
Interactive Navigation in Complex Environments Using Path Planning

Brian Salomon Maxim Garber Ming C. Lin Dinesh Manocha
Department of Computer Science

University of North Carolina at Chapel Hill
{salomon, garber,lin,dm}@cs.unc.edu

http://www.cs.unc.edu/gamma/Navigation

Abstract
We present a novel approach for interactive navigation

in complex 3D synthetic environments using path planning.
Our algorithm precomputes a global roadmap of the environ-
ment by using a variant of randomized motion planning algo-
rithm along with a reachability-based analysis. At runtime,
our algorithm performs graph searching and automatically
computes a collision-free and constrained path between two
user specified locations. It also enables local user-steered ex-
ploration, subject to motion constraints and integrates these
capabilities in the control loop of 3D interaction. Our algo-
rithm only requires the scene geometry, avatar orientation,
and parameters relating the avatar size to the model size.
The performance of the preprocessing algorithm grows as a
linear function of the model size. We demonstrate its per-
formance on two large environments: a power plant and a
factory room.
CR Categories and Subject Descriptors: I.3.6 [Com-
puter Graphics]: Methodology and Techniques - Inter-
action techniques; 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism and framebuffer oper-
ations

Keywords: navigation, motion planning, collision detec-
tion, interaction, large models

1 Introduction
Virtual environment technology has been increasingly

used for design and evaluation of man-made structures and
complex engineering products. It has the potential to be
used as an aid to designers of complex spatial arrangements,
such as the interiors of submarines, cargo ships, power
plants, oil platforms, airplanes, etc. The multi-disciplinary
design review of such structures benefits greatly from user-
steered interactive walkthroughs. This requires the ability
to render the model at interactive rates, and also to eas-
ily navigate the environment using appropriate interaction
modes.

It is common for a model of a large structure to be com-
posed of thousands of objects, and to be composed of mil-
lions of primitives. This complexity makes it difficult to both
render such a model at interactive rates on current graphics

systems, and to interact with it in an intuitive manner. Typ-
ically, a user navigates through such a model using a driving
mode, where the camera position is continuously changing
based on mouse, joybox, or arrow-key inputs. Often, this in-
put is used to control the motion of an unconstrained camera
that can be positioned and oriented in the environment in
an arbitrary manner. Such interaction methods have several
limitations. Because the environment may be cluttered with
many objects, tight spaces, corners, and stairways, a free fly-
ing camera can easily penetrate portions of the model and
provide the user with confusing views of the geometry. An
unconstrained camera also fails to provide the user with a
natural understanding of how a human would move around
objects, or navigate between different locations in the envi-
ronment. Thus, the combination of model complexity, lim-
ited visibility, and restricted interfaces makes it difficult for
a user to interact with a complex model in an intuitive man-
ner.

In this paper, we address issues related to constrained
camera motion and automatic path computation to assist
3D navigation of complex synthetic environments. The pre-
sented approach plans collision-free paths for an avatar con-
strained to the walkable surfaces of the environment. Most
of the earlier work in this area has either been limited to local
navigation modes based on driving, flying, or real-walking,
or has dealt with relatively small environments. Many al-
gorithms based on force-field methods have been proposed
for local navigation. No automatic techniques are known for
path computation in complex environments. Our approach
combines results from robot motion planning and driving in-
teraction methods to facilitate planned, constrained motion
in complex environments for an avatar.

1.1 Main Results

We present a novel approach for interactive navigation in
large environments using path planning. Our algorithm au-
tomatically computes a collision-free and constrained path
from one part of the environment to another, and also en-
ables local user-steered exploration. It uses a variant of
the probabilistic roadmap planning algorithm, along with
a reachability-based analysis, to precompute a navigation
roadmap of the environment. The algorithm requires only
a few parameters and automatically generates the global
roadmap by performing a sequence of sampling, local plan-
ning and reachability computations.

The runtime algorithm searches the roadmap graph for a
path between user specified start and goal positions. It also
performs collision detection, using bounding volume hierar-
chies, and path smoothing to interactively guide the avatar
along this path through the environment. The runtime al-
gorithm allows the user to interactively steer the avatar
through the model in a driving mode, while imposing natu-
ral constraints on the avatar’s movement to ensure walk-like
motion, across the floor, stairs, or other walkable surfaces in

the model. We integrate these capabilities and constraints
in the control loop of a 3D interactive application.

The overall path computation algorithm offers a number
of benefits for navigating in large environments. The prepro-
cessing and runtime steps are completely automatic. This is
an important feature for handling very large synthetic en-
vironments. Moreover, neither the path computation nor
local navigation expects any explicit walkable surface spec-
ification from the model. This information is inferred from
the avatar dimensions and orientation with respect to the
scene. Finally, the complexity of the algorithm grows at
most linearly with the model size.

We have used our approach to navigate through two com-
plex environments. One is a cluttered factory room model
composed of over 10, 000 triangles. The second is a complete
power plant model composed of more than 12 million trian-
gles and 1200 objects. We used our path planning algorithm
to compute collision-free paths between different locations
in these environments, as well as to navigate through them
in a driving mode. The resulting system can also be ap-
plied to many domains that involve exploring, or training in
unfamiliar synthetic environments.

1.2 Organization

The rest of the paper is organized in the following manner.
We give a brief survey of previous work in navigation and
motion planning in Section 2. Section 3 gives an overview
of our approach, while Section 4 presents the roadmap com-
putation algorithm. We describe the path computation and
navigation algorithms in Section 5. In Section 6 we dis-
cuss the implementation and performance of our system on
the example environments. Section 7 discusses some of the
limitations of our approach and presents future research di-
rections.

2 Related Work
In this section, we give a brief overview of related work in

navigation of virtual environments and path planning.

2.1 Navigation in Virtual Environments

There is a vast body of work related to 3D navigation
in virtual environments. It can be classified into two main
categories: work on understanding the cognitive principles
behind navigation, and work on developing navigation tech-
niques for specific tasks and applications. A task-based tax-
onomy of different navigation techniques is presented in [Tan
et al. 2001]. Darken and Sibert [Darken and Sibert 1996]
have explored cognitive and design principles as they are
applied to large virtual environments. There has also been
considerable work in designing intelligent user interfaces for
improved navigation [Shneiderman and Maes 1997; Li and
Ting 2000].

Most of the prior work on navigation for walkthrough ap-
plications has focused on developing body-centered interac-
tion methods, including devices such as treadmills, or on
evaluating the differences between various interaction tech-
niques, such as walking and joystick based flying, [Mackinlay
et al. 1990; Robinett and Holloway 1992; Slater et al. 1994;
Usoh et al. 1999]. There has been less work on automatic
computation of navigation paths in complex environments.
Slater et al. [Slater et al. 1994] have presented an inter-
action technique based on body gestures for walking and
ascending, or descending, steps and ladders in virtual en-
vironments. These techniques were applied to architectural
walkthrough environments. Igarashi et al. [Igarashi et al.
1998] have presented a simple interaction technique for walk-
throughs in which the user draws the intended path directly
on the scene, and the avatar automatically moves along the

path. Many of the current computer games also offer effec-
tive means of navigation. However, it is not clear that these
approaches can be extended to navigation and automatic
path computation in general massive environments.

For handling very large environments, Wilson et al. [Wil-
son et al. 1999] have presented fast algorithms for collision
detection and distance computation between the avatar, or
other moving objects, and the rest of the environment. Hub-
bold et al. [Hubbold and Keates 2000] have presented tech-
niques based on force-field methods for local navigation as
well as collision detection algorithms for parameterically-
defined models. The resulting system works well in terms
of computing collision-free paths in the localized neighbor-
hood of the avatar, but cannot be used to compute a global
path between arbitrary initial and final positions in a com-
plex environment.

Some commercial products like Walkinside [Walkinside
2002] offer support for viewing detailed information related
to all the elements in industrial and architectural environ-
ments.

2.2 Motion Planning and Path Computation

Motion planning has been extensively studied in robotics,
computational geometry and related areas for more than
three decades. However, it is still considered to be a dif-
ficult problem to solve in its most basic form, e.g., to find
a collision-free path for a rigid object among static obsta-
cles. The best known complete algorithm for computing a
collision-free path has complexity exponential in the num-
ber of degrees of freedom (dof) of the robot or the moving
object [Canny 1988]. Such planners, also called criticality-
based planners, rely on an explicit, global geometric anal-
ysis to generate a provably complete representation of the
configuration space for the moving object so that it can be
effectively searched for a path. In practice, these planners
are challenging to implement and slow during execution, es-
pecially in massive environments, which contain a very large
number of primitives.

The theoretical and practical complexity of complete plan-
ners has motivated the development of planners that rely
on approximate or heuristic methods [Latombe 1991]. Such
planners are relatively simple to implement. However, they
are not always guaranteed to find a path, if one exists. Ex-
amples of such planners include those based on potential
field, or force field, methods [Khatib 1986]. These are rel-
atively fast in practice and work well for local path plan-
ning. Potential field method have also been used for motion
planning, movement control in animation [Egbert and Win-
kler 1996], camera viewpoint control for virtual colonoscopy
[Hong et al. 1997], navigation in large and complex geomet-
ric environment [Hubbold and Keates 2000] and real-time
motion planning in complex environments [Hoff et al. 2000].
The resulting planning, or navigation, algorithms have the
limitation that they can become trapped in local minima of
the potential function and so may not work well in dense en-
vironments composed of a large number of objects, especially
when a long indirect path is required to move the avatar to
a faraway goal location.

Some of the practical algorithms for global motion plan-
ning are based on taking random samples in the robot’s
configuration space [Kavraki and Latombe 1994; Overmars
and Švestka 1995]. These approaches build a probabilistic
roadmap (PRM) in the configuration space of the robot.
For such systems a key concern is how to generate sufficient
samples of the environment for the roadmap to capture the
topology and connectivity of the configuration space. Their
application to large and complex environments has been lim-
ited. A particularly relevant recent roadmap planning ap-

proach is the Visibility Based PRM system (VisPRM) de-
scribed in [Simeon et al. 2000]. The VisPRM algorithm pro-
vides a method for rejecting many of the randomly generated
configurations used to build the PRM roadmap, to produce
a roadmap with far fewer nodes that retains the same global
path planning information.

Motion planning algorithms have also been used for de-
signing better user interfaces and providing better naviga-
tion techniques for animated characters. Li et al. [Li et al.
1999; Li and Ting 2000] have presented algorithms, based
on randomized motion planning, that take mouse input from
the user and predict the location in the environment that the
user would like the avatar to move to. Next they compute a
collision-free path to the predicted goal position. However,
the running time of a randomized planner can vary consid-
erably and this system has only been used for local navi-
gation in relatively simple environments. Kuffner [Kuffner
1998] has presented a navigation algorithm for computing
collision-free motion for animated human characters using
graphics hardware. It uses 2D motion planning navigate
characters through environments of moderate complexity at
interactive rates.

Nieuwenhuisen and Overmars [2003] present a method for
navigating through a model based on the PRM algorithm
and cinematography principles. Their approach maintains
desired aesthetic qualities over a path through the environ-
ment by controlling the camera roll, distance to obstacles,
smoothness of turns, and continuity of the path traversal
speed.

3 Overview
In this section, we give an overview of our approach and

introduce different modes of navigation.

3.1 Assumptions

Our approach is designed to allow a user to navigate in
any large environment. Aside from model geometry, the
only necessary input to the preprocess are the dimensions
of the avatar and its natural orientation in the scene. The
environment is specified in terms of geometric primitives and
their connectivity.

We assume that the user is steering through the environ-
ment in a driving mode. The avatar can move along three
degrees of freedom, including translation along the plane
corresponding to a floor or rotating about an axis orthog-
onal to that plane. Moreover, the motion of the avatar is
constrained to lie on a surface such as a floor or stairway.
We allow the avatar to navigate in the environment in two
modes:

• Global: In this case, the user specifies an initial and
final position in the environment. The algorithm au-
tomatically computes a collision-free path that satisfies
the motion constraints.

• Local: The user is allowed to explore the environment
in a driving mode, where the avatar responds to trans-
lational and rotational inputs from the user. The al-
gorithm automatically performs collision checks with
the environment and constrains the avatar to walkable
surfaces in the environment.

The module controlling the local movement is used during
roadmap preprocessing, local navigation, and path following
as shown in Figure 1 and Figure 2.

3.2 Preprocessing

During the pre-processing stage, we compute a global
roadmap of the synthetic environment (details given in Sec-

Random
Sampling Global

Roadmap

Test Sample
Reachability

Local

Planning

Roadmap
Computation

Figure 1: Preprocessing phase

Local

Walk

Path
Following

User
specified
start and

goal
locations

Collision Free
Path

Avatar Motion
Along the Path

Global
Roadmap

Graph
Search

Figure 2: Runtime algorithm

tion 4). We achieve this by randomly generating collision-
free configurations of the avatar in the scene. Samples are
connected using a local planner that enforces our constraints
including collision detection using a bounding box hierarchy
[Larsen et al. 1999]. We also prune the graph to reduce the
redundancy of coverage or reachability over the entire walka-
ble space. The resulting roadmap is a global data structure
that is used at runtime to navigate the user through the
environment.

3.3 Runtime Algorithm

At runtime, the user specifies the initial and goal position.
The algorithm searches the roadmap graph using a variation
of the IDA∗ search algorithm [Korf 1985] and performs con-
nected component analysis to improve its performance.

The user is navigated along the computed path. Given the
collision-free and constrained path, a few viewing options in-
cluding path alignment are available to the user. More detail
is given in Section 5. The combination of these techniques
enables the user to automatically navigate through the com-
plex environment.

The algorithm also allows the user to navigate any part of
the environment in a driving mode. The user can also stop
at any point of interest and control his movement to inspect
a particular location within the environment. Our algorithm
provides the user with both local control and global naviga-
tion in a large environment.

4 Global Roadmap Precomputation
In this section we describe the pre-processing phase of the

path planning algorithm. In this phase the system extracts
geometric information from the virtual environment, which
is later used to aid the user in interacting with the envi-
ronment. In particular, it automatically computes a graph,
or roadmap, that captures the connectivity of the portions
of the model that are accessible to the user’s avatar. This
roadmap is later used to generate walkable paths that let
the user navigate between arbitrary locations in the envi-
ronment.

During this preprocess phase we randomly generate valid
configurations for the avatar in the virtual environment.
They are linked to form a graph by planning simple paths
between them by using a local planner. During the query
phase, when a user is interacting with environment, the re-
sulting roadmap is quickly searched for a path that can take
the avatar between the specified start and goal configura-
tions.

Next we define some key roadmap planning concepts, and
later apply them to our problem.

4.1 Configuration Space

We use the motion planning configuration space formula-
tion [Lozano-Pérez and Wesley 1979]. In this formulation,
the avatar is represented as a point in a higher dimensional
space, called the configuration space, C. In this manner
any planning task can be interpreted in terms of a point
robot, so that the problem of characterizing the constraints
on the avatar’s motion is isolated from that of finding a path
that satisfies those constraints. In our application, the user’s
avatar is constrained to the walkable surfaces. The configu-
ration space is decomposed into two sets, Cfree and Cblocked.
Cfree, often called the free space or the workspace, is the
set of all configurations in C, for which the avatar is not in
collision with any obstacle in the environment. Cblocked is
the set difference C\Cfree, or the set of all configurations in
which the avatar is in collision with at least one obstacle.

4.2 Local Planning Method

Given two configurations c1 and c2 in Cfree, the local
method, L, computes a path L(c1, c2) connecting the two
configurations, which does not collide with any obstacles. In
roadmap planning approaches the local method that is used
is simple, quick to evaluate, and easy to reproduce during
the query phase, even if it does not always succeed in finding
a path, if one exists. The local planner should be efficient
because it is invoked many times during the construction of
the roadmap. A very common approach is to use a local
planner that is restricted to only finding simple straight line
paths between two configurations.

In our scenario, we use the analog of a straight-line path as
it applies to our particular configuration space and restricted
local walk algorithm, described in Section 5.1. Given two
configurations, c1 and c2 that we would like to connect, the
local planner places the avatar in c1 and performs the local-
walk step repeatedly in the direction of c2 until either the
configuration c2 is reached or the planner determines there
is no direct path to c2. The details of the local planner are
presented in Section 5.2.

Intuitively paths in this local planning method consist of
only a single rotation followed by a continuous, collision free,
walk, in the forward direction until the goal is reached. Note
that such paths need not be straight lines, as the avatar may
move across several disjoint walkable surfaces (triangles),
perhaps even with different orientations, as in the case of
walking up or down stairs.

4.3 Roadmap Computation

A roadmap of the environment is defined as a graph in
which nodes represent configurations in Cfree, and edges are
used to connect nodes for which the corresponding config-
urations can be connected by the local planning method,
described above. In the general case this graph is a directed
graph, but, since in our implementation we have chosen the
parameters of the avatar so that any path can be followed in
either direction, in practice the roadmap graphs we produce
are undirected.

Our roadmap computation algorithm is a variation of the
VisPRM algorithm presented in [Simeon et al. 2000]. We use
the term reachability as a more general term for visibility.
In order to ensure a maximum distance between graph nodes
in the environment, we limit the reachable region of a node
by a radius. Our algorithm allows a “connector” node to
connect more than two “guard” nodes, and adds “connector
pruning” to eliminate redundant connectors. This section
presents the details of our algorithm.

4.3.1 Reachability

Given a local planning method L, the reachability domain
of a configuration c and a radius r, is defined as the set:

Reach(c, r) =

{
c

′
∈ Cfree such that dist(c, c

′
) ≤ r

and L(c, c
′
) ∈ Cfree}

}
where dist is the Euclidean distance function. Intuitively,
the reachability domain of a configuration is the portion
of a neighborhood around the configuration that can be
reached using the local planner. For the reachability do-
main, Reach(c, r), the configuration, c, around which do-
main is centered is defined as the guard of Reach(c, r).

Our algorithm tests whether a configuration c1 is in
Reach(c2, r) for some other configuration c2, by first testing
the distance between the two locations to ensure that it is
less than or equal to r. If this is true, then we use the lo-
cal planning method described in Section 4.2 to test if c2 is
reachable from c1.

4.3.2 Free Space Coverage

A set of guards, G, is a coverage of Cfree for a given reach-
ability radius r, if for any c in Cfree, there exists a g in G
such that c ∈ Reach(g, r). Since our synthetic environment
is bounded, our configuration space is a subset of the union
of a finite number of triangles, and hence has finite area, it
is guaranteed that a finite coverage always exists. The size
of the coverage is proportional to the size of the domain, in
relation to the radius r, and the shape of the domain. In
our application we do not consider the problem of finding
an optimum coverage for the domain, where optimum refers
to the smallest possible number of guards. To find such a
coverage would require solving an instance of the well know
art gallery problem, which is NP-hard [O’Rourke 1997].

4.3.3 Reachability Roadmap

The reachability roadmap is a roadmap of the workspace
that is a bipartite graph containing the following node types:

• Guard Nodes: Given a fixed radius rg, called the
guard reachability radius, each guard node g has the
property that no other guard node g′ is in the reacha-
bility domain Reach(g, rg). Intuitively this means that
all of the guards are mutually unreachable for this given
radius.

• Connector Nodes: For a given distance, rc, called the
connector reachability radius, a connector node repre-
sents a configuration, C, such that there are two or more

Rg

Rg

Rc

Rg

Figure 3: Left: The reachability domain of three configurations in a simple domain. Right: A roadmap, consisting of three guards (black)

and three connectors (grey), which partially covers the domain.

guard nodes in the reachability domain Reach(c, rc).
For each connector node, we add edges in the graph be-
tween the connector and all guard nodes in this reach-
ability domain.

The guards nodes define a set of reachability domains
that, once complete, should cover as much of the free space
of the virtual environment as possible. Connector nodes
act as links between two or more guards to produce a well-
connected graph that is used for path planning. Two param-
eters control the characteristics of the reachability roadmap.
The guard reachability radius, rg, controls the density of
guards in the roadmap. As rg decreases, more guards are
needed to cover the domain. The second parameter, the
connector reachability radius, rc, influences the connectivity
of the roadmap by defining the maximum edge length in the
graph. If rc = rg it will take many samples to connect two
guards with approximate separation distance rg. For this
reason we used rc = 2rg.

4.3.4 Probabilistic Construction of the Roadmap

We construct the roadmap incrementally by randomly
sampling the workspace, Cfree. For each random configu-
ration, c, we search the roadmap for all guards that contain
c in their associated reachability domains, with each of the
two radii rc and rg. If there are no such reachable guards,
c is added as a guard node. If there are two or more, c is
added as a connector. With only one reachable guard node,
c is discarded.

The reachability roadmap algorithm is given in Algorithm
4.1. Notice that in the construction of the graph we choose
to resolve situations where c can be added as both a guard
and a connector, by adding c as a connector, so that we
increase the number of edges in our graph making it more
useful for path planning.

4.3.5 Pruning Connectors

As a further optimization to the roadmap algorithm, be-
fore any configuration c is added as a connector to the
roadmap, we compare it to all reachable connectors already
in the graph. If we find a connector already in the graph,
which is reachable from c, that joins all of the same guards
as c, then we do not need to add c to the graph. Any previ-
ously added connectors that connect a proper subset of the
guard nodes connected by c are redundant if reachable from
c. Such connectors are removed after adding c. This ensures
that we only keep the connectors with the highest number
of linked nodes, whenever possible.

4.3.6 Sampling

An important aspect of any randomized roadmap planner
is the technique used to generate samples in the configura-
tion space. The goals of the sampling strategy are:

Build Roadmap

Input The model geometry and the desired percentage cov-
erage pcover.

Output A roadmap R that is estimated to cover at least
pcover percent of the model.

Repeat {
Let c ∈ Cfree ← a random configuration.
Let Src ← the set of all guards in Reach(c, rc).
if |Src | > 1
{

Add c to R as a connector.
Add edges between c and each
guard g ∈ Src .

{
else
{

Srg ← the set of all guards in Reach(c, rg).
if |Srg | = 0
{

Add c to R as a guard.
Add edges between c and each connector
c ∈ Reach(c, rc).
}
else
{

Reject c
}

}
}until until estimated coverage of Cfree by R exceeds pcover

return The roadmap R.

ALGORITHM 4.1: Build Roadmap

• To sample the configuration space uniformly by area

• To distribute the samples uniformly in the environment

• To have, at all stages of the sampling, an upper bound
on the worst case distance between the samples

While our sampling strategy should be automatic and
make no assumptions about the environment, it is possible
to take advantage of the constraints imposed on the avatar’s
motion and satisfy the stated goals. The key observation is
that the direction of the gravity vector in the scene plays a
large role in determining the walkable portions of the model.
Since our constrained movement model limits the gradient of
surfaces which the avatar can ascend or descend, the walk-
able triangles are nearly perpendicular to gravity. Thus,

s

s2
10

Figure 4: An example of the largest radius around a sample that

can be empty of any other samples, in our sampling scheme. S is

the length of the grid cells in the finest resolution grid that has been

fully sampled. The light dotted lines indicate the center of the cell

from which each sample is taken

we can sample the space by shooting random rays through
the model, along the direction of gravity, and generate sam-
pling that is efficient and also very closely approximates a
sampling that is uniform by area. We intersect these rays
with polygons in the model and create samples wherever the
avatar is able to stand on the intersection point.

It may appear that such a sampling scheme is biased be-
cause samples are correlated in the direction of gravity. But
since the avatar is not able to fly, or to walk up along the
vertical direction, samples that are geometrically correlated
in the vertical direction are not correlated in the configura-
tion space of the avatar. This is because the avatar can only
move up or down indirectly, as a result of horizontal motion,
such as in the example of walking up or down stairs.

To distribute the samples in the environment and obtain
a bound on the worst case spacing between samples we shoot
the rays through the environment from a plane positioned
outside the model and oriented perpendicular to the gravity
vector, and partition this plane with a two dimensional grid.
For each cell in the grid, a sampling ray is originated at a
random point within the cell. After a ray is shot for each
cell, we divide each cell into four smaller cells in the manner
of a quad-tree. Initially, the cell length is chosen to be twice
the guard reachability radius, rg, so that the sampling starts
coarsely, with few samples within reachable distance of each
other, and becomes more refined as more samples are taken.
At each stage of the sampling, the length of the grid cells
in the finest resolution grid that has been fully sampled,
S, gives a limit on the radius of the neighborhood around
a sample that does not contain any other samples. Figure
4 shows an example of the largest empty region around a

sample. The radius of this region can be at most
√

10
2

S
units. In Figure 4, the light dotted lines indicate the center
of the cell from which each sample is taken.

4.4 Analysis of the Roadmap

In this section, we analyze the size and coverage of the
roadmap computed by our algorithm.

4.4.1 Size of Roadmap

The size of the roadmap is determined by the guard reach-
ability radius and the size and complexity of the environ-
ment. The number of guards is limited by the maximum
number of guards that can be placed in the environment
without mutual reachability. Our connector pruning strat-
egy ensures that the number of connectors is also limited
by mutual visibility, with a strong tendency to create the

smallest number of connectors possible to link any given set
of guards. In practice we have observed that roadmaps for
our environments typically have less than one connector for
every guard.

4.4.2 Estimating Coverage

We terminate the roadmap construction when we have
achieved the desired coverage of our environment by the
union of the reachability regions of the guards. To obtain
a probabilistic estimate on the ratio Areachable/A, of guard
reachable area to total area of the model, we use the fact
the ratio is equivalent to the probability, preachable, that a
random sample taken in the workspace will fall in an area
reachable by the guards. To provide a probabilistic bound
on the value of preachable, for a given roadmap, we could take
N random samples of the workspace and record the number,
Nreachable, of those samples that land in reachable space. As
N grows large, approaching infinity, the ratio Nreachable/N
converges to preachable = Areachable/A. But we desire an
estimate on the coverage as the graph is being constructed.
For efficiency it is important to have a bound on this ra-
tio that does not require additional samples to be generated
just to estimate the bound. So as we build the roadmap, we
maintain a tally of the number of samples that are reachable
from at least one guard. Since we never remove guards from
the roadmap, any sample that is visible by at least one guard
in the partially constructed roadmap will also be visible by
at least one guard when the roadmap construction algorithm
is terminated. Moreover, any configuration that is not visi-
ble by at least one guard will be added to the roadmap as a
guard, and so may increase the amount of reachable space.
Thus, the ratio of reachable samples to total samples as the
roadmap is being constructed is a lower bound on the ratio
Nreachable/N from a complete graph. This tally is easy to
maintain, and provides a lower bound probabilistic estimate
of the probability preachable. Therefore, it provides a conser-
vative estimate on the quality of the roadmap that can be
used as a termination condition for our algorithm.

Note that for any target coverage of the configuration
space the roadmap algorithm is guaranteed to terminate in
the asymptotic sense, provided that the sampling is not bi-
ased. This is because our configuration space is finite, and
every new guard added must increase the coverage towards
100%. Also, in the limit our sampling strategy will sample
the entire Cfree.

5 Local-Walk and Navigation
In this section, we present a local navigation mode, which

we call local-walk.
Given, as input, some desired motion for the avatar, the

local-walk system converts it into a motion that satisfies the
following constraints:

• The avatar must never penetrate objects in the envi-
ronment.

• The avatar must always be on a walkable surface.

A surface is considered walkable if the surface normal is
within a tolerance angle of the up vector defined for the en-
vironment. This criterion prevents the avatar from walking
up or down unreasonably steep slopes. The two constraints
on the avatar’s motion are enforced to provide a realistic
movement model that is similar to the motion of a human
walking through the environment.

The local-walk algorithm plays three roles in our system.
First, in the interactive mode, it converts user input directly
into valid avatar motion, allowing the user to drive the avatar

Constrained
Surface

Movement

Redirect
Along

Surface
Boundary

Goal
Configuration

Finished

Reached
New

Surface

Place
Avatar on

New
Surface

New Surface
yes

EdgeCollisionRedirect
Along
Object

no
Reached

Figure 5: Overview of the local-walk algorithm: The circle rep-

resents the default walking mode. Different events are represented

by directed edges out from the circle and the boxes represent the

responses to the events.

through the environment. Second, the roadmap computa-
tion algorithm presented in Section 4 uses local-walk as part
of local planner when testing the reachability of samples.
Finally, local-walk is used during the path following stage to
automatically drive the avatar is along the computed path.

5.1 Local-Walk

We assume that the avatar starts in a valid configuration.
The local-walk algorithm receives a goal position and moves
the avatar along the floor surface towards the goal. This
default walking mode can be interrupted by different events
and the algorithm responds to those events. The events are
listed below and also highlighted in Figure 5.

Goal Reached The goal position is reached and the avatar
stops moving.

Collision If the avatar encounters an obstacle in the scene,
the avatar’s motion is projected along the obstacle edge.
This is illustrated in Figure 6(a).

New Surface As the avatar moves it may come into contact
with a surface above the current surface as in Figure
6(b). The avatar responds by transitioning to the new
surface and continuing along the desired motion vector.

Edge If the boundary of the current surface is encountered,
there are two possible responses. The algorithm looks
for a surface along the motion vector that the avatar
may step onto (collision free). The avatar has a limited
distance it may step up, down, or outward. If such a
surface is found, it is handled exactly as in the New
Surface event. Otherwise, the avatar’s motion is pro-
jected along the boundary as in the Collision event. In
Figure 6(c) the latter case is highlighted.

Collisions below a certain height with surfaces that are
deemed non-walkable based on their normals are permitted
so that the avatar is able to step over low obstacles. The
avatar is redirected by Edge and Collisions events, but never
allowed to move in a direction that makes an angle greater
than 90 degrees with the original intended direction.

(a) Collision (b) New Surface (c) Edge

Figure 6: Three possible events: (a) When the avatar reaches the

boundary of the surface and there is no reachable surface to which

to step, the avatar’s motion is aligned to move along the surface

boundary. (b) Similarly, to avoid obstacle penetration, the avatar’s

motion is projected along the edge of obstacles. (c) If the avatar

encounters a surface above the current surface, a surface transition

is made.

5.2 Local-walk as a Local Planner

The local-walk algorithm is modified slightly when used
as a local planner. The input is specified to move the avatar
along the vector between the start position and the goal
position in the plane of the surface of the start configuration.

If a collision occurs or an edge event occurs and no sur-
face can be transitioned to, the local planner determines that
the goal position is not reachable from the start position in
a single local plan step. Additionally, the avatar is reori-
ented towards the goal position after transitioning between
walkable surfaces.

This method of moving the avatar has a potential pitfall.
While crossing a small gap when transitioning surfaces, the
avatar may pass directly over or under the goal position. The
local planner will continually oscillate the avatar between the
sides of the gap. To correct this, if the avatar passes above or
below the target configuration, the local planner determines
that it cannot connect the configurations.

5.3 Path Searching

Once we have generated a roadmap for the configuration
space that provides the desired amount of coverage, we use
it to generate paths between some given start and goal loca-
tions. We first link the start and goal configurations to the
roadmap. In particular, we add the start and goal configura-
tions to our graph as query nodes and create edges between
these nodes and all other nodes reachable from them in less
than the connector link distance, as described in Section 4.

Once these nodes have been added we can execute any
graph search to find a path from the start to the goal. In
our approach, we use the well-known IDA* algorithm [Korf
1985], which uses iterative depth first searches with an in-
creasing distance cutoff.

5.4 Following Paths

Once a path has been found between the desired start and
goal configurations, we render the path for the user and also
provide an automatic navigation function that propels the
avatar along that path. This automatic navigation function
walks the avatar along the path in the same manner as the
local-walk described in Section 5.1. In addition to following
the path, our algorithm also performs trimming, which cuts
redundant corners in the path. It checks for these corners in
real-time as the avatar is traversing the path. Specifically, it
checks whether any nodes in the path ahead of the avatar are
reachable, in the sense of our local planning method, from
the current position. If so, the avatar is redirected to this
node from its current position to smooth the path.

6 Implementation and Performance
In this section, we describe the implementation of our al-

gorithm and highlight its performance in two environments.

6.1 Implementation

Our system is implemented in C++ and runs on the Win-
dows PC platform. We use a public domain collision detec-
tion library, Proximity Query Package (PQP) [Larsen et al.
1999] for collision checking. We have also used several tech-
niques to accelerate the performance of our system.

6.1.1 Spatial Partitions

To take advantage of the spatial coherence, we use a reg-
ular grid spatial data structure to accelerate the local-walk
algorithm, roadmap construction, and rendering.

We use bounding volume hierarchies for collision detec-
tion. They are computed for each cell. This localizes the col-
lision detection that is performed when invoking local-walk
during the preprocess and at runtime. As to be explained in
Section 6.2, the cells are also used in memory management.

To accelerate the rendering of complex environments, we
combine the spatial grid along with a hardware supported
occlusion query, GL NV occlusion query, available on recent
NVIDIA GPUs [Hillesl et al. 2002]. The goal is to render
the grid cells in a front to back order from the viewpoint,
and use the query to cull away cells that are occluded. We
combine it with view frustum culling and are able to obtain
reasonable frame rates, 8 − 15 frames per second (on the
power plant), in most regions of the environment.

The same cell grid is also used in the preprocessing phase
for roadmap computation. Because nodes have a limited
reachability radius, when searching for reachable guards or
connectors from a sample we need only attempt local plan-
ning steps to nodes in nearby cells.

6.1.2 Graph Search Acceleration

As described in Section 5.3, we use the IDA* algorithm
[Korf 1985] to quickly search our roadmap for paths between
the user specified start and end goals. We accelerate the
IDA* algorithm by using a transposition table that main-
tains a cache of history records for the nodes traversed in
an iteration, and prevents the algorithm from traversing the
nodes more than once when it doesn’t improve the search
result.

A second acceleration technique that we use is performing
connected component analysis of the roadmap. Connected
component analysis of a graph decomposes a given graph
into strongly connected components, such that all nodes
within a component are reachable from each other. By la-
belling each node in the graph with a component index we
can easily test if there exists a path between any given pair
of start and end nodes. Without this information the path-
planning algorithm will have to traverse the entire graph
before it would be possible to conclude that no path exists
between the nodes.

6.2 Memory Management

Memory management is an important issue in handling
massive environments. Our system’s most significant mem-
ory requirement (aside from the given model geometry)
arises from PQP bounding volume hierarchies (BVHs) for
collision detecting. The roadmap graph contains on the or-
der of thousands of nodes and can be stored in less than
1MB.

If the bounding volume information is stored for the entire
model geometry it would at least double the memory usage.
For applications in which the memory constraints do not
permit the retention of PQP representations of the entire
model, we use employ a cache for managing BVHs. When

the avatar encounters a cell whose BVH is not in the cache
it is added to the cache. If the cache was already full a
least-recently-used policy is used to delete a BVH.

When a user is interacting with the environment, the con-
strained movement model ensures that the avatar’s motion
has high spatial coherence. Thus, a small cache for stor-
ing the BVHs can provide interactive performance in most
cases. Additionally, because sampling is performed by iterat-
ing through a 2D grid, local planning steps in the preprocess
also have high spatial coherence.

The number of cells that need to be cached depends on
the size of the model, the resolution of the partitioning grid,
and the system memory.

6.3 Interaction

In our current implementation, interaction is facilitated by
the use of the keyboard arrow keys and the mouse. Our in-
terface has been motivated by first-person computer games,
where the arrow keys are used for translation and the mouse
is used to turn and tilt. There is a limit to how far the user
may tilt the camera up or down to account for the fact that a
user can only tilt his head by a limited angle. The arrow key
directions up, down, left, right are mapped respectively to
walk forward, backward, left, right. Eight possible walking
directions are available by pressing a combination of arrow
keys. Pressing two opposite keys causes no effect.

6.4 Performance

We have tested our implementation on two synthetic en-
vironments, a modest factory room consisting of over ten
thousand triangles, and a power plant model composed of
over twelve million triangles.

6.4.1 Roadmap Computation

The navigation roadmap computed by our system for the
factory room model is shown in Plate 1. Plate 2 shows a
small portion of the roadmap generated for the power plant
model. This image illustrates how our roadmap spans not
only the traditional walking surfaces of the model, such as
hallways and stairs, but also portions of the model, such as
beams and trusses that are not traditional walking surfaces,
but still satisfy our local driving model constraints. The
size of the roadmap generated for the environment, its esti-
mated coverage, and the preprocess time taken to compute
the roadmap are shown in Table 1.

For the factory room environment, the growth of the
roadmap, as random samples are taken, is shown in Fig-
ure 7. The change in estimated convergence as samples are
added is also shown in Figure 7. Notice that in the early
stages of the roadmap algorithm, most samples explore new
reachable space, and hence are added to the roadmap. These
early samples quickly cover the open areas of the environ-
ment with their reachability regions. As more samples are
taken, the unexplored portion of the model becomes smaller
and more fragmented. Thus, as the sampling grows more
dense, more and more samples are in the already reachable
space and so are found to be redundant. When this happens,
both the size of the roadmap and its estimated coverage in-
crease much more slowly.

6.4.2 Path Query

Our path query system is guaranteed to find a path be-
tween any user specified start and end locations in the model,
provided that such a path exists in our roadmap. Thus,
the answer to the question of whether a path query will be
successful is strongly coupled to the degree to which the
roadmap represents the connectivity of the free space. Even
for a roadmap that covers a high percentage of the environ-
ment, the accuracy with which this roadmap captures the

Scene Polygons Samples Nodes Coverage Time
(1) Factory Room 10143 5000 71 99.2% 1.3 hours
(2) Power Plant 12541083 30000 5304 88.03% 13.7 hours

Table 1: Roadmap statistics for two environments. Samples: The number of random samples taken. Nodes: The total
number of nodes in the included in the roadmap. Coverage: The roadmap’s estimated coverage of the environment. Time:
The total time taken for the roadmap construction preprocess.

Figure 7: Left: A graph of the roadmap size as a function of the number of samples takes, for the factory room scene. Right: A graph of

the roadmap coverage as a function of the number of samples takes, for the factory room scene.

connectivity of the model depends highly on the complexity
of the model’s free space. This is often refereed to as the
Narrow Passage problem in the motion planning literature.
It is very difficult for a probabilistic algorithm to link ar-
eas of the environment that are separated by a very narrow
passage, because it is very unlikely that a sample will be
randomly generated in such an area. Many techniques have
been proposed to help deal with the problem of narrow pas-
sages. One possibility is to use medial-axis based sampling
[Foskey et al. 2001].

Both of the test environments contain passageways that
are narrow with respect to the avatar. We have found that
when the roadmap has achieved high coverage of the envi-
ronment (around 90%), the path finding algorithm is able
to find paths between almost all connected model regions.
Moreover, due to the acceleration techniques used to speed
up the path query, described in Section 6.1.2, the path query
time is on the order of one or two seconds. This makes the
path query model a fast and easy tool to aid the user in
exploring the model in real-time.

6.4.3 Example Paths

Our color plates show four examples of paths that have
been automatically computed by our system. In each image
we show several configurations of the avatar as it traverses
the path. Plate 3 shows a portion of a path through the
hallways and stairways in the power plant model. Plate 6
shows another portion of a path in the power plant. In this
case, the avatar walks along the beams at the top of the
power plant in order to achieve a short path to the goal,
again illustrating how our algorithm explores all walkable
surfaces.

Plate 4 shows a complete path from a start location, de-
noted by the green umbrella at the bottom on the image,
to a goal location denoted by the red umbrella at the top
of the image. This model, which consists of many disjoint
platforms, conveyer belts, and other pieces of machinery,
illustrates that our algorithm is able to plan paths in an en-
vironment that lacks a clear decomposition into functional
units, such as walkways, floors, or stairways.

Plate 5 shows the avatar traversing another portion of

a path in the power plant model. As the avatar follows
the path, portions of the path are skipped, and replaced
with straight line segments by a look-ahead computation,
whenever this can be done in a manner that shortens the
path while still maintaining the constraints of the movement
model.

7 Conclusions
We have presented an approach for navigating complex

environment based on path planning algorithms. It includes
a novel approach to precompute the roadmap of a complex
environment that uses a combination of randomized sam-
pling, collision checking, local planning and reachability con-
straints. At runtime our algorithm searches the roadmap
graph to compute a path between two locations in the envi-
ronment and steers the user along the path. It also enables
local user-steered exploration of the scene and imposes con-
straints on the motion avoiding collision and moving along
surfaces. We have applied it to two complex environments
and the initial results are promising.

7.1 Limitations

There are several limitations of our approach. Because
the roadmap graph is fairly sparse and the avatar follows the
path in linear segments, paths may sometimes look unnat-
ural, especially when compared to a hand-selected or user-
steered path. Our look-ahead technique for smoothing the
path can trim over-shot corners but still uses linear path seg-
ments. Using a path traversal similar to that in [Nieuwen-
huisen and Overmars 2003] may lead to better results.

The precomputation process is time consuming. It pre-
cludes interactively recomputing the graph for a dynamic
environment. It may be useful to alter the environment and
note how this alters walkable pathways between various lo-
cations.

7.2 Future Work

There are many avenues for future work. We would like to
apply our algorithm to more complex environments and also
like to perform a formal user-study to evaluate the benefits
of our navigation algorithm. We would also like to combine

it with interactive rendering algorithms to handle even more
complex environments, where frame rate must be more care-
fully managed by LODs [Govindaraju et al. 2003]. We cur-
rently use a simple mouse-based 2D interface for input and
it may be useful to explore other input devices or even inte-
grate our algorithm with an immersive environment where
the user performs real-walking in the environment and uses
body gestures. Additionally, it may be possible to perform
local graph recomputation to handle moderate changes in
the environment.

7.3 Acknowledgements

This work has been supported in part by ARO Con-
tract DAAD19-99-1-0162, NSF awards ACI 9876914, IIS-
982167, ACI 0118743, ONR Contracts N00014-01-1-0067
and N00014-01-1-0496, a DOE ASCI grant, and by Intel Cor-
poration. The Power Plant model is courtesy of an anony-
mous donor. We would like to thank the members of UNC
Walkthrough group for useful discussions and support, in
particular Karl Hillesland and William Baxter.

References
Canny, J. 1988. The Complexity of Robot Motion Planning. ACM

Doctoral Dissertation Award. MIT Press.

Darken, R., and Sibert, J. 1996. Navigating in large virtual worlds.

The International Journal of Human-Computer Interaction 8, 1,

49–72.

Egbert, P. K., and Winkler, S. H. 1996. Collision-free object move-

ment using vector fields. IEEE Computer Graphics and Applica-

tions 16, 4 (July 1996), 18–24. ISSN 0272-1716.

Foskey, M., Garber, M., Lin, M., and Manocha, D. 2001. A voronoi-

based hybrid planner. Proc. of IEEE/RSJ Int. Conf. on Intelli-

gent Robots and Systems.

Govindaraju, N., Sud, A., Yoon, S., and Manocha, D. 2003. Inter-

active visibility culling in complex environments with occlusion-

switches. Proc. of ACM Symposium on Interactive 3D Graphics.

Hillesland, K., Salomon, B., Lastra, A., and Manocha, D. 2002. Fast

and simple occlusion culling using hardware-based depth queries.

Tech. Rep. TR02-039, Department of Computer Science, University

of North Carolina.

Hoff, K., Culver, T., Keyser, J., Lin, M., and Manocha, D. 2000. In-

teractive motion planning using hardware accelerated computation

of generalized voronoi diagrams. Proceedings of IEEE Conference

of Robotics and Automation.

Hong, L., Muraki, S., Kaufman, A., Bartz, D., and He, T. 1997.

Virtual voyage: Interactive navigation in the human colon. Proc.

of ACM SIGGRAPH , 27–34.

Hubbold, R., and Keates, M. 2000. Real-time simulation of a stretcher

evacuation in a large-scale virtual environment. Computer Graph-

ics Forum 19 .

Igarashi, T., Kadobayashi, R., Mase, K., and Tanaka, H. 1998. Path

drawing for 3d walkthrough. In Proc. of UIST, 173–174.

Kavraki, L., and Latombe, J. C. 1994. Randomized preprocessing of

configuration space for fast path planning. IEEE Conference on

Robotics and Automation, 2138–2145.

Khatib, O. 1986. Real-time obstable avoidance for manipulators and

mobile robots. IJRR 5, 1, 90–98.

Korf, R. E. 1985. Depth-first iterative deepening: An optimal ad-

missible tree search. Artificial Intelligence 27 , 97–109.

Kuffner, J. 1998. Goal-directed navigation for animated characters

using real-time path planning and control. Proc. of CAPTECH:

Workshop on Modeling and Motion Capture Techniques for Vir-

tual Environments.

Larsen, E., Gottschalk, S., Lin, M., and Manocha, D. 1999. Fast

proximity queries with swept sphere volumes. Tech. Rep. TR99-

018, Department of Computer Science, University of North Car-

olina.

Latombe, J. 1991. Robot Motion Planning. Kluwer Academic Pub-

lishers.

Li, T.-Y., and Ting, H.-K. 2000. An intelligent user interface with

motion planning with 3d navigation. Proc. of IEEE VR.

Li, T. Y., Lien, J. M., Chiu, S. Y., and Yu, T. H. 1999. Automatically

generating virtual guided tours. Proc. of Computer Animation,

99–106.

Lozano-Pérez, T., and Wesley, M. 1979. An algorithm for planning

collision-free paths among polyhedral obstacles. Comm. ACM 22,

10, 560–570.

Mackinlay, J. D., Card, S. K., and Robertson, G. G. 1990. Rapid

controlled movement through a virtual 3D workspace. In Computer

Graphics (SIGGRAPH ’90 Proceedings), F. Baskett, Ed., vol. 24,

171–176.

Nieuwenhuisen, D., and Overmars, M. 2003. Motion planning

for camera movements in virtual environments. Tech. Rep. UU-

CS-2003-004, Utrecht University, Department of Information and

Computing Sciences.

O’Rourke, J. 1997. Visibility. In Handbook of Discrete and Compu-

tational Geometry, CRC Press LLC, Boca Raton, FL, J. E. Good-

man and J. O’Rourke, Eds., 467–480.

Overmars, M. H., and Švestka, P. 1995. A probabilistic learn-

ing approach to motion planning. In Algorithmic Foundations

of Robotics. A. K. Peters, Wellesley, MA.

Robinett, W., and Holloway, R. 1992. Implementation of flying,

scaling, and grabbing in virtual worlds. 189–192.

Shneiderman, B., and Maes, P. 1997. Direct manipulation vs. inter-

face agents. Interactions 4, 6, 42–61.

Simeon, T., Laumond, J. P., and Nissoux, C. 2000. Visibility based

probabilistic roadmaps for motion planning. Advanced Robotics

Journal 14, 6.

Slater, M., Usoh, M., and Steed, A. 1994. Steps and ladders in

virtual reality. In ACM Proceedings of VRST, 45–54.

Tan, D. S., Robertson, G., and Czerwinski, M. 2001. Exploring

3d navigation: Combining speed-coupled flying with orbiting. In

Proceedings of CHI, 418–425.

Usoh, M., Arthur, K., Whitton, M., Bastos, R., Steed, A., Slater,

M., and Brooks, F. 1999. Walking ¿ walking-in-place ¿ flying in

virtual environments. In Proc. of ACM SIGGRAPH, 359–364.

Walkinside. 2002. http://www.walkinside.com.

Wilson, A., Larsen, E., Manocha, D., and Lin, M. C. 1999. Partition-

ing and handling massive models for interactive collision detection.

Computer Graphics Forum (Proc. of Eurographics) 18, 3, 319–

329.

