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Abstract

We present a new method for training pedestrian detectors
on an unannotated set of images. We produce a mixed re-
ality dataset that is composed of real-world background im-
ages and synthetically generated static human-agents. Our ap-
proach is general, robust, and makes few assumptions about
the unannotated dataset. We automatically extract from the
dataset: i) the vanishing point to calibrate the virtual camera,
and ii) the pedestrians’ scales to generate a Spawn Probabil-
ity Map, which is a novel concept that guides our algorithm
to place the pedestrians at appropriate locations. After putting
synthetic human-agents in the unannotated images, we use
these augmented images to train a Pedestrian Detector, with
the annotations generated along with the synthetic agents.
We conducted our experiments using Faster R-CNN by com-
paring the detection results on the unannotated dataset per-
formed by the detector trained using our approach and detec-
tors trained with other manually labeled datasets. We showed
that our approach improves the average precision by 5-13%
over these detectors.

Introduction
Accurate pedestrian detection is important for many au-

tonomous systems, including self-driving cars, surveillance,
robot navigation, etc. This problem has been extensively
studied in computer vision, robotics and related areas. Re-
cently, CNN-based pedestrian detectors have gained impor-
tance and been applied to different benchmarks (Dollár et
al. 2009; 2012; Geiger, Lenz, and Urtasun 2012; Zhang et
al. 2016; Cai et al. 2016; Jifeng Dai 2016).

The accuracy of CNN-based pedestrian detectors de-
pends on the annotations in the training datasets. In order
to achieve good accuracy, current methods ensure that the
training data is from the same scene as or a similar envi-
ronment to the testing data. These stipulations include sim-
ilar camera configurations, lighting conditions, and back-
grounds. This becomes an issue when one applies these
methods to a new, unannotated video. In such cases, anno-
tating training data can be challenging and requires consid-
erable human effort. Overall, we need good pedestrian de-
tection methods that can automatically work on unannotated
videos.
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One recent trend to generate labeled datasets is using
synthetic and simulation approaches. In these methods, the
pedestrian location and appearance in the image are gener-
ated using simulation techniques. With the pedestrian’s loca-
tion given, the resulting rendered image and computed an-
notations are used for training. Such techniques have also
been used for pedestrian detection and crowd video analy-
sis (Hattori et al. 2015; Cheung et al. 2016). However, cur-
rent methods are either restricted to a fixed camera in terms
of their usage or have a low detection accuracy. In this paper,
we investigate new methods that can automatically generate
annotated datasets for pedestrian detection by using simula-
tion methods. The main motivation is to develop automated
methods that can be used for a broad set of applications.

Main Results: We present a novel algorithm
(MixedPeds) to generate the corresponding training data
for CNN-based pedestrian detection, given an unannotated
image dataset. Our approach combines real-world back-
ground information in a scene with synthetically-generated
pedestrians, whose positions are precisely known. The
annotated dataset is composed of synthetic pedestrians that
can be controlled by different parameters. Our approach is
applicable to videos captured from a moving camera and we
present automatic feature extraction methods to obtain fea-
tures that are used to place the synthetic agents. We propose
a novel concept, the Spawn Probability Map, to determine
where to overlay the pedestrians on the image. Furthermore,
we present techniques to generate high-quality renderings
and poses for synthetic pedestrians. As compared to prior
methods to perform pedestrian detection on an unannotated
dataset, our approach offers the following benefits:

• A generalized framework to produce annotated data for
training scene-specific pedestrian detectors.

• An automatic technique for feature extraction from im-
ages that are used to estimate the camera parameters and
valid positions of pedestrians within an image.

• A data-driven approach to determinate lighting and
clothes color of rendered pedestrians, to blend them into
a real image better.

• An improvement in average precision of 7.8%, 5% and,
13.7% over prior methods on CALTECH, KITTI and
ETHZ datasets, respectively.

• With few assumptions on the input dataset, the method
can be applied on sets of images captured by any vehicle.



Related Work
Pedestrian Detection

Pedestrian detection is a sub-problem of object detec-
tion, which has been extensively studied in computer vision
and related areas. Some of the earlier and popular meth-
ods are based on using HOG (Dalal and Triggs 2005) and
SIFT (Lowe 2004) to extract features from images and use
them to train different models (e.g. SVM (Suykens and Van-
dewalle 1999)). Inspired by a Convolution Neural Network
(CNN) called AlexNet (Krizhevsky, Sutskever, and Hinton
2012), which demonstrated good results in terms of classi-
fying objects, Girshick et al. (Girshick et al. 2014) proposed
a method for transforming the object detection problem into
a classification problem. This seminal method is known as
Regions with CNN features (R-CNN).

Several methods (Girshick 2015; He et al. 2014; Ren et
al. 2015) have been proposed to extract sub-region candi-
dates to improve the efficiency and accuracy of R-CNN. Un-
like prior methods, which use a selective search and spatial
pyramid to generate sub-region candidates, Faster R-CNN
also uses a deep network, namely Region Proposal Network
(RPN), to compute the sub-region candidates. Several tech-
niques have been proposed for accurate pedestrian detection
in CALTECH(Dollár et al. 2009; 2012) and KITTI(Geiger,
Lenz, and Urtasun 2012), which are based on Faster R-CNN.
(Zhang et al. 2016) adopted the RPN in Faster R-CNN and
combined it with a boosted forest for pedestrian detection.
MS-CNN (Cai et al. 2016) proposed a similar network struc-
ture that has improvements for objects at a different scale.
R-FCN (Jifeng Dai 2016) proposed a fully convolutional
region-based detector that shows better efficiency. All these
methods assume the availability of good annotated image
datasets for training.

Other techniques for pedestrian detection are based on un-
supervised learning (Sermanet et al. 2013; Benenson et al.
2014), though their accuracy tends to be lower than that of
CNN-based pedestrian detectors.

Synthetic Datasets for Machine Learning
With the demand for annotated data in the Deep Learn-

ing community, using a synthetic approach to produce data
is becoming important to reduce manual annotation efforts.
(Shrivastava et al. 2016) proposes an Adversarial Network
approach to make synthetic data more realistic and preserve
the annotation at the same time. (Varol et al. 2017) trains a
CNN to learn from synthetic data and has shown its ability
to perform human depth estimation and human part segmen-
tation in real data. (Alexey Dosovitskiy 2017) launches an
open framework to produce synthetic training data for au-
tonomus driving.

Hattori et al. (Hattori et al. 2015) use synthetic datasets
to improve pedestrian detection accuracy in a fixed camera
video, where scene geometry and the camera perspective
matrix are given. It overlays simulated pedestrians on the
real-world background with no other pedestrians. This work
has shown that simulated data can significantly improve the
results in the static scene by providing a large number of
training examples. Cheung et al. (Cheung et al. 2016) pro-

posed a framework to generate a large amount of synthetic
data for the pedestrians and the background objects in the
scene.

Camera Estimation and Pedestrian placement
To properly place pedestrians in an existing real-world

image, the perspective information and the scene geometry
information are needed. The perspective information can be
obtained by camera calibration. However, many of the exist-
ing video datasets do not have camera parameters provided.

(Caprile and Torre 1990), (Wang, Tsai, and others 1991)
perform camera calibration using vanishing points and lines.
In order to perform the computations automatically, these
methods require automatic vanishing points/lines detec-
tion (Zhai, Workman, and Jacobs 2016; Nieto Doncel 2010).
However, their performance and accuracy vary with differ-
ent datasets.

Another set of works makes use of paral-
lelepipeds (Wilczkowiak, Boyer, and Sturm 2001) and
cuboids (Debevec, Taylor, and Malik 1996) to esti-
mate the camera parameters, but they require manually
selecting a few points. (Deutscher, Isard, and Mac-
Cormick 2006) uses perpendicular features in artificial
information to automatically estimate the full camera
model. However, this requires sufficient perpendicu-
lar features to work properly. Recent work in robotics
on fully automatic calibration (Geiger et al. 2012;
Levinson and Thrun 2013) relies on checkerboards
(which are not available in most unannotated datasets) or
partially-known metric information (Yang et al. 2013).

Another problem that arises with synthetic methods is the
computation of proper spawn locations. This leads to an-
other well-studied problem in computer vision correspond-
ing to scene segmentation. Despite the fact that there are ef-
fective existing methods (Kundu, Vineet, and Koltun 2016;
Scharwächter et al. 2014; Ladickỳ et al. 2012; Gould 2012)
for handling this problem, they make certain assumptions
and the results can vary with different datasets.

Existing Approach for Pedestrian Detection on
Unannotated Datasets

Given an unannotated dataset, we can apply a CNN-based
algorithm trained on some other dataset to it. A key issue is
to evaluate the accuracy of the pedestrian detection results,
when the training and testing dataset are different. To eval-
uate the performance, we train pedestrian detectors using
Faster R-CNN with ETHZ, Town Center, CALTECH, and
KITTI training sets, and evaluate their accuracy. We show
in the experiment section that the performance of the detec-
tor drops significantly when the training data and the testing
data belong to different dataset(s).

Methodology
In this section, we describe our approach to automati-

cally generate an annotated training dataset using synthetic
agents. We first describe our method of extracting two fea-
tures: Pedestrian Scale Ratio and Vanishing Point, from the
unannotated dataset. Then, we explain how we use them to



Figure 1: Overview: (1) We take an unannotated image set as input, and (2) extract the scale ratio of the pedestrian and vanishing
points as features. Using these features, we compute the camera parameters along with a set of Spawn Probability Maps that
are used to determine the location of the synthetic agents. (3) We overlay synthetic pedestrians on the images to produce (4)
an annotated training dataset, and (5) use it to train a pedestrian detector. (6) We perform pedestrian detection on the original
dataset using this detector.

estimate the camera parameters and determine the spawn
locations of the synthetic agents, using a novel formula-
tion: Spawn Probability Map. This approach is summarized
in Algorithm 1. Finally, we describe our rendering tech-
niques, which are used to compute the appearance of syn-
thetic agents.

Camera model Our approach is designed for datasets cap-
tured by a camera mounted on a vehicle or a robot. There-
fore, we can assume that its intrinsic matrix is the same
throughout the dataset. For the extrinsic matrix, our assump-
tion is that the camera is fixed on the vehicle and the vehicle
is moving on a plane, which is almost parallel to the ground.
Without loss of generality, we define the world coordinate
frame as centered at the vertical projection of the camera
on the ground, where the X axis points to the right, the Y-
axis points forward towards the pedestrians, and the Z-axis
points upward. We assume that the aspect ratio is one and
there are no shear distortions in the camera. Moreover, we
also assume that the camera is fixed upright on the vehicle
such that there is no rotation about the optical axis (i.e. roll
angle = 0) and the pitch angle is θ. The projection matrix can
be given as:

P =

[
α 0 u0

0 α v0

0 0 1

][
1 0 0 0
0 cosθ −sinθ ty
0 sinθ cosθ 0

]
. (1)

Note that the principal point (u0, v0) is given by half of
the image width and height, respectively. Therefore, the pa-
rameters that are needed to estimate are α, θ, ty , where α is
the scaling factor of the camera, θ is the rotation angle about
the X axis in the world coordinate frame, and ty is the dis-
tance of the camera from the ground. After obtaining these
three parameters, we can estimate the Projection Matrix that
can be applied to the entire dataset, and use these parameters
for the virtual camera model that is used to overlay synthetic
pedestrians. In the following part, we describe two features
that are used to estimate the camera angle and techniques for
extracting them and computing the camera matrix.

Feature extraction We extract two features from the
unannotated dataset using a detector trained from another
dataset. Our method is based on the following proposition:

Proposition 1: The ground truth values of the Scale of
Pedestrian, Vanishing Point and Color of clothes of pedes-
trians within an image dataset can be estimated by the most
confident results of a pedestrian detector that has poor aver-
age precision.



Explanation: Every single detected bounding has a confi-
dent score. Thus, if we only consider the most confident re-
sults (say top 10%), the overall precision is usually high (≈
80%) for detectors that has low average precision (≈ 30%).
Therefore, we can make use of this set of confident bound-
ing boxes, BBtop, to estimate ground truth of these features
in the entire dataset,BBgt. Experiment conducted on KITTI
and CALTECH dataset is consistent with this proposition.

Scale Ratio: With the same camera settings, the scale of
pedestrians is the same for every image. We measure the
scale of a pedestrian using the height of the bounding box in
the image. Since the scale of the pedestrian varies depend-
ing on the distance from the camera, we take the scale ratio,
r, as an invariant quantity that represents the scale of the
pedestrian for the entire dataset. The scale ratio r is defined
as the ratio of the average height of the pedestrian bound-
ing box h to the vertical pixel coordinate of that pedestrian’s
foot vfoot. Note that having different heights of pedestrians
in the data would introduce noise into our estimation, but we
assume the effect of such noise would be nullified by suffi-
cient data samples.

Vanishing Point: Since we assumed that the inclination
between the vehicle and the ground is neglectable, the van-
ishing point (uvanish, vvanish) of all the images across the
dataset will be close in numeric value.

To extract the scale ratio and vanishing point, we plot
the h and vfoot for every pedestrian in BBtop and use
RANSAC(Fischler and Bolles 1981) to fit a line to this data.
The slope of the line is the estimated scale ratio r and the
x-intercept is the estimated vvanish value, because the x-
intercept of this plot represents the vertical pixel coordinate
when the size of pedestrian bounding box vanishes to zero.
We also show in the experiment Section that such estima-
tion using only a small number of detections (BBtop) can
precisely approximate the scale ratio and vanishing point of
the ground truth data.

Estimating Camera Parameters Given equation 1, we
can compute h and vfoot as follow. Let the world coor-
dinate of the lowest point and highest point of a pedes-
trian be (x, y0, 0)T and (x, y0, H)T , respectively. We denote
sθ = sinθ and cθ = cosθ. The height of the pedestrian in
an image h is given by:

h =
(αcθ + v0sθ)y0 + αty

y0sθ

− (αcθ + v0sθ)y0 − (αsθ − v0cθ)H + αty
y0sθ +Hcθ

=
αH(y0 + tycθ)

y0sθ(y0sθ +Hcθ)

(2)

Hence, the scale ratio can be expressed as:

r =
h

vfoot
=

αH(y0 + tycθ)

((αcθ + v0sθ)y0 + αty)
(3)

The vanishing point is given by:

vvanish = lim
Y→∞

(αcθ + v0sθ)Y + αty
sθ

=
α

tanθ
+ v0 (4)

Using the r and vvanish, we estimate Θ = (θ, α, ty) of the
camera by performing optimization of this set of variables
using gradient descent. We find a set of Θ within a rea-
sonable parameter space from which r and vvanish are ex-
tracted, such that the difference from the real camera matrix
is minimized.

We compute optimal Θ by solving the equation below :

arg min
Θ

F (Θ) = arg min
Θ

λ1 ‖(r′ − rΘ)‖2

+λ2 ‖(v′vanish − vΘ)‖2
(5)

with lagrange multiplier λ1, λ2 where r′ and v′vanish are
approximated by BBtop, with

Θj+1 = Θj − γ 5 F (Θ) =

θjαj
tjy

− [
γ 5θ F (Θ)
γ 5α F (Θ)
γ 5ty F (Θ)

]
(6)

Finally, we use the resulting Θ = (θ, α, ty) to adjust the cam-
era component in the Unreal Engine to estimate the Projec-
tion Matrix and overlay synthetic pedestrians.

Spawn Probability Map
To avoid placing pedestrians in the wrong locations in

the images, such as placing them on top of an obstacle, we
present a data-driven approach to decide where to spawn
pedestrians in the image: computing the Spawn Probabil-
ity Map (SPM). We use the pedestrian detection results de-
scribed above, BBtop, to construct a 2D histogram that in-
dicates where the pedestrian can be spawned. Instead of
merely increasing the probability at the pixel in the his-
togram where the foot of the pedestrian is detected, we also
increase the neighboring pixel using a Gaussian kernel. We
repeat this process for every pedestrian detected in BBtop
to produce the SPM. When we spawn a synthetic agent in
the image, we randomly decide the location base on the
SPM: The higher the value of SPM, the higher the chance
of spawning at that location.

In practice, it can be unrealistic to assume that the spawn
location of the pedestrian follows the same SPM for ev-
ery image in the dataset. This is because, when a vehicle is
moving, different types of scenes can be captured: highway,
crosswalk, tunnel, etc. Therefore, we apply K-means algo-
rithm to cluster the images according to the average spawn
location (i.e. average foot position of all detected pedes-
trian), and compute an SPM for each cluster. Since the distri-
bution of pedestrian described by world coordinates is more
meaningful than pixel coordinates, we perform a conversion
using the estimated sets of camera parameters and cluster
the images based on their average spawn location in world
coordinates.

In some cases, the pedestrian can be sparsely distributed
and the average spawn location can hardly represent the lo-
cation of all the pedestrians within an image. We address this



issue by first performing an initial clustering and measure
the maximum distance in world coordinates, dmax, within
each cluster. Taking average of all cluster, we define a met-
ric, davg/2, to separate the images which pedestrians are
sparsely distributed. These images are not considered dur-
ing the clustering phases, and we compute another SPM for
them to decide where to spawn the pedestrians.

Algorithm 1 Compute Spawn Probability Maps (SPMs)
Input: Unannotated Dataset I;
Output: A set of Spawn Probability Maps SPMc; and

Mappings for all images in I to SPMc;
1: Perform detection using existing detector on I;
2: Filter the t% most confident bounding boxes, BBtop;
3: Compute Scale Ratio r and Vanishing Point vvanish

from BBtop;
4: Estimate Camera matrix P using r and vvanish;
5: // Initial Clustering
6: for all image Ik ∈ I do
7: for all BBtopw ∈ Ik do
8: Xw = P−1(GetFootP ixel(BBtopw));
9: end for;

10: Compute average location Ak = avg(Xw) ;
11: Compute Dk = max

∀a,b∈w
(dist(Xa, Xb));

12: end for;
13: Cluster I into C1...Cj using Ak ;
14: Compute dmax j for C1...Cj ; davg = max

j
(dmax j);

15: // Clustering for SPMs
16: Isparse = {Ik ∈ I|Dk > davg/2};
17: Repeat 6 to 12 with I − Isparse and compute new Ak ;
18: Cluster I − Isparse into C1...Cj using new Ak;
19: Assign all images in Isparse to a seperate cluster Cj+1;
20: for all C ∈ {C1, ..., Cj+1} do
21: for all BBtopw ∈ C do
22: SPMj+ = N(GetFootP ixel(BBtopw), σ);
23: end for;
24: end for;
25: return (SPM1...SPMj+1, C1...Cj+1);

Rendering of Synthetic Agents
Generating high quality rendering of 3D models of syn-

thetic agents can be very expensive. In this section, we de-
scribe how to solve the pedestrian placement issue and how
to efficiently generate a set of reasonable color values for
pedestrian appearance.

3D Models of Synthetic Pedestrians We use seven dif-
ferent 3D human models with variable clothing and skin
color, and combine them with nine different poses to gener-
ate synthetic pedestrians. Skin color can be modeled based
on the approaches described in (Vezhnevets, Sazonov, and
Andreeva 2003). Unlike skin color, clothing colors in the
real world tend to be more random. However, using a ran-
dom color model can result in some unrealistic cloth appear-
ances. For instance, some clothes color (pink, bright orange,
and etc.) that we rarely find in the real world will have the

same frequency as typical clothes color (black, white, dark
blue, etc.). Recall Proposition 1, we can use an HSV color
model to generate clothing colors according to the color of
the pedestrians we see in the unannotated dataset.

Lighting Adjustment Depending on the amount of light-
ing in the image, the brightness of the synthetic agent varies.
If an agent is rendered under a shadow in the image, the
agent should look darker, and if the agent is directly lit by
the sunlight, it should look brighter. Therefore, we consider
all the pixels in an image below the vanishing point and set
a scale with the dimmest pixel and the brightest pixel. We
map this scale to a reasonable range of values, which con-
trols the brightness of the synthetic agents. For each syn-
thetic agent in the resulting image, we consider the bright-
ness of the neighboring pixels of the spawn coordinates and
take the average to compute the brightness of the synthetic
agents.

Experiments
Feature Extraction

This experiment verifies Proposition 1 in CALTECH and
KITTI dataset. We use a detector trained from the alterna-
tive dataset to produce the set of confident bounding box,
BBtop, to estimate the Scale of Pedestrian, Vanishing Point
and Color of clothes in the ground truth bounding boxes,
BBgt. Fig. 2 shows that estimation of Scale of Pedestrian(r)
and Vanishing Point (vvanish), represented as the slope and
x-intercept of the lines respectively, are close in value.

We compare the distribution of the HSV values of the
ground truth pedestrians and the high-confidence pedestri-
ans detected in KITTI dataset. The results are shown in Fig.
3. As observed from Fig. 3, the distribution in the ground
truth and high confidence detections are similar; pedestrians
are more likely to have low saturation values, but random
hue values. Therefore, we determine the hue and saturation
according to the detection results, and determine the actual
value based on the method described regarding Lighting ad-
justment.

Analysis of SPM
To evaluate the effectiveness of performing initial clus-

tering in producing the SPMs, we have computed two sets
of hhe SPMs: one with initial clustering and other without
initial clustering (step 6 - 12 in Algorithm 1). The clustering
results and generated SPMs are shown in Fig. 4. As observed
from Fig. 4, the SPMs without initial clustering [(a)-(d)] are
affected by the images that have sparesly distributed pedes-
trians, and therefore are not concentrated in one region of
the image. This situation has been improved in the SPMs
generated with initial clustering [(i)-(l)].

Furthermore, a detector, namely MixedPeds#, is also
trained without initial clustering when producing the SPMs.
In comparision to MixedPeds#, the average precision of
MixedPeds (which has applied the initial clustering) tech-
nique has prevailed consistently over 3 different datasets as
shown in Table 2 and Fig. 5.



(a)

(b)

Figure 2: Extracting scale ratio and vanishing point by fit-
ting a line to the plot of the Bounding Box height against the
vertical coordinate of the pedestrian in Ground Truth (pur-
ple), detection (orange), and high confident detectionBBtop
(blue). The slope and X-intercept of the line represent scale
ratio and vanishing point, respectively. Results on both (a)
CALTECH and (b) KITTI demonstrate that the line fitted on
high confident detection (red) is almost overlapping with the
line fitted on the ground truth data (green).

Pedestrian Detection
Pedestrian detection on Unannotated Dataset We eval-
uated the results on three datasets that are captured by
a moving vehicle: CALTECH(Dollár et al. 2009; 2012),
KITTI(Geiger, Lenz, and Urtasun 2012), and ETHZ(Ess et
al. 2008). We treat each datasets as an unannotated im-
age sets when testing on it. The ground truth results pro-
vided with the dataset are used to evaluate the accuracy of
CNN-based detection algorithm trained using our annotated
training dataset. We also validate our results using detectors
trained from PASCAL-VOC(Everingham et al. 2015) and
Town Center dataset(Benfold and Reid 2011) that are cap-
tured from alternative kind of cameras.

(a) (b)

(c) (d)

(e) (f)

Figure 3: Color [Hue, Saturation, Value] histogram for
pedestrians in ground truth, BBgt [(a),(c),(e)] and high-
confidence detection results, BBtop [(b),(d),(f)], respec-
tively. Data distribution in ground truth and detection are
found to be similar and thus the detected color histogram
can be used to determine the color of the synthetic agents in
our annotated dataset.

As discussed in previous section, several state-of-the-art
pedestrian detectors are designed based on Faster R-CNN.
Therefore, we also train Faster R-CNN pedestrian detectors
to evaluate the benefits of our annotated training data. Not-
ing that the choice of CNN used for pedestrian detection is
orthogonal to our method, any pedestrian detector can be
trained using our generated data.

We compare three variations of our approach with de-
tectors trained from an alternative dataset, and show the
precision-recall graph of the results in Fig. 5 and the average
precision in Table 2.

In the current approaches to detect pedestrians in unan-
notated dataset, combining training data from all existing
dataset is the best. However, the detector trained with our ap-
proach is consistently better than the detector trained by this
combined dataset. Besides, all three sets of experiments also
show that the performance drops significantly when SPMs
or our rendering techniques are not used. This has shown
the importance of using SPMs to determinate pedestrians’
spawn location and applying our rendering technique. In
terms of handling unannotated images, MixedPeds demon-
strates significant benefits over prior methods. Fig. 7 shows
some examples of the annotated datasets using our approach.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: Clustering process visualization [(e),(f)], results [(g)], and two sets of Spawn Probability Maps [(a)-(d), (i)-(l)] com-
puted for KITTI dataset. (a)-(d) SPMs generated without applying initial clustering. (e) Initial clustering (steps 6-12 in Algo-
rithm 1). (f) Images with pedestrians sparsely distributed (yellow) are removed from I− Isparse. (g) Clustering I− Isparse into
4 groups (steps 16-18 in Algorithm 1). (h) SPMs for Isparse(Cj+1), which are used for images that contain sparsely distributed
pedestrians. (i)-(l) SPMs for other clusters grouped in (c): C1...Cj (j=4). SPMs generated with the initial clustering technique
applied [(i)-(l)] have less noise than those without the initial clustering technique [(a)-(d)].

Method Training data of Faster R-CNN detector

MixedPeds Our approach
MixedPeds* Our approach without the rendering tech-

niques
MixedPeds# Our approach without Initial Clustering when

producing SPM
MixedPedsˆ Our approach without using SPMs (Pedestrian

randomly spawned)
ALL Training Data from CALTECH, KITTI,

ETHZ, TownCenter and PASCAL-VOC, ex-
cept the testing dataset

ALL* Same as ALL, except the number of training
samples drawn from each dataset is equal

Table 1: Details of the variation of our approach and the de-
tector trained with a combined dataset

Combining MixedPeds with Real Data We also evalu-
ate the impact of combining MixedPeds and a small set of
manually annotated data from the same scene as the test-
ing data. The results are shown in Fig. 6 and Table 3. When
the amount of MixedPeds data is 8K, the improvement is
2% - 9.5% and 1% - 7% in CALTECH and KITTI respec-
tively. In CALTECH data, when the MixedPed data is fur-
ther increased to 42K (# of samples provided in the original
training data, which is the same number of data used in the
previous experiment), the improvement is 10.8% - 21.9%.

In both datasets, adding MixedPeds data has improved the
performance of a detector trained by a small set of manually
annotated data. When we use fewer real samples, we expect
a higher accuracy improvement from adding MixedPeds into
the training data. This shows the MixedPeds data generated
using our approach not merely improves pedestrian detec-
tion performance on a new unannotated dataset, but also

Train \Test CALTECH KITTI ETHZ

MixedPeds 25.3% (+7.8%) 49.0% (+5%) 53.0% (+13.7%)

MixedPeds* 22.1% (+4.6%) 45.4% (+1.4%) 48.3% (+9%)
MixedPeds# 17.9% (+0.4%) 46.1% (+2%) 51.3% (+12%)
MixedPedsˆ 15.4% (-2.1%) 31.0% (-13%) 43.9% (+4.6%)

ALL 17.5% 44.0% 39.3%

ALL* 16.2% 38.2% 31.6%
CALTECH N/A 27.8% 6.52%
KITTI 11.6% N/A 16.2%
ETHZ 10.4% 35.3% N/A
TOWNC 4.9% 18.1% 23.4%
PASCALVOC 11.5% 36.9% 38.1%

Table 2: The average precision of the detector results trained
by our approach is compared against the detector trained us-
ing other datasets. The number in the brackets indicates the
improvement of our approach over the detector trained with
a combined dataset, namely ALL (See Table 1 for details),
which is the best among all existing approaches.

has a complementary effect on partially manually annotated
dataset.

Conclusion, Limitations, and Future Works
We present a new method to generate scene-specific train-

ing data from any unannotated dataset captured from the
same camera that is fixed on a vehicle. Our method can be
used to train pedestrian detectors that can considerably out-
perform other general-purpose pedestrian detectors by 5%-
13%. We also demonstrate the benefits of using synthetic
datasets with appropriate rendering and spawning methods.

Our approach is perpendicular to the pedestrian detector



(a)

(b)

(c)

Figure 5: Precision-Recall graph of different detectors
trained with the dataset and tested on (a) CALTECH, (b)
KITTI, and (c) ETHZ. Our method exhibits better accuracy
than existing detectors trained from other datasets. Also,
MixedPeds*, MixedPeds# and MixedPedsˆ demonstrate the
benefits of Spawn Probability Maps and Rendering methods.

used. In the future, we would like to evaluate our data us-
ing other pedestrian detectors (e.g. SSD(Liu et al. 2015),
RRC(Ren et al. 2017), MS-CNN(Cai et al. 2016), etc.), to
affirm this argument.

Our approach has some limitations. We assume that a
majority of the images in the unannotated dataset are cap-
tured when the vehicle is moving on a plane (i.e. no incli-
nation/declination). The performance of feature extraction
can vary with the scenes and lighting conditions. As part
of future work, we would like to explore robust automatic
camera calibration methods for higher DOF cameras. Be-
sides, it would be useful to incorporate segmentation algo-
rithms to improve the positioning of spawning locations. We
would also like to combine the recent approach (Shrivas-
tava et al. 2016) to make our synthetic pedestrian look more
realistic. Inspired by Microsoft Handpose(Tan et al. 2016;

Train \Test CALTECH KITTI

5K Real + 42K MixedPeds 27.7% (+10.8%) N/A
5K Real + 8K MixedPeds 18.9% (+2%) 65.7% (+0.9%)
5K Real 16.9% 64.8 %

2K Real + 42K MixedPeds 27.2 % (+13.3%) N/A
2K Real + 8K MixedPeds 17.8% (+3.9%) 59.7% (+1.8%)
2K Real 13.9% 57.9%

500 Real + 42K MixedPeds 25.4% (+21.9%) N/A
500 Real + 8K MixedPeds 14.0% (+9.5%) 49.3% (+7%)
500 Real 3.5% 42.3%

(42K / 8K) MixedPeds 25.3% 49.0%

Table 3: The average precision of the detectors trained by
MixedPeds and a small set of manually annotated data from
the same scene as the testing samples are compared against
only using the small set of annotated data. The number in the
brackets indicates the improvement from adding MixedPeds
into the training data. The last row shows results from the
previous experiment of using only MixedPeds data in train-
ing.

(a)

(b)

Figure 6: Precision-Recall graph of different detectors
trained with the dataset and tested on (a) CALTECH, (b)
KITTI. Combining MixedPeds with a small set of manual
annotated data from the same scene as the testing data offers
an improvement over the results that merely use the small
set of manually annotated data.

Taylor et al. 2016; Khamis et al. 2015; Sharp et al. 2015), we
would like to investigate parameterizing pedestrian images
to extend our approach to manually annotated datasets. Fur-
thermore, we would like to apply our method to train scene-
specific pedestrian detectors on moving robots and vehicles.



(a)

(b)

Figure 7: Example of augmented data. (a) CALTECH and
(b) and KITTI. Synthetic agents look realistic with different
appearances and brightness similar to the scene. For exam-
ple, the pedestrian behind the car on the right in upper image
of (b).
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