can compute a collision-free path within 33.855s,
which is about three times faster than previous method. The
number of cells in the approximate cell decomposition is
50, 730, which is only 30.2% of the number in the previous
ACD method. Fig. 5 highlights that our approach can gen-
erate the samples and construct the probabilistic roadmap
effectively near or in narrow passages. The roadmap M for
this benchmark includes 6, 488 samples and 15, 298 edges.
Each sample in M has only 4.7 neighbors on average. This
can be observed in Fig. 5, where each sample is connected
with a few other samples.

Table II demonstrates that only a subset of mixed cells in
ACD are associated with localized roadmaps. This confirms
that our approach is able to generate and utilize the samples
effectively.
2) 4-DOF star benchmark: Figs. 6 and 7 show a 4-DOF
robot, with 3 translational DOFs and 1 rotational DOF. The
star-shaped robot is allowed to translate freely in 3D space

Fig. 6. 4-DOF star benchmark for narrow passage. The star-
shaped robot is allowed to translate freely in 3D space and to
rotate around its local Z axis (indicated by the yellow arrow). (a)
This planning problem is to move the robot from the red placement
(top) to the green placement (bottom) by passing through the star-
shaped narrow hole. Our approach can find a collision-free path
within 16.197s. For the purpose of the visualization, we project the
configuration space from R3 × SO(1) into R3. (a, c) shows the
path and the robot’s intermediate configurations on the path. (b,d)
shows the roadmap from two different viewpoints.

and to rotate around its local Z axis (indicated by the yellow
arrow) in its local coordinate system. We test this benchmark
for two scenarios: to find a collision free path for the original
star-shaped robot, and to detect path non-existence when
the robot is uniformly scaled by 1.3. The performance and
various statistics for this benchmark are summarized in the
Tabs I and II.
3) 4-DOF notch benchmark: Fig. 8 shows a 4-DOF exam-
ple, where the star-shaped robot needs to pass through a very
narrow passage, the notch in this figure. Our approach can
find a collision-free path for this benchmark within 166.464s,
and only generates 5, 494 samples.

VI. LIMITATIONS AND COMPARISON

Our hybrid approach has a few limitations. In the worst
situation, our algorithm has an exponential complexity with
the number of DOF of the robot. However, our experimental
results show that our algorithm can work well on many
complete motion planning problems as compared to the prior
approaches. Moreover, when we apply our hybrid planner to



Fig. 7. 4-DOF star benchmark for path non-existence. We modify the scene in Fig. 6 by scaling the robot by 1.3. Our planner can report
path non-existence for this new benchmark within 48.453s. (b, c) shows the samples and the roadmap generated by our approach. (d)
shows the subset of mixed cells in ACD, which are associated with localized roadmaps. (e) shows the set of C-obstacle regions, which
separate the robot from its initial configuration to goal configuration.

Fig. 8. 4-DOF notch benchmark. The star-shaped robot needs to pass through the very narrow notch. Our approach can find a collision-free
path within 102.076s.

Five-gear Star Star Notch
no path

# of cells 50,730 48,046 82,171 164,446
# of empty cells 1,272 12,159 15,651 7040

# of full cells 20,761 10,063 31,984 108,983
# of mixed cells 28,697 25,824 34,536 48,423

# of samples in M 6,488 465 2,791 5,494
# of edges in M 15,298 732 5,040 12,707

Avg degree of sample 4.72 3.15 3.61 4.63
# of mixed cells 2,457 69 353 1,584

associated with M

# of free cells 568 335 2,078 2,804
associated with M

Peak memory usage (MB) 67 51 75 130
TABLE II

STATISTICS: THIS TABLE GIVES DIFFERENT STATISTICS

RELATED TO THE BENCHMARKS.

4-DOF or higher DOF problems, graph searching becomes
one of the major bottlenecks. This is because the size of the
connectivity graph G increases as a function of the number
of the cells in ACD. Secondly, there is additional overhead
of the two-stage algorithm. If there is a collision-free path,
then the work performed in Path Non-existence Stage is
unnecessary.

Comparison: We compare our method with the hybrid
method proposed by Hirsch and Halperin [11]. Our approach
shares some similarities with this prior approach. Specifi-
cally, our method combines ACD with PRM, while their
algorithm combines an exact cell decomposition approach
with PRM. Conceptually, each of these algorithms computes
two explicit representations to approximate the free space
F : a subset of F , which is used to compute a collision-
free path and a super set of F , which is used to check for
path non-existence. However, in our method, the approximate

Hybrid Planner ACD Planner Speedup
Total timing 33.855(s) 85.163(s) 2.52
Total cells 50,730 168,008 3.31

TABLE III
COMPARISON: WE ACHIEVE UP TO 3 TIMES SPEEDUP OVER

PRIOR ACD METHOD FOR THE FIVE-GEAR BENCHMARK. FOR

THE 4-DOF STAR BENCHMARK, THE ACD VERSION WE HAVE

COULD NOT TERMINATE WITHIN 10MINS. BUT OUR PLANNER

CAN REPORT THE CORRECT RESULT FOR BOTH SCENARIOS LESS

THAN 1 MIN.

representation of free space can be incrementally refined
using spatial subdivision, until a collision free path is found
or path non-existence is confirmed. As a result, the strength
of ACD approach is fully inherited, i.e. our hybrid method
is resolution-complete. In Hirsch and Halperin’s method,
an approximate free space representation is computed as a
preprocess and the subset and superset approximations of
the free space can not be further refined. As a result, Hirsch
and Halperin’s method [11] can decide path non-existence for
some cases, but is not a complete motion planning algorithm.
In addition, the implementation of their method is limited
to disc robots, while our hybrid can be applied to arbitrary
robots.

Resolution-completeness is another benefit of our method
over probabilistic cell decomposition [20], which is prob-
abilistically complete and can not correctly handle motion
planning scenarios where no path exists. On the other hand,
based on our novel cell-labelling algorithm [31], our algo-
rithm can conclude about path non-existence in many cases
except when there are tangential contacts in free space. As
a result, our hybrid algorithm can handle even more cases
as compared to prior ACD approaches. It should also be



remarked that in theory another related work - the star-shaped
roadmap approach [29] is complete too. However, due to the
complexity of contact surface enumeration and the difficulty
of star-shapedness test, it is difficult to extend that approach
to 4 or higher-DOF robots.

VII. CONCLUSION
We have presented an approach that combines the com-
pleteness of ACD with the efficiency of PRMs for motion
planning of rigid robotics. Overall, the combination of lo-
calized roadmaps and ACD provides us with an effective
representation of C that is used for path computation as well
as path non-existence queries.

We have implemented this algorithm and applied it to many
3-DOF and 4-DOF motion planning scenarios with rigid
robots. As compared to prior PRM algorithms, our hybrid
approach can easily handle narrow passages and check for
path non-existence. Moreover, as compared to prior cell
decomposition algorithms, we perform fewer subdivisions.
This can reduce the overall memory overhead and improve
the performance by up to 10 times in our benchmarks. Our
method is built on ACD and PRM methods and can also
be extended to articulated models. However, our approach
is only practical for low DOF robots due to the underlying
complexity of ACD.
Future Work: There are many avenues for future work.
We are interested in addressing the limitations in our current
implementation. Specially, we would like to further improve
the performance of cell decomposition, e.g. by using more
compact representation for the connectivity graph, so that we
can extend our approach to higher DOF problem. Moreover,
we are interested in handling complaint motion planning
scenarios using our hybrid approach.
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