
Analytic Ray Curve Tracing
for Outdoor Sound Propagation

Qi Moa,∗, Hengchin Yeha, Ming Lina, Dinesh Manochaa

aDepartment of Computer Science, University of North Carolina at Chapel Hill, NC

Abstract

Outdoor sound propagation, which propagates sound through inhomogeneous,

moving media with complex obstacles, presents challenging scenarios for com-

putational simulation. In this paper, we present a ray-tracing method that uses

analytic ray curves as tracing primitives in order to improve the efficiency of

outdoor sound propagation in fully general settings. This ray-curve tracer inher-

its the efficiency and flexibility of rectilinear ray tracers in handling boundary

surfaces, and it overcomes the performance limitations imposed by approximat-

ing the curved propagation paths in inhomogeneous media with rectilinear rays.

Adaptive media traversal, as well as acceleration structures for surfaces inter-

sections, lead to further savings in computation. Our method’s speedup over

existing ray models, at least an order of magnitude for simple 2D scenarios

and up to two orders of magnitude for 3D complex scenes, is demonstrated on

outdoor benchmark scenes.

Keywords: Ray Tracing, Sound Propagation, Atmospheric Acoustics,

Underwater Acoustics

1. Introduction

Sound propagation in outdoor environments[1, 2, 3] and room acoustics[4]

are traditionally investigated separately. Room acoustics studies focus on the

high-order interactions that sound waves make with surfaces within an enclosed
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space, and assume a homogeneous medium. On the other hand, outdoor sound

propagation (atmospheric and underwater) deals with media that are spatially

varying and that move; they prominently differ from indoor models in the curved

propagation trajectories that come from refraction. In the outdoor context,

obstacles that constitute media boundaries are generally assumed to be sparse,

and the complexity of the boundary surfaces is limited in the investigations.

Many outdoor applications can, however, benefit from simultaneous mod-

eling of fully general media and complex boundaries. Examples include large

expanses of complex terrain and sprawling urban areas, which often have their

own micro-climate. As data on spatially- and temporally- varying outdoor me-

dia, such as the atmosphere and the ocean, becomes increasingly available, and

geographic information on terrains and man-made structures is recorded in ever

richer details, sound propagation models should ideally adapt to utilize the full

scale of such data. Existing numerical methods suffer from scalability issues

with large domain volume, high frequency, or complex boundaries. Geometric

acoustics (GA)[5] methods are efficient at handling boundary surfaces, but with

inhomogeneous media the curved trajectories become expensive to compute.

One way to speed up ray models for inhomogeneous media is to subdivide

the media into spatial cells, so that within each cell the media assumes simple

profile that leads to an analytic curved trajectory. The cell method was proposed

as exactly such a model; based on a triangular subdivision of two-dimensional

media, the cell method has been implemented in some acoustic simulation soft-

ware (e.g. TRIMAIN[6], RAYWAVE[7]). A later work[8] adapted the idea of cell

method to both light and sound propagation by decomposing three-dimensional

media profiles into tetrahedral cells. This adaptation utilized mesh connectivity

to trace rays across neighboring cells, and embedded boundary surfaces into the

mesh so that surface intersections are also solved by the mesh-traversal process.

This paper further develops the cell method idea, and the algorithm improves

upon the tetrahedral cell method[8] in three important aspects:

1. Simple ray formulation We select the parabolic ray curve as the ray-

tracing primitive, which offers the simplest analytic form for trajectory,
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intersection, and ray properties (Sec.3).

2. Implicit cell We use a mesh-less approach to media traversal, tracing ray

curve segments of adaptive sizes based on on-the-fly sampling of the media

profile. This implicit-cell approach avoids costly mesh construction, and

it supports moving media as well as dynamic media (Sec.4.2).

3. Acceleration of surface intersection For the ray curve tracer, we adapt

the hierarchical acceleration structures used in rectilinear ray tracers. Fur-

ther acceleration is achieved by spatial bounding of ray curves based on

their geometric properties, which offers higher culling efficiency (Sec.4.3).

Overall this analytic ray curve tracer is designed to be efficient for general me-

dia profiles and complex scenes with tens of thousands of surface primitives. Its

performance is demonstrated on outdoor benchmarks (Sec.5), where it shows

one to two orders of magnitude speedup over previous ray models. It is com-

plementary to a set of numerical and geometric methods and can be extended

in multiple ways (as discussed in Sec. 6).

2. Prior Work

Outdoor sound propagation has been studied extensively in underwater and

atmospheric acoustics. Methods including the Fast Field Program (FFP)[9],

Parabolic Equation (PE)[10, 11], and Normal Modes[1, 3] provide full-wave so-

lutions that depend upon simplifying assumptions about the media and the

obstacles in the scene. More general numerical methods, able to handle ar-

bitrary media and obstacles, have also been proposed; the leading one is the

Finite Difference Time Domain(FDTD) method, which solves the linearized

Euler equation[12, 13]. The main disadvantage of the FDTD is its high com-

putational cost, and its poor scalability with the volume of the simulation do-

main or with the frequency. Other numerical methods, including Finite Ele-

ment Method[14, 15], Boundary Element Method[16], Pseudo Spectral Time

Domain[17, 18], and Transmission Line Matrix (TLM)[19, 20, 21], face similar

challenges in scalability.
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Geometric acoustics (GA)[5] methods are widely used in room acoustics[4].

GA methods rely on the high-frequency approximation of wave propagation us-

ing rays, which are perpendicular to the wave fronts and can be intersected effi-

ciently with scene surfaces. Various GA techniques have been developed, includ-

ing image source method[22, 23], ray tracing[24, 25], frustum tracing[26], beam

tracing[27, 28], sonal mapping[29, 30, 31], path tracing[32], and radiosity[33]. In

these methods, sound speed is generally assumed to be constant, so rectilinear

rays are used to trace out straight-line paths. Complex surface interactions,

such as specular reflection, Snell’s Law refraction, diffuse reflection [25, 32], and

Bidirectional Reflectance Distribution Function (BRDF)[31, 34], are modeled.

Ray models have also been applied to inhomogeneous outdoor media by

numerical integration of the differential ray equation (see survey [1, 3]). The

integration step size is limited by the range within which the media can be

assumed to be homogeneous, and intersection with surfaces need to be tested

for each segment. With complex media the great number of small ray seg-

ments dominate the propagation computation. Higher-order integration, like

the fourth-order Runge-Kutta method, have been adopted to improve efficiency,

but with those methods the trajectory between each advancement of the ray in-

tegration has no explicit form, complicating intersection tests with surfaces (see

details in Fig. 4). Several widely used software tools are based on ray models,

including HARPO[35], BELLHOP[36], WaveQ3D[37] in underwater acoustics,

HARPA[38] in atmospheric acoustics (see [39] for the collection). Although per-

formance of these ray-based tools is orders of magnitude better than wave-based

alternatives (reported recently[40, 41], a few seconds vs. thousands of seconds on

2D propagation in layered media), these methods quickly become prohibitively

expensive when dealing with general media and 3D complex scenes.

3. Analytic Ray Curve

Ray models simulate wave propagation with rays that are perpendicular to

the wavefront. For certain media profiles, the ray trajectories, as well as the
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Figure 1: (a) Parabolic ray curve. Two rays with different initial directions (marked
by arrows) are shown in the ray plane, with z-axis being the direction of ∇V −2.
(xf , zf ), which defines the vertex of the parabola, is computed according to Eq. 6.
(b) Ray curve tracing. The green-colored blocks have analytic solutions with the
parabolic ray curve, which offer large savings in ray-tracing costs. For each key step,
the relevant sections that give the analytic formulation are marked in red, and the
relevant sections that describe algorithm details are marked in blue.

pressure on the ray, have analytic forms that can be evaluated at any point

along the ray at constant cost. Our ray tracer utilizes one of these analytic for-

mulations (Fig. 1(a)), chosen for its particularly simple form, and the resulting

ray curve lends itself to easy intersections with boundary surfaces. As can be

seen from Fig. 1(b), this particular ray curve enables analytic evaluations at

a constant per-ray cost in key steps of the ray tracing (green-colored blocks).

This ray formulation is a special case of the more general ray theory discussed

in depth in C̆ervený’s comprehensive work[42].

3.1. Ray formulation

Within a medium with spatially-varying sound speed, we denote V (x) as

the sound speed at location x. The arrival time or travel time field T is defined
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as the time that a sound wave takes to travel from its source to a field location,

and the spatial derivative of T : ~p = ∇T is called the slowness vector. Within

such a medium, the ray trajectories can be solved from the general Hamiltonian

form of the Eikonal equation, which in Cartesian coordinates reads:

H(xi, pi) = n−1{(pipi)n/2 − V −n}, i = 1, 2, 3, (1)

with n as a real number corresponding to different forms of the equation. Eq.

1 can be solved in terms of characteristics: 3-D trajectories xi = xi(u) param-

eterized by u, along which 1 is satisfied, as follows:

dxi
du

= (pkpk)n/2−1pi,
dpi
du

=
1

n

∂

∂xi
(V −n), (2)

dT

du
= (pkpk)n/2 = V −n.

When the gradient of V −n is constant, 2 can generally be solved analytically.

When we assume that the gradient of V −2 is constant (i.e. n = 2: V (x)
−2

=

A0 + ~A · x), we obtain the simplest analytic form for ray trajectory and travel

time, in terms of the parameter u = σ:

xi(σ) = xi0 + pi0(σ − σ0) +
1

4
Ai(σ − σ0)2, (3)

pi(σ) = pi0 +
1

2
Ai(σ − σ0), (4)

T (σ) = T (σ0) + V −20 (σ − σ0) +
1

2
Aipi0(σ − σ0)2 +

1

12
AiAi(σ − σ0)3. (5)

σ is related to the travel time T and to arclength s by dσ = V 2dT = V ds.

3.2. Ray properties

We take advantage of two key properties of the ray curve given in Sec. 3.1:

1. Intersection The ray is a parabolic plane curve and can be intersected

analytically with planar surfaces to solve for the intersection point.

2. Evaluation For an arbitrary parameter σ along the ray, the corresponding

position, tangent direction, and the ray properties contributing to pressure

6



computation, including the slowness vector, arrival time, and arclength,

can be evaluated analytically at constant cost.

It is evident from Eq. 3 that the analytic ray lies in a plane with the normal of

~A× ~p0. We denote the direction of media gradient ~A as z-axis and ( ~A× ~p0)× ~A

as r-axis; the r-z plane is then called the ray plane. When the origin of the

coordinate system is placed at ray origin x0, the ray trajectory is:

z(r) =
α

4ξ20
(r − rf )

2 − zf , rf = −2ξ0
√
−ξ02 + n02

α
, zf =

n0
2 − ξ02

α
, (6)

where α = ‖ ~A‖ is the magnitude of media gradient, ξ0 = V (0)−1cosθ0, V (0) is

the sound speed at ray origin, and θ0 is the angle between the ray direction at

origin and the r axis (see Fig. 1). The parabolic plane curve given by Eq. 6

has closed-form solutions for its intersections with planar surfaces.

For an arbitrary point on the ray curve with coordinates (rp, zp) in the

ray plane, the corresponding parameter σp can be solved from Eq. 3 as σp =

rp/ξ0 + σ0, where σ0 is the σ at ray origin. Given σp, we can calculate the

position ~x(σp), the slowness vector ~p(σp), and travel time T (σp) from Eq. 3,4,5,

respectively. The tangent direction ~t coincides with the direction of the slowness

vector ~p and can be evaluated by ~t(σp) = ~p(σp)/‖~p(σp)‖. The arclength s of the

parabolic ray curve can be evaluated at (rp, zp) by

s(rp) =

√
(arp + b)2 + 1(arp + b) + arcsinh(arp + b)

2a

∣∣∣∣∣
r

0

, (7)

where a =
1

2

α

ξ20
, and b =

√
−ξ0 + V (0)−2

ξ′0
.

The arclength s determines the attenuation along the ray path, and it is one of

the key variables that we measure for accuracy of the ray tracing (see Sec. 5.1).

Similar to rectilinear rays, the parabolic ray curve comes with efficient oper-

ations for finding intersection and for updating the key properties at intersection

points, making it amenable to be used as a tracing primitive. The ray curve

serves as a building block for a ray tracer that handles general media; it does
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so by computing the propagation paths, which consist of consecutive segments

of the aforementioned ray curves. The flow chart in Fig. 1(b) illustrates the

steps involved in tracing one such segment, with the computational savings

highlighted by green-colored blocks. In the next section, we give the details of

our ray-tracing algorithm using the parabolic ray formulation.

4. Ray Tracing Algorithm

4.1. Tracing Analytic Segments

Our ray tracer computes the propagation paths in a segment-by-segment

fashion, with each segment being a parabolic ray curve (formulated in Sec. 3).

There are two criteria for terminating one segment and starting the next one:

1. The media no longer satisfy the assumption of constant ∇V −2,

2. The boundary surfaces in the scene are encountered.

For the former criterion, the change in the media gradient ∇V −2, we propose an

adaptive segment size that is computed from on-the-fly sampling of the media;

this is discussed in detail in Sec. 4.2. For the latter criterion, in which the

segment encounters a surface, we use acceleration data structures and methods

adapted from rectilinear ray tracer; these are discussed in detail in Sec. 4.3.

Both aspects of the ray-tracing algorithm contribute to its efficiency and offer

performance improvements over previous methods (see Fig. 2 and Fig. 3).

Based on these criteria for ending segments, we find out how far a particular

segment will go in two ways. For the surface-encounter criterion, we compute

the closest intersection point; for the media gradient criterion, we compute the

point at which the ray curve reaches the edge of the range of validity. The

closest point between the two cases is taken as the end point of the current

segment, and σ, x(σ), ~t(σ), T (σ), s(σ) are evaluated at this point. The next

segment starts at x(σ), and its trajectory is computed from the local media

gradient ∇V −2(x(σ)). σ, T (σ), s(σ) are continued over the next segment; the

ray direction ~t(σ) is also continued, except in the case of the surface encounter.
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Figure 2: Efficient media traversal (Sec. 4.2). (a) With constant ‖∇V −2‖, one seg-
ment of the analytic curve (blue line) suffices, as compared to the many steps (magenta
circles) taken by numerical ray integration. The trajectory traced out by RK-4 visibly
diverges from the parabolic curve; this can be improved by further reducing step sizes;
(b) With a logarithmic sound speed profile, our ray tracer proceeds in segments of
adaptive-sized curves, evident from the spheres of validity drawn in magenta.

In the case of the surface encounter, we compute a reflection direction ~t′ as the

initial direction of the next segment, based on the surface-reflection model.

The ray traversal continues in this segment-by-segment manner until one of

three things happens: it reaches outside the media volume; it interacts with

surfaces a pre-determined number of times; or the pressure amplitude along the

ray drops below a pre-set threshold. To compute the pressure field, the ray

tracer finds the set of propagation paths starting from the sound source, the ray

segments making up those paths can be queried for any field location.

4.2. Adaptive Media Traversal

Within a smoothly varying medium, the gradient ∇V −2 can be assumed

to be constant within a certain range of validity. This assumption is valid for

naturally occurring media under stable conditions, such as the atmosphere or

the ocean. Furthermore, our ray tracer uses the heuristic that the range of

validity for a locally constant ∇V −2 should be proportional to ‖∇V −2‖, so that

the constant gradient remains valid for a relatively small spatial range in areas

of great media variation. Such adaptive sizing facilitates accurate traversal of

the media without the cost incurred by a uniformly small segment size.

Based on the aforementioned heuristic, we compute the range of validity d(x)
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Figure 3: Efficient surface intersection (Sec. 4.3). (a) A parabolic ray (magenta
arrow) is tested against surfaces and their bounding volumes, shown on the left, and
the corresponding BVH is shown on the right. Only the magenta nodes are traversed.
(b) A ray segment is bound by the ray plane and sphere of validity, which provides
further culling against scene surfaces. Here only the root node of the BVH is traversed.

by δ = 1
8‖∇V

−2‖d3(x), controlled by a global parameter δ. The ray curve given

the local ∇V −2(x) is computed from Eq. 6 and continued until it intersects

the sphere of validity, centered at the ray origin x and with a radius d(x). The

parabolic curve has a closed-form intersection with this sphere, and the exit

point x′ from the sphere is used to sample the media for the next segment.

Given an input media profile V (x), on-the-fly sampling of ∇V −2(x) can

be computed either analytically (if the input profile is available as an analytic

function), or by differentiation techniques, such as central differences. Moving

media can be approximated by the standard effective sound speed approach

(adding to or subtracting the wind velocity w(x) from V (x) for upwind or

downwind propagation respectively). Particularly for our ray tracer, the on-

the-fly media-gradient sampling enables us to handle the vector wind field by

adding the wind speed projected onto the ray direction V (x) + ~w(x) · ~t(x).

4.3. Handling Boundary Surfaces

For rectilinear ray tracers, the most expensive part of the computation is

computing ray intersections with complex surfaces within the scene; many accel-

eration structures and techniques have been developed to speed up this process.

We adopt the hierarchical acceleration structures from rectilinear ray tracers

that bound the scene surfaces. The parabolic ray curve as our tracing primi-

tives can be used directly with these structures to cull non-intersecting surfaces.
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Figure 4: Ray curve vs. RK4 on surface intersection: (a) with the ray curve
(in magenta), intersection with obstacles (blue block) is efficient and robust; (b,c,d)
with higher-order numerical methods (blue dotted lines with the 2 mid-points in RK-
4 drawn in magenta), challenges include: (b) step size is limited, (c) intersection
point can only be approximated, and (d) after the intersection point is approximated
(assuming linear trajectory here as shown by the magenta line), step needs to be
repeated adjusting for the intersection distance. The poor performance of RK4 on
scenes with complex surfaces (Table 3) reflect these challenges.

For scene-surfaces culling, we built a Bounding Volume Hierarchy(BVH)[43],

which groups boundary surfaces and bounds them spatially. A BVH is a hier-

archical tree structure whose internal nodes are bounding volumes(BVs); for

the shape of the nodes, we choose axis-aligned bounding boxes(AABBs). The

parabolic ray curve can be intersected with an AABB much faster than it can

with all the AABB’s enclosed surfaces, and when the ray curve and the AABB

are not intersecting, all those surfaces can be culled from further computations.

To find the closest intersection with the scene surfaces, the BVH is traversed

by each ray curve in a top-down fashion, achieving on average a logarithmic

intersection time with regard to the number of surfaces in the scene. The BVH

can also be efficiently re-fitted or rebuilt to accommodate dynamic scenes.

Besides spatial culling of the scene surfaces with a BVH, we also perform

spatial bounding and culling of ray curves. As we traverse the media (as de-

scribed in Sec. 4.2), we compute a bounding sphere (the sphere of validity) for

each segment as a by-product. The culling efficiency is improved when inter-
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secting such a segment with the scene BVH by first intersecting the bounding

sphere of the segment with the BVs. And since the parabolic ray is a plane

curve, we use the ray plane to reduce the dimension of the intersection test.

At the intersection point with a boundary surface, the interaction can be

modeled in a variety of ways: by specular reflection, by Snell’s law refraction, or

by BRDF-based reflection, depending upon the surface properties. We can then

compute the direction of the secondary ray segment accordingly. In addition to

modifying the ray direction, a surface impedance model can be used to modify

the amplitude and the phase of the pressure along the ray.

5. Results

5.1. Performance Comparison of Ray Models

Ray models are the foundation of many software tools in underwater acous-

tic simulation[6, 7, 36, 37], and in atmospheric acoustics[38]. The majority of

the available tools assume media profiles that vary in at most two dimensions,

with the exception of HARPO and HARPA, which computes three-dimensional

Hamiltonian ray tracing on clusters. The tools are written in languages with

different performance characteristics (e.g. MATLAB, Fortran). We reviewed

the relevant data in Sec. 2; in this section we compare our method’s perfor-

mance to that of a numerical ray integration implemented in our code base.

Platform-neutral results such as number of ray steps are reported in place of

raw running time, in order to highlight the algorithmic difference in comparison.

Existing ray models perform direct numerical integration of the ray equa-

tions, using either the Euler method or a higher-order method, such as the

fourth order Runga-Kutta (RK4). In these methods, the size of the integration

timestep is an important parameter that controls the trade-off between perfor-

mance and accuracy. Similarly, our ray tracer’s balance between performance

and accuracy depends on the global parameter δ (Sec. 4.2), which controls step

size. As in the numerical-integration methods, smaller step sizes produce more

accurate results, at the cost of longer computation time. To highlight this trade-
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Figure 5: Downward refracting atmosphere: computed by the ray curve tracer.

off, we conduct two types of comparisons: same-quality comparisons, for which

ray models are tuned to achieve the same level of error, then compared in terms

of performance; and same-speed comparisons, in which ray models are run at

the same level of performance, then compared in terms of resulting errors.

We measure the accuracy of our ray tracer by the two variables: hit location

of the ray at a particular range and the arclength of the entire trajectory. These

variables characterize the shape and size of the computed propagation path,

which determine the location to which the path contribute and the phase and

attenuation along the path for the pressure field computation. To quantify the

difference between two sets of results, rt and r̃t, tracing the same set of initial

ray directions, we compute the relative error: Erel = ‖rt−r̃t‖
‖rt‖ .

We select two media profiles as test cases: a downward-refracting atmosphere

with a sound-speed gradient of 0.1, and the Munk profile from ocean acoustics.

Both profiles have ∇V −2 and ∇V in analytic form, which decouple the mea-

surements of ray-tracing accuracy from the accuracy of gradient estimation. We

also limit our test to 2D cases with only flat ground as the obstacle, so as to

fairly compare our ray tracer’s performance to that of the majority of existing

ray-based software. The performance improvements for 3D scenes with complex

obstacles is expected to be greater, as demonstrated in Section 5.2.
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5.1.1. Downward-refracting atmosphere

The first media profile we tested is a linear sound speed profile that leads

to a downward-refracting atmosphere: c(z) = c(0) + 0.1m/s, where c(z) is the

effective sound speed at the height z, and c(0) is the effective sound speed on

the ground. We compute the ray-tracing results for the range 0 − 10km and

the height 1− 1km. The ray-tracing results are gathered and compared at the

10km mark, a point at which the rays have been reflected up to 25 times. An

example of the computed ray trajectories can be seen in Fig. 5, which shows a

fan of 201 rays between the elevation angle -90°and 90°.

Rel. Error 1e-2 5e-3 1e-3 5e-4 2e-4

Ray Curves 219 892 2,810 3,972 8,881 (segments/path)
RK4 Steps 467 2,330 4,881 24,588 49,158 (steps/path)

Table 1: Same-quality comparison. A fan of rays is traced under a downward-
refracting atmosphere to a range of 10km. At each level of relative error in the ray-
tracing results, the average number of ray-curve segments per propagation path is
compared with the average number of Runga-Kutta 4 steps. The analytic ray curve
is able to achieve same level of accuracy with a much smaller tracing cost.

# Ray steps/
RK4 segments 1× 102 5× 102 1× 103 5× 103 1× 104

RT rel. error 1.31e-2 2.76e-3 8.04e-4 1.98e-4 4.33e-5
RK4 rel. error 4.35e-2 9.44e-3 4.92e-3 2.14e-3 9.12e-4

Table 2: Same-speed comparison. A fan of rays is traced under a downward-
refracting atmosphere to a range of 10km. With a comparable number of ray curve
segments and Runga-Kutta 4 steps, our ray tracer (RT) is able to achieve lower levels
of relative error in ray-tracing results (both hit points and path length) than RK4.

The same-quality and the same-speed comparisons between our ray tracer

and the RK4 ray integrator are listed in Table 1 and 2. To achieve the same

error level, our ray tracer runs an order of magnitude faster than the numerical

integrator. And with the same running time, the numerical integrator produces

results with higher levels of error. For this comparison only the computation of

ray trajectories are included, the pressure computation is excluded, and the in-

tersection computation is minimum with only a flat ground. The higher number

14



of ray steps used by the numerical integrator indicate that, if it had to deal with

complex intersection tests and additional pressure-related computations at each

step, the performance improvements of our ray tracer would be even higher.

We also test the scalability of the ray models with increasing magnitudes of

media gradient in Fig. 6 left. The media gradient is increased gradually from

0.04 to 0.4 with 0.04 increments, and the relative error is kept at 2 × 10−4 by

tuning the step size for RK 4 and the parameter δ for our ray curve tracer. Our

ray tracer is shown to scale better with increased media variations than RK 4.

5.1.2. Munk profile

The second media profile we tested is the Munk profile commonly used in

ocean acoustics: c(z) = 15001.0 + 0.00737[x− 1 + exp(−x)], where c(z) is the

effective sound speed at the depth z, z ≤ 5000m. We compute the ray-tracing

results for the range 0 − 100km and the depth 0 − 5km. An example of the

computed ray trajectories can be seen in Fig. 8, which shows a fan of 21 rays

between the elevation angle -13°and 13°. The relative errors in the results from

the numerical integrator with decreasing step sizes are plotted in Fig. 6; compare

this to the same cost-accuracy analysis results for our analytic ray tracer. Again,

for this comparison only the computation of ray trajectories and arclength are

included, and the pressure computation is excluded.

For this profile we also show the adaptive segment size adopted by our ray

tracer by plotting the segment size with depth within the profile (Fig. 7). We

trace rays spanning the launch angles between -90°and 90°to record the step sizes

adopted, and we contrast this with a plot of sound speed of the Munk profile.

The Munk profile’s local coherence of media properties is taken advantage of

by our adaptive ray tracer, to focus computation and improve efficiency. Even

with the analytic ray formulation, a uniform step size (instead of an adaptive

one) will lead to significant performance degradation.
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Figure 6: Left: downward-refracting atmosphere. As the magnitude of media
gradient increases, both RK 4 and ray curve tracer adopt smaller steps to keep the
error below 2 × 10−4; RK 4 shows both higher cost and lower scalability. Right:
Munk profile The cost-accuracy trade-off of Runga-Kutta 4 and ray curve tracer.
No adaptive step/segment size is used for this comparison.

Figure 7: Adaptive segment size. The range of validity for each segment of ray
curve is controlled by the parameter δ and adapts to local media gradient. (a)Munk
profile sound speed. (b,c,d) Segment sizes plotted with depth for the Munk profile,
for δ = 0.002, 0.001, 0.0005, respectively. Without adaptive sizes, the required number
of ray segments will be 3 to 10 times higher to achieve comparable accuracy.

Figure 8: Munk profile characteristic ray plot computed by the ray curve tracer.
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Figure 9: Outdoor benchmarks Desert and Christmas village, upward and down-
ward refraction, respectively. For purposes of illustration, the media gradient is exag-
gerated and the ray path number is kept very small. See Table 3 for scene stats and
actual performance numbers when tracing 10k rays up to 3 orders of reflections.

5.2. Outdoor Applications of Analytic Ray Tracer

To show the application of our ray tracer on fully general outdoor scenes,

we generate a representative media profile from the stratified-plus-fluctuation

model that is widely used in atmospheric acoustics[1]. The atmospheric acoustic

index-of-refraction n = c0/c, where c0 is the reference sound speed, is modeled

with a stratified component nstr and a fluctuation component nflu so that n =

nstr+nflu. The stratified component follows a logarithmic profile of the altitude

z: nstr(z) = c0/(c0 + b ln
(

z
zg

+ 1
)

), with parameters n0, b, and zg. c0 is the

sound speed at the ground surface, taken as the reference sound speed, and zg is

the roughness length of the ground surface. Typical values for parameter b are 1

m/s for a downward-refracting atmosphere and −1 m/s for an upward-refracting

atmosphere. The fluctuation component models the three-dimensional random

temperature variation and wind speed turbulence in the atmosphere. The value

at position x can be computed as nflu(x) =
∑

iG(ki) cos(ki · x + ϕi)[1], where

ki is the wave vector describing the spatial frequency of the fluctuation, ϕi is a

random angle between [0, 2π], and G(ki) is a normalization factor.

The Desert and Christmas benchmarks represent large-volume outdoor acous-

tic scenes that have complex surface geometry (e.g. terrains and buildings). The

surface-primitive count and the volumetric expanse of the two scenes are listed

in Table 3. Both scenes are visualized in Fig. 9, and we include illustrative ray

paths for both upward-refractive and downward-refractive media conditions.

For each benchmark we trace 10K rays for up to three orders of reflections,

and report the overall ray-tracing performance alongside a breakdown of the

17



Figure 10: Visualization of ray-surface intersection cost: brighter colors indicate
higher costs. It is shown that the computation concentrates in areas of dense surface
geometry and around obstacle silhouettes, illustrating that the spatial culling of ray-
surface intersections using BVH is effective. Left: Desert Right: Christmas village.

Scenes (m3)
Surf.
count

Avg. #
segments

BV
test

Surf.
test

Frame
time

RK4
time

Desert
(200× 200× 50) 5,000

26.73
per path

31.88
(94%)

2.32
(1.47%) 446 ms 77 s

Christmas
(120× 80× 50) 16,000

44.45
per path

34.31
(96.16%)

2.08
(1.22%) 917 ms 128 s

Table 3: Breakdown of ray-tracing time: the computation of analytic ray trajec-
tories and ray properties takes less than 0.001% of frame time and thus is omitted here.
We report the number of ray-BV and ray-surface intersection tests, and the respective
percentage of frame time they take. The frame times of the analytic ray curve tracer
are compared to the running time of Runge-Kutta 4 on the same scenes.

running times, as shown in Table 3. We see that the ray intersection computa-

tion dominates the ray-tracing cost, and that the majority of the intersections

are with Bounding Volumes (BVs). The number of intersections with surface

primitives is kept very low, which shows that the spatial culling using BVH is

effective. A detailed visualization in Fig. 10 demonstrates this point further by

showing that the intersection cost is concentrated in the vicinity of obstacles,

and that for the majority of the scenes the ray intersections are resolved with

relatively low cost. The analytic ray tracer achieves close to interactive per-

formance for both benchmarks, which is two orders of magnitude faster than

RK-4, and it scales well with the complexity in both media and the boundaries.
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6. Discussions

Our ray tracer can be extended in ways including but not limited to:

� coupling with flow models and using realistic media profiles as inputs;

� augmenting GA methods to account for inhomogeneous media;

� combining with other methods to form hybrid propagation algorithms.

The analytic ray curve tracer takes as input any general media profile, as long

as that profile can be sampled for sound speed and gradient at any spatial loca-

tion. The input can be an analytic function (e.g. the Monin-Obukhov similarity

model[44, 45]) or a set of discrete sample points (e.g. a grid). Numerical meth-

ods have been coupled with flow models[46, 47, 48], and the detailed media

conditions produced by the flow model as output can then serve as input for

propagation simulation. Our ray tracer is also compatible with such a coupling.

GA methods model complex surface interactions[32, 31] such as diffuse re-

flections and surface BRDFs, assuming homogeneous media. By substituting

our curved trajectory computation for the GA assumption of straight-line prop-

agation, we can account for inhomogeneous media while still utilizing GA’s

surface handling techniques. Such augmented GA solutions can be applied to

large indoor spaces such as auditoriums, and to dense outdoor urban areas.

The efficiency of our method makes it a good candidate for forming hybrid

schemes with wave-based models. One possibility is to couple the ray curve

tracer with Equivalent Source Method(ESM), similar to what Yeh et al.[49]

proposed. The ray curve tracer could be focused on high-frequency and long-

range propagation while ESM handles the rest. Alternatively, our ray tracer

could be used for fast initial evaluations, and costly numerical methods such as

FDTD can be applied economically to areas of interest [50, 51, 52].

The analytic ray curve tracer has several limitations. This method is based

on the geometric ray model, which is a high-frequency approximation rather

than a full wave solution. The efficiency depends on media coherence; if the

media is chaotic and lacking spatial coherence, our method’s performance will

degenerate to about the same level as the numerical ray integration.
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7. Conclusion

This paper addresses the challenge of efficient sound propagation in inho-

mogeneous, moving media and in large outdoor scenes with complex bound-

ary surfaces. Our method adapts the geometric ray models to inhomogeneous

media; its key performance improvement upon rectilinear rays is achieved by

tracing as primitives analytic ray curves computed from local media gradients.

Segments of ray curves are computed by sampling the media gradient on-the-

fly, enabling us to account for both inhomogeneous and moving media without

needing to precompute explicit cell structures. Acceleration based on BVH is

readily adapted to speed up surface intersections of the ray curves, which en-

ables logarithmic scaling with scene complexity and allows for dynamic scenes.

The performance of this method is demonstrated in comparison to existing ray

models, as well as on scenarios that are prohibitively expensive with existing

methods. In addition to being an efficient stand-alone tool, this method also

has the potential of complementing other GA and numerical methods.
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