
Menge: A Modular Framework for Simulating Crowd Movement

Sean Curtis∗ Andrew Best† Dinesh Manocha‡

University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/Menge/

https://github.com/MengeCrowdSim/Menge

Figure 1: Three example scenarios simulated using the Menge crowd simulation framework, from left to right: a battlefield with 32,000
agents running across uneven terrain, Menge’s interactive display during a global navigation experiment, and a simulation of a human exper-
iment in soccer stand. All of these interactive simulations can be easily generated using the modular architecture and behavior specification
of Menge.

Abstract

We present Menge, a cross-platform, extensible, modular frame-
work for simulating agent movement in a crowd. Menge’s archi-
tecture is inspired by an implicit decomposition of the problem of
simulating crowds into component subproblems. These subprob-
lems can typically be solved in many ways; different combinations
of subproblem solutions yield crowd simulators with likewise vary-
ing properties. Menge creates abstractions for those subproblems
and provides a plug-in architecture so that a novel simulator can
be dynamically configured by connecting built-in and bespoke im-
plementations of solutions to the various subproblems. Use of this
type of framework can greatly facilitate crowd simulation research,
evaluation, and applications by reducing the cost of entering the do-
main, facilitating collaboration, and making comparisons between
algorithms simpler. We show how the Menge framework is com-
patible with many prior models and algorithms used in crowd sim-
ulation and illustrate its flexibility via a varied set of scenarios and
applications.

1 Introduction

Whether for interactive graphics, special effects, or engineering ap-
plications, crowd simulation – the simulation of a large number of
independent entities, agents, acting and moving through a shared
space – relies on the solution to many subproblems: determining
what an agent wants to do, how it will achieve its purpose, how it
responds to unforeseen challenges, and, for visual applications, de-
termining how its virtual body moves. These subproblems are man-
ifest in computer graphics, robotics, animation, psychology, pedes-
trian dynamics, and biomechanics literature, where significant work
has been performed to provide increasingly superior solutions. A
full crowd simulator can be regarded as the union of solutions to
each of these subproblems.

Each of these subproblems typically admits various solutions. For
example, the problem of determining how an agent reaches its goal
can be mapped to global motion planning if its purpose is to safely
move from one location to another. To solve this subproblem,

∗e-mail: seanc@cs.unc.edu
†e-mail: best@cs.unc.edu
‡e-mail: dm@cs.unc.edu

one could use data structures including, but not limited to, poten-
tial fields [Khatib 1986], road maps [Latombe 1991], navigation
meshes [Snook 2000], or corridor maps [Geraerts et al. 2008]. Se-
lecting one is a non-trivial choice. First, each of these approaches
has its own strengths and weaknesses – there are some problem do-
mains for which a particular approach may be better suited than
others. Second, implementing one approach may be more com-
plex than another. Third, while each approach will solve the sub-
problem, the solutions may not be the same; the choice of how a
subproblem is solved can have an impact on the resulting agent be-
havior.

The inherent complexity of creating a functional crowd simulator
can also serve as an obstacle to researchers and developers. De-
veloping a full system is complex and time consuming. Even if
a researcher is interested in a single aspect of crowd simulation,
proper evaluation of a novel technique requires the greater context
of a full simulation system. Every researcher who implements an
ad hoc crowd simulator, for the express intent of testing one compo-
nent, spends time and effort only tangentially related to their core
research. Worse yet, this effort is duplicated across independent
research groups.

In addition, each time an entire crowd movement simulator is cre-
ated to support the creation of a single component, the task of per-
forming meaningful comparisons between novel and pre-existing
approaches becomes increasingly difficult. Currently, the best com-
mon practice is a straightforward implementation of other models
for comparison. But in these cases, a reimplementation of a paper
is unlikely to be the same as the author’s original, rendering the
significance of the comparison uncertain.

Research in and development of crowd simulation applications
would benefit from a common framework. This common frame-
work would be architected with a view of the various subproblems
in mind; each subproblem would be encapsulated within an appro-
priate interface. Novel solutions to subproblems could be incorpo-
rated with other solutions drawn from a library. Such a framework
would have multiple benefits:

• Focused development Researchers could focus on a single
subproblem, while exploiting shared implementations of so-
lutions for the surrounding context. This would reduce the
initial cost of performing research in crowd simulation.

http://gamma-web.iacs.umd.edu/Menge/
https://github.com/MengeCrowdSim/Menge


• Efficient dissemination Novel solutions to subproblems could
be released (either in code or in binary form) into the com-
mon framework, allowing other users to make use of the novel
models, exploiting their improved properties.

• Meaningful evaluation As users release their novel subprob-
lem solutions back to the framework, other users of the frame-
work could make direct, meaningful comparisons with previ-
ous results because they are running the original implementa-
tion in its original context.

• Bespoke Functionality Custom components could be intro-
duced according to the needs of a particular simulation prob-
lem.

To this end, we present Menge, a modular, open-source, cross-
platform framework for simulating crowd movement, designed to
realize all three potential benefits outlined above. Menge is the Ger-
man word for “crowd”, “multitude”, or “many”. It refers not only
to the application domain – crowds – but also to the architecture – a
system built as a composition of many elements, which correspond
to solutions for crowd simulation subproblems. The Menge crowd
simulator can be dynamically configured from pre-existing mod-
ules, and novel modules can easily be implemented and dynami-
cally plugged into the system. The simulator and high-level agent
behaviors are defined by the user through an extendible XML spec-
ification. This XML specification allows for rapid development of
complex scenarios in which a population of heterogeneous agents
engage in diverse activities and move towards disparate goals. We
show the importance and efficacy of this modular approach by sim-
ulating a set of representative crowd simulation scenarios, illustrat-
ing the impact the choice of subproblem solution can have, the ex-
pressive range of the XML specification, and the benefits of its ex-
tensibility for particular scenarios. With the goals above in mind,
Menge provides the follow key benefits:

• Menge can simulate most prior multi-agent microscopic
methods providing a strong basis for comparison with new
pedestrian models and local navigation algorithms.

• Menge provides a simple framework for mixing and match-
ing solutions to subproblems. Novel simulators can be con-
structed easily by choosing different components, such as
global and local navigation, and spatial acceleration mecha-
nisms.

• Menge supports complex navigation topologies and environ-
ments.

• Menge treats agents as independent entities, and parallelizes
simulation updates in an agent-parallel manner. Menge is able
to simulate tens of thousands of agents at interactive rates on
multi-core processors.

• Menge can simulate diverse and complex behaviors and popu-
lations through its extensible Behavioral Finite State Machine
(BFSM).

• Menge’s extensible elements give users freedom to imple-
ment new elements according to any arbitrary mechanism
they choose. Menge provides simple extensible interfaces
for parsing XML, managing shared resources, and interacting
with other elements.

• Menge offers a simple, interactive visualizer which displays
agent and simulation parameters and realtime and supports
exporting trajectories and behaviors to binary format for use
with external visualizers and motion synthesizers.

In this paper, we show that a large number of prior crowd movement
simulation algorithms can be easily implemented within Menge’s

framework. Furthermore, we use Menge to develop new crowd
simulation algorithms and systems that can model crowd forma-
tions, density-dependent behaviors, and movement of airplane pas-
sengers. The rest of the paper is organized in the following manner.
In Section 2 we describe the underlying abstraction of crowd sim-
ulation which Menge assumes and show how it relates to recent
work in crowd simulation, in Section 3 we describe the main fea-
tures of Menge’s architecture, in Section 4, we illustrate Menge’s
compatibility through comparison with existing techniques and im-
plemented example scenarios, and, finally, we offer our concluding
thoughts in Section 5.

2 Simulating Crowds

Menge realizes a particular abstraction of crowd movement sim-
ulation. The abstraction is a decomposition of the problem into
related subproblems: goal selection, plan computation, plan adap-
tation, and spatial queries (see Figure 2). This is not a novel ab-
straction; it has been referred to in previous work [Funge et al.
1999; Ulicny and Thalmann 2002] and is well represented in the
crowd simulation literature (although there are notable exceptions).
In this section, we discuss representative work in crowd simulation
in the context of this abstraction.

2.1 Goal Selection

The first subproblem, goal selection, involves determining what
each pedestrian wants to achieve. Generally, decisions of this type
can incorporate diverse factors, such as psychology, world knowl-
edge, and context. What the pedestrian wants to achieve can change
with respect to time and conditions. The complexity required de-
pends on the simulation scenario and can range from simple (flow
down a corridor) to complex (populating a train station).

The problem of determining what an agent wants to do has been
extensively explored. Shao and Terzopoulos [2005] used situation
calculus to author a complex train platform scenario . Ulincy and
Thalmann [2002] computed high-level behaviors with a combina-
tion of rules and behavior finite state machines. Similarly, Bandini
et al. [2006] used finite state machines to model complex behaviors
with a cellular automata pedestrian model. Paris and Donikian uses
a hierarchical finite state machine to determine high-level agent be-
haviors (although it is used to determine sub-tasks selected to reach
the pre-defined, ultimate goal) [Paris and Donikian 2009]. Gener-
ally, this domain is solved using some form of decision or network
graph. The product of this stage, a “goal”, is provided to the next
stage as input.

2.2 Plan Computation

The second subproblem, plan computation, requires a static plan
to achieve the goal. This is most typically associated with motion
planning [Latombe 1991]. If the goal requires the agent to perform
an action at its current location, the motion planning is deferred to
the motion synthesis stage. If the goal requires the agent to traverse
the simulation domain, then the problem becomes “path planning”.
An explicit path is not strictly necessary; it merely serves as the
basis of computing an instantaneous preferred velocity for the agent
– the velocity the agent would take towards the goal, if unhindered.

There are multiple approaches for computing paths. Many of them
are predicated on discretizing the traversable space into connected
primitives. The connected primitives imply a graph which can be
searched using standard algorithms (e.g., A*). These “graph”-based
algorithms include: road maps [Latombe 1991], navigation meshes
[Snook 2000; Oliva and Pelechano 2011], delaunay triangulation



Goal Selection

S

G

Plan Computation

S

G

Plan Adaptation
Goal Preferred

Velocity

Velocity

Environment
Visibility Query Proximity Query

Motion Synthesis

Figure 2: An abstraction of crowd simulation based on subproblems. First, a goal is selected. Second, a base plan to reach that goal is
computed. Third, the plan is adapted to local, unexpected conditions. Finally, motion is synthesized in support of the realized plan. Each
subproblem can make queries into the environment to support its computation. Only those elements in grey are included in Menge, although
Menge is capable of propagating complex agent state to the motion synthesis stage.

[Lamarche and Donikian 2004], and corridor maps [Geraerts et al.
2008]. These data structures have traditionally been applied to
traversable space with respect to static obstacles, but work has also
been performed to adapt them to dynamic changes to traversable
space (e.g., [Jaillet and Simeon 2004; Kallman and Mataric 2004;
Yang and Brock 2007]).

Another common approach uses potential fields. The simulation
domain is discretized and a field is computed that is the gradient
of a cost function [Khatib 1986]. No path is explicitly computed.
Instead, the resultant vector field provides a direction of “optimal”
travel toward the goal. The preferred velocity computed as a solu-
tion to this subproblem is provided as input to the next.

2.3 Plan Adaptation

Typically, computed plans only consider static obstacles and low-
frequency phenomena. This gives rise to the third subproblem, plan
adaptation. Rather than recomputing a plan each time the simula-
tion environment changes, the plan is adapted to handle local, dy-
namic obstructions as needed. This subproblem has many names:
“pedestrian model”, “local navigation”, “steering”, etc. Essentially,
the solution to this subproblem transform the ideal, preferred veloc-
ity into a feasible velocity.

There are a large number of models which adhere to this paradigm.
Such approaches include, cellular automata [Schadschneider 2002],
social forces [Helbing and Molnár 1995; Pelechano et al. 2007;
Karamouzas et al. 2009], vision-based [Ondřej et al. 2010],
continuum-based [Narain et al. 2009], velocity-obstacle-based
[van den Berg et al. 2011; Pettré et al. 2009], and rule based
[Reynolds 1987]. All of these models are compatible with the plan
adaptation abstraction.

It is worth noting that there are crowd models which use a different
paradigm (e.g., [Treuille et al. 2006; Kapadia et al. 2009]). In these
problems, the plan computation and adaptation are collapsed into
a single problem; the plan computation considers the full domain,
rendering adaptation largely unnecessary. Even with these differ-
ences, they could still be implemented in Menge; in this case, all
of the work would be performed during plan computation, and the
plan adaptation would be an identity operation.

2.4 Motion Synthesis

For visual applications, it is necessary to compute physical char-
acter motion consistent with the activity computed by the previous
stages. There has been a great deal of work in this field including
procedural methods [Bruderlin and Calvert 1989; Sun and Metaxas
2001], data-driven methods [Multon et al. 1999; Kovar et al. 2002;

Heck and Gleicher 2007; Lee et al. 2007], and, for locomotion,
foot-step driven methods [van Basten et al. 2011].

2.5 Environmental Queries

Finally, the various subproblems typically need to perform spatial
queries in the environment. For example, it is common to limit the
effect of the environment on an agent to those factors which are in
the line of sight to the agent (visible) or near the agent (proximal).
To support this type of operation, we require the ability to perform
spatial queries such as visibility queries or proximity queries. For
details on the many solutions to these types problems, we refer to
the reader to the following resources for visibility queries [Cohen-
Or et al. 2003] and proximity queries [Samet 2006].

2.6 Crowd Systems

There is also research in full crowd simulation systems, e.g., Au-
tonomous Pedestrians [Shao and Terzopoulos 2005]. Autonomous
Pedestrians, in part inspired by Newell’s [Newell 1990] Unified
Theories of Cognition, expresses the crowd simulation problem as
a composition of conceptual layers. These conceptual layers corre-
spond well to Menge’s abstraction of goal selection, plan computa-
tion, and plan adaptation. Other open-source simulation systems
have been released–SteerSuite[Singh et al. 2009a] and ADAPT
[Kapadia et al. 2014]. We provide a more detailed comparison with
these systems in Section 5.1.

3 Menge’s Architecture

In this section, we discuss the design philosophy and architecture
of Menge. Menge’s architecture is primarily focused on facilitating
the simulation of agents moving through a shared space 1.

3.1 Mathematical Realization

The problem of computing agent trajectories can be thought of as
an Initial Value Problem (I.V.P):

ẋi(t) = vi(t) = Vi(t, S(t)), (1)

where ẋi(t) or vi(t) is the instantaneous velocity of agent i, S(t)
is the simulator state at time t, and Vi is some function that deter-
mines the agent’s instantaneous velocity. By solving for xi(t), we
determine the position of the agent with respect to time.

1Menge’s architecture can also account for simulation in which agents
remain stationary but nevertheless have changing relationships with respect
to each other and their environment (see Section 3.3.)



The simulator state S is the union of all entities in the scene, in-
cluding the features of the simulation domain (e.g., obstacles) and
the full crowd state space. The crowd state space X =

⋃
i Xi is the

union of each agent’s state space. The minimum agent state space
necessary to satisfy the differential equation is Xi = [xi vi]

T ,
where xi and vi ∈ R2. Menge assumes that simulation is per-
formed in a two-dimensional domain2. In practice, particular solu-
tions to the initial value problem require additional per-agent prop-
erties which extends the agent state.

Ultimately, the properties of the crowd simulator, and the behav-
iors its agents exhibit, is dominated by the agent state and, more
particularly, the velocity function Vi.

3.2 Conceptual Abstraction as Functions

We can easily map each of the conceptual subproblems into func-
tions. Furthermore, we can compose those functions to define the
velocity function V. The I.V.P. abstraction may admit other map-
pings, but this mapping supports the modular formulation which is
one of Menge’s design goals.

The goal selection subproblem would be: Gi : t × S → R2. For a
single agent i, this function maps time (t) and simulation state (S)
into a two-dimensional goal position3.

The plan computation becomes path computation and its corre-
sponding function, Pi : t × S × R2 → R2, maps time, simulation
state, and the agent’s goal position into an instantaneous preferred
velocity.

Finally, the plan adaptation function, Ai : S ×R2 → R2, maps the
preferred velocity and local simulation state into a feasible veloc-
ity. Generally, the adaptations are assumed to have limited temporal
validity, so in this case, “local simulation state” refers to the simu-
lation features near the agent.

The simulation state serves as a parameter to all three functions.
By assuming that implicitly, the functions simplify to: Gi : t →
R2, Pi : R2 → R2, and Ai : R2 → R2. The instantaneous
velocity of an agent is the composition of these functions: Vi(t) =
Ai(Pi(Gi(t))) and can be substituted into (1) and as:

vi(t) = Ai(Pi(Gi(t))). (2)

Menge implements this abstraction. Each subproblem function is
implemented by a set of one or more orthogonal elements in Menge.
A particular crowd simulator can be instantiated by specifying par-
ticular elements and their relationships. For example, it is trivial
to configure two different simulators such that they use the same
solutions to the goal selection and path planning subproblems, but
different path adaptation solutions (see Section 4.1 for specific ex-
amples). This is how one would perform comparisons between two
or more steering algorithms. Menge also introduces an element to
provide the visibility and proximity queries.

3.3 Stationary Agents

Any crowd simulation system which is primarily focused on moving
agents would seem to inherently consider all stationary agents to be
equivalent. In reality, two stationary agents could still have rad-
ically different properties, goals, and relationships with their sur-
roundings. Menge’s architecture makes it possible to distinguish

2Although allowances are made for three-dimensional simulation do-
mains that are only locally two-dimensional.

3A goal point in R2 is a common simplification; goals could be regions.
But for many applications, the simplification is sufficient.

between two agents which may otherwise have identical trajecto-
ries (e.g., standing still) via its Behavioral Finite State Machine
(BFSM). Two stationary agents could occupy different states in the
BFSM, representing different activities or mental conditions. The
trade show example in Section 4.1 illustrates just this distinction.

3.4 Architectural Elements

Menge’s modular architecture is based on the concept of elements.
An element type defines a particular aspect of a subproblem. The
element type defines an interface that can be implemented to pro-
vide a particular solution. Each element type can have an arbitrary
set of implementations. The implemented elements are explicitly
instantiated via the XML specification. In its initial release, Menge
includes a set of useful implementations of each element type.

The elements are grouped by functional purpose. Conceptually, we
ascribe selecting a goal and planning a path to an agent’s “behav-
ior”. We model agent behavior and how it changes with respect
to time with a Behavioral Finite State Machine (BFSM). As such,
the “Goal Selection” and “Plan Computation” problems are solved
by elements which belong to the BFSM. The “Plan Adaptation”
domain belongs to the the pedestrian models element. Menge’s un-
derlying system is exposed via the system elements and, finally,
initial scenario conditions are defined by a set of appropriate ele-
ments. We will now discuss the seventeen elements which make up
Menge’s modular architecture, as illustrated in Figure 3. An exam-
ple scenario specification can be seen in the Appendix.

Agent state: We have previously introduced the agent state as the
vector [xi vi]

T . These properties are sufficient to express the initial
value problem, but in practice, for a particular agent model, more
parameters are required. We refer to the agent state vector consist-
ing of position and velocity as the agent state, or a-state. The set of
additional properties (e.g., radius of disk, response time, etc.) will
be called the behavioral state or b-state; modifying these properties
changes how the an agent’s trajectory is computed, leading to a dif-
ferent agent behavior. Finally, to avoid confusion, we will refer to
a state in the BFSM as an agent’s FSM-state.

3.5 Behavioral Finite State Machine Elements

The Behavioral Finite State Machine encapsulates the core of agent
behaviors. Each state in the BFSM governs what goal the agent
seeks, how it intends to achieve that goal, and even can influence the
agent’s fundamental characteristics, modeling changes in mood and
thought. The transitions from one state to another govern changes
in the agent’s behavior. Finite state machines have been shown to be
quite effective for this purpose [Ulicny and Thalmann 2002; Ban-
dini et al. 2006]. The specification of a particular BFSM defines
how the agents interact with their environment and each other and
how those relationships change with time.

Condition

The Condition element, in conjunction with the Target ele-
ment, defines a BFSM transition. The Condition provides a
boolean test which determines if a pre-defined condition is satis-
fied. If so, the transition is activated and the agent exits its current
FSM-state and moves to the FSM-state defined by the transition’s
Target element. An FSM-state can be connected to multiple out-
going transitions. These transitions are prioritized and the condition
of each transition is evaluated in priority order; the first transition
whose condition is met is taken.

The Condition’s boolean test can consist of arbitrary logic.
Menge’s default implementation contains implementations which



Figure 3: Menge’s computation pipeline. The modular elements are shown in white boxes. The green boxes show how the elements relate
to the conceptual subproblems. The simulator definition (including initial conditions and BFSM) is given as an XML specification. At each
time step, the system updates event state and task state. Then the BFSM is updated for each agent. Next, the preferred velocity for each agent
is computed. The pedestrian model is used to compute a feasible velocity. Finally, the agent position is updated.

depend on temporal, spatial, and stochastic parameters. For exam-
ple, in simulating passengers disembarking an airplane, an agent
might wait to leave its seat until the aisle is empty; this would be
realized with a custom Condition. These can be combined or
new implementations can be introduced to the system via its plug-
in architecture. See Section 4.2 for examples.

Target

The Target element determines which FSM-state an agent moves
to when the corresponding Condition is satisfied. In a strictly-
defined finite state machine, a transition would connect one source
FSM-state to one destination FSM-state. When defining agent be-
havior via the BFSM, it can be convenient to model the behavior
that a single condition could lead to one of a set of new FSM-states,
based on some additional criteria. The Target element makes
this possible in a compact manner. Menge’s includes targets which
allow transitions to a single FSM-state, transition to a randomly
selected member of a set of FSM-states, or an automatic return to
the FSM-state preceding the current state. Simulating a train station
would provide a simple example; following a “buying-ticket” FSM-
state an agent might proceed to concessions or their train platform.
The probabilistic target will allow for a controlled distribution of
behaviors. As with all elements, new target implementations are
easily introduced.

Action

The Action element allows an FSM-state to directly make
changes to an agent’s a-state or b-state. Actions are executed
on an agent when the agent enters the FSM-state and can be con-
figured to undo the change when the agent leaves the FSM-state or
not, as appropriate for the simulation. These actions can be used
to varying effect. For example, stress can be modeled by an agent
successively entering an “increased stress” FSM-state where each
time, an Action modifies the agent’s b-state properties to repre-
sent a heightened response to stress. An Action element can also
be used for reasons of convenience. For example, a simple sce-
nario with periodic boundaries can be simulated by including an
Action which teleports agents from their current position back to
the beginning of a straight hallway.

3.6 BFSM Goal Selection Elements

In simple scenarios, goal selection can be defined externally to the
simulator and remain constant for the simulation duration. In com-

plex scenarios, the agent’s goal can change from moment to mo-
ment. These changing goals are modeled using the FSM-states.
Upon entering an FSM-state, an agent is assigned a Goal using a
Goal Selector associated with that FSM-state.

Goal

The Goal element is the basic primitive for defining the space the
agent wants to reach. As previously indicated in Section 3.2 an
agent’s goal is a region in two-dimensional space. Menge’s de-
fault implementation contains a number of simple, convex regions
(a point, a circle, an axis-aligned box, and an oriented box). At any
given moment, the agents seek to move toward the nearest point
in the region. By defining Goals as two-dimensional regions,
Goals can be efficiently shared by multiple agent without lead-
ing to artificial contention. Menge Goals can also be given finite
capacity, limiting the number of agents which can simultaneously
share that goal.

Goal Selector

The Goal Selector element is the primitive which defines the
basis for assigning an agent a Goal. When an agent enters a state,
its Goal Selector is evaluated and a Goal is assigned to the
agent. This behavior can be modified; the Goal Selector can
be made “persistent”, meaning that the Goal assigned the first time
is not freed up when the agent leaves the state. This allows the agent
to return to the state and return to its original goal. It also means
that the capacity of that goal is not freed up. Furthermore, this
persistent goal can be shared across multiple states via “goal shar-
ing.” Menge includes a wide range of goal selectors including: a
single, pre-defined Goal, a uniform or weighted random selection
from a set, the nearest or farthest to the agent’s current position in
the set (based on Euclidian distance), the nearest or farthest based
on path length through a navigation mesh, and more. Ultimately,
a novel Goal Selector could include arbitrary algorithms for
selecting a Goal. For example, pedestrian simulation was used
in the redesign of the London Bridge Station. Surveys of passen-
ger behaviors were used to build a statistical model for assigning
destinations [Hutton 2012]. This statistical model could serve as
stochastic weights on a set of Goals.

3.7 BFSM Plan Computation Elements

Solutions to the plan computation subproblem must provide an in-
stantaneous preferred velocity. The relationship between agent and



goal can range from incredibly simple (standing still) to incredibly
complex (navigating a maze). Menge is architected in such a way
as to easily admit the possibility for selecting the best solution for
a given context. The elements used for plan computation are the
Velocity Component and Velocity Modifier.

Velocity Component

The Velocity Component element is responsible for comput-
ing the agent’s preferred velocity; each FSM-state contains one
Velocity Component. As such, manner in which a preferred
velocity is computed for an agent in one FSM-state can be com-
pletely different from that computed for the same agent in a differ-
ent state. For example, in simulating a train station, a pedestrian
would travel to the train platform and then stand and wait for the
train. The FSM-state that corresponds to the traversal of the train
station would use a Velocity Component that can find a path
through the complex environment. But the waiting FSM-state can
simply produce a preferred velocity sufficient to maintain its posi-
tion.

Generally the Velocity Component implementations primar-
ily define the direction of preferred velocity and rely on the agent’s
own preferred speed to specify the magnitude of the preferred ve-
locity vector. However, the interface also allows for a velocity com-
ponent to arbitrarily deviate from the agent’s preferred speed.

Following Curtis et al. [2012], preferred velocity is not actually
represented as a simple vector. Instead, Menge allows for preferred
velocity to be an arc of velocities. The arc represents a space of ve-
locities all of which would cause the agent to travel through a space
of locally topologically equivalent paths. The arc is coupled with a
function defined over the domain of the arc to distinguish a single
“most-preferred” velocity from the space. This preferred velocity
arc is the output of the Velocity Component and acts as input
to the plan adaptation layer. For algorithms which cannot generate
such a velocity arc, an arc with a zero-radian span is sufficient.

Menge includes many default Velocity Component imple-
mentations including graph searches on road maps or navigation
meshes, straight-to-goal computation, guidance fields, and constant
velocities, allowing for the creation complex scenarios and facili-
tating the efficient creation of simple scenarios.

Velocity Modifier

The Velocity Modifier element serves as an interface be-
tween the plan computation and adaptation stages of the simulation
pipeline. The Velocity Component is typically an implemen-
tation of a global path-planning algorithm concerned with minimiz-
ing a property of the path (e.g., length or travel time). The path
adaptation uses purely local information to transform the preferred
velocity into a feasible velocity. However, this paradigm may be
insufficient for modeling behaviors that are dependent on temporal
or spatial scopes that lie outside of the global or local path planner.
The Velocity Modifier element provides a mechanism for
introducing additional layers of velocity computation. The element
receives a preferred velocity as input and transforms the preferred
velocity based on its intrinsic algorithm to output a new, modified
preferred velocity. A series of Velocity Modifier elements
can be composed to produce the final preferred velocity used by the
plan adaptation stage.

For example, a Velocity Modifier element can be used to
perform mid-range collision avoidance (e.g., [Golas et al. 2013;
He and van den Berg 2013]); the basic direction of travel to reach
the ultimate global goal can be modified according to the presence
of other agents beyond the planning horizon of the local collision
avoidance. Menge includes modifiers for modeling formations,

moving on uneven terrain, and modeling pedestrian density sen-
sitivity (see Section 4.2).

3.8 Plan Adaptation

The preferred velocity computed in the previous section reflects a
static plan. Dynamic features, such as other agents, may interfere
with the execution of that plan. Thus, the preferred velocity needs
to be transformed to the next best feasible velocity. The definition
of “best” and how it is evaluated can be arbitrary. As shown in Sec-
tion 2.3, there already exist many different models which adhere to
this paradigm and, therefore, are compatible with the Menge frame-
work.

Pedestrian Model

At its core, a novel Pedestrian Model element need only de-
fine a single function: the function mapping preferred velocity to
feasible velocity. In practice, novel models require their own pa-
rameters. As with all other elements, part of the design includes
an interface to automatically extend the XML simulator specifica-
tion to account for and validate required models. Menge’s initial
release includes several models including two velocity-obstacle-
based models and several force-based models. Additional models
are forthcoming.

3.9 System Elements

The previous elements provide the core behavioral functionality of
a Menge simulation. In contrast, the system elements encapsulate
the elements which support behavioral computation. This includes
the Spatial Query, Elevation, Task, and Event elements.

The Spatial Query element provides an interface to perform
visibility and proximity queries. Implementations of novel spatial
query algorithms and data structures can easily be incorporated in
Menge via the plug-in architecture. Menge includes two different
implementations: a navigation-mesh centric query class and a kd-
tree-centric class. Other spatial queries can be introduced as simu-
lation needs present themselves. For example, it is easy to imagine
that in some cases, a simple grid-based solution may be best.

Menge performs its simulation in two dimensions. Strictly speak-
ing, it can be considered to be a local, two-dimensional manifold
in a larger, complex domain. Menge provides the Elevation el-
ement to provide a mapping from the local 2D planning plane to
a complex topology. The Elevation element defines the height
and the gradient of the domain at an agent’s position. Menge’s de-
fault release includes two Elevation implementations: a 2.5D
height field and a navigation mesh (which allows for complex, non-
planar topologies; see Section 4.1 for an example).

The Task element is the mechanism by which Menge allows for
the insertion of arbitrary, user-defined blocks of work into the sim-
ulation pipeline. Tasks are evaluated serially in the update stage
(as shown in Figure 3). The Task can be explicitly instantiated in
the simulator specification, or implicitly instantiated in support of
another element. For example, algorithms which use a navigation
mesh require accurate knowledge of where on the mesh an agent is
located. The work to update this information is encoded in a task
and executed at the beginning of the pipeline cycle. Even if mul-
tiple, independent elements require this work to be done, the work
is only performed once. Alternatively, a Task can be explicitly
instantiated by the user in the XML specification. For example,
Menge includes a Task for computing and visualizing density of
the crowd.

Menge provides the basis of a complex event system. An



event is uniquely defined by three elements: EventTrigger,
EventEffect, and EventTarget. An event is triggered by
some specified condition being met. In response its corresponding
effect is applied to the indicated target. The event system has been
decomposed in this way to maximize re-use of conceptual blocks.
Events provide an important mechanism in conjunction with the
BFSM. The BFSM determines the progression of an agent’s be-
havior through a well-defined path in the BFSM. Events provide a
mechanism to alter agent states in an asynchronous, arbitrary fash-
ion.

EventTriggers define the conditions for an event to be emit-
ted. The conditions can be defined with respect to any sub-
set of the simulator state. This can include simple timers (such
as traffic signals), region population, user actions (in an inter-
active context), or an EventTrigger’s arbitrary internal state.
EventTargets specify the Menge components upon which the
event operates. Events can affect agents, states, or other elements of
Menge; one could use an event to dynamically “re-wire” the BFSM.
EventEffects encode the actual effect of the event when trig-
gered. EventEffects can include changing b-State parameters
of agents, disabling transitions, and terminating the simulation.

Finally, Menge’s architecture assumes that agents are independent
entities. This admits the possibility of extensive, simple paralleliza-
tion of the algorithms on shared-memory systems. The major stages
in the simulation pipeline (such as computing preferred velocity,
computing feasible velocity, updating agent state, etc.) are per-
formed in parallel and the pipeline is synchronized at the end of
each stage. This gives Menge the potential to be very scalable for
many agents on many cores (see Section 4.1 for details).

3.10 Scenario Specification Elements

Menge also provides elements for specifying the initial conditions
of the simulation as well as the BFSM. To define the initial condi-
tions of a simulation, each agent’s a-state, b-state, and FSM-state
are initialized by the AgentGenerator, ProfileSelector,
StateSelector elements, respectively. A group of agents is
defined by a triple consisting of an instance of each of those ele-
ments. The impassable obstacles in the scene are defined by the
ObstacleSet element.

The AgentGenerator is responsible for generating a number of
agents and assigning them positions (the agent’s a-state). Menge
provides several implementations to facilitate construction simula-
tion scenarios ranging from explicit lists of agent positions to ab-
stractions of two-dimensional arrays of agents. Using parametric
generators makes experimenting with the simulator simple; one can
simply modify the parameters to scale the number of agents in the
simulation.

An agent’s b-state is defined by an “agent profile”. The agent pro-
file consists of collections of values for b-state parameters. For a
given property, the profile can specify either a single value, or a
distribution of values. For example, one could model a crowd of
average pedestrians by defining an agent’s preferred speed with a
normal distribution (mean: 1.3 m/s, standard deviation 0.1 m/s). A
ProfileSelector assigns a user-defined profile to each agent.
The assignment criteria is, as with all Menge elements, arbitrary.
They could be based on position in the simulation, random assign-
ment, etc. Profiles and ProfileSelector elements permit the
user to quickly create heterogeneous crowds. The populations can
easily be varied to facilitate experimentation.

The StateSelector is similar to the ProfileSelector.
The StateSelector assigns an initial state in the BFSM to each
agent’s FSM-state. As with previous elements, the assignment cri-

teria can be arbitrary. This is particularly important because the
BFSM can consist of connected components; not every state may be
reachable from an arbitrary start state. This allows the encoding of
multiple disparate behaviors; the behaviors of different categories
of agent in a scene (police, pedestrians, etc.) would consist of dis-
connected sub-graphs in the BFSM. To refer again to the train sta-
tion, agents can easily be partitioned into initial states which repre-
sent having a ticket or not through the use of a StateSelector.
The StateSelector facilitates the creation of behavioral cate-
gories.

ObstacleSets specify the impassable “walls” in the simulation.
These may be the boundaries of an office building, or hazards which
are activated dynamically. ObstacleSets allow for the explicit
instantiation of obstacles through vertex lists, or more complex
obstacle generation such as capturing obstacles from a navigation
mesh or from a geometry file. Novel implementations could create
obstacles from any arbitrary construct.

4 Application and Evaluation

In this section we examine specific examples which illustrate the
strengths and properties of Menge. We focus this discussion on the
attached video. We begin with the examples which illustrate the
unique benefits of Menge. Then we examine other pedestrian re-
search. We show how other facets of pedestrian research can be
implemented in Menge. Finally, by implementing these indepen-
dent works in the Menge framework, we produce a scenario which
effectively makes use of otherwise independent research results.

4.1 Illustrative Examples

In this section, we draw attention to some of the examples in the
accompanying video and show how they illustrate the benefits of
Menge. The actual simulated results are available on the Menge
website at http://gamma.cs.unc.edu/Menge/.

Cross Flow: The cross flow experiments illustrates a com-
mon experiment for pedestrian simulation; two groups of agents
move through intersecting, perpendicular hallways (shown in Fig-
ure 4(a)). In this example, we vary the Pedestrian Model
implementation between a velocity-obstacle model [van den Berg
et al. 2011], a simple social-force model [Helbing et al. 2000], and
a predictive social-force model [Karamouzas et al. 2009]; all other
aspects of the simulation are fixed. We can observe the differences
in behavior due to the Pedestrian Model easily (as illustrated
by the sample trajectories shown in Figure 5).

Obstacle Course: The obstacle course experiment compares global
planning algorithms. The agents shown in Figure 6 must tra-
verse the scene from top to bottom. This time, the Pedestrian
Model is fixed and the Velocity Component changes. We
compare a road map, navigation mesh, and guidance field. This
experiment, in conjunction with the cross flow experiment, illus-
trate how Menge facilitates contrasting and comparing algorithms.
Menge’s formulation of a crowd simulator as a composition of ele-
ments makes this possible.

SteerBench: The SteerBench scenario illustrates the ease with
which scenarios can be defined in Menge’s specification language.
SteerBench is a set of scenarios designed to evaluate steering algo-
rithms [Singh et al. 2009b]. Each benchmark explores a particular
task of crowd navigation and offers a score for an algorithm based
on several extensible criteria. The environments, behaviors, and
initial conditions of SteerBench are all well expressed in Menge;
we use a conversion script to translate from SteerBench XML to
Menge’s XML specification.

http://gamma-web.iacs.umd.edu/Menge/


(a) (b)

(c)

(d) (e)

(f ) (g)

(h)

Figure 4: Images from the various prototype scenarios in Menge.
(a) A cross flow highlighting pedestrian model comparisons. (b) A
benchmark translated from SteerBench XML. (c) Airplane loading
using random goal selection. (d) Agents (green) waiting for the
aisle to clear using a custom transition in the airplane. (e) Agents
work at desks and perform other activities in a three-story office
building. (f ) General Adaptation Syndrome algorithm simulation.
(g) A battle scene showing 32,000 agents moving across complex
terrain at interactive simulation rates. (h) The trade show scene
demonstrating agents moving to and judging exhibits.

−2 −1 0 1 2

x-position (m)

−2

−1

0

1

2

y-
p
o
si

ti
o
n
 (

m
)

SF
∆t = 0.01 s

−2 −1 0 1 2

x-position (m)

ORCA
∆t = 0.1 s

−2 −1 0 1 2

x-position (m)

Predictive
∆t = 0.002 s

Figure 5: Trajectories plotted for three different pedestrian models
in the Cross Flow scenario: a velocity-obstacle model (ORCA), a
simple social force based model (SF), and a predictive forces model
(Predictive). With all other simulation elements the same, these
trajectories illustrate differences in the model behaviors.

(a) (b) (c)

Figure 6: Visualization of three different global navigation meth-
ods applied to the Obstacle Course scenario. The green discs are
agents; the yellow line represents the path computed for each algo-
rithm. In the case of the guidance field, each cell’s direction vector
is shown in yellow. (a) the navigation mesh, (b) the roadmap, and
(c) the guidance field. These navigation structures can be swapped
by changing a single line of XML, the Velocity Component

Walk Examine

Like Dislike

goal reached

Weighted target time elapsed

time elapsed time elapsed

Figure 7: An illustration of the BFSM used in the trade show sce-
nario. The white boxes represent FSM-states, the black arrows
represent transition Conditions, the grey circle is a transition
Target. Agents walk to an exhibit. When they reach the ex-
hibit they enter the “Examine” state and stay there for a random
amount of time after which they randomly enter the “Like” or “Dis-
like” state based on weighted probabilities. Finally, after a random
amount of time in those states, they select and move to a new ex-
hibit.



Figure 8: The results of a scalability experiment for Menge.
The Battle scene was simulated using 16,000, 32,000, and 64,000
agents, respectively. The simulation used direct to goal navigation
with a terrain sensitive VelocityModifider and ORCA for lo-
cal navigation. The average frame computation time was measured
based on the number of threads. The speed up over a single thread
is shown. The use of a rectangle placement AgentGenerator
makes the scaling of the scene simple. We only change parameter
for number agents to be created in the XML.

Trade Show: The trade show demo illustrates the principle dis-
cussed in Section 3.3–modeling changes in agent mental state with-
out changes in movement. In this example, we are simulating the
behavior of exhibition attendees on the exhibition floor. Our agents
approach exhibits, examine them briefly, and then decide whether
they “like” the exhibit or not. The examination and decision are sta-
tionary activities but these activities are encoded as different FSM-
states in the BFSM for the agent (shown in Figure 7. In turn, we
can use this FSM-state information to visualize their mental state.
In the video, we illustrate the examination, approval, and rejection
of an exhibit via an icon floating above the agent’s head (a ques-
tion mark, happy face, and angry face, respectively.) This simple
visualization hints at what a more sophisticated visualizer could do
with the behavior FSM-state information, synthesizing custom be-
havioral animation that extends beyond mere locomotion.

Battle: The battle scenario demonstrates Menge’s scalability and
features the Elevation and VelocityModifier. Menge’s
crowd simulation is not limited to simple planes. Menge agents can
move along height fields and, in turn, be affected by those height
fields. In this scene, an army of approximately 8,000 agents flee
from a pursuing army of 24,000 agents. The terrain is defined
by a height field. The Elevation element places the agents at
the appropriate elevation on the terrain. The agents use a simple
Velocity Component pointing toward a distant goal. How-
ever, we have introduced a novel VelocityModifier which
causes the agents to avoid steep inclines. Together, the agents move
towards their goal while adapting to the terrain; agents flow toward
valleys and avoid peaks.

This scenario contains the greatest population and provides an op-
portunity to show how Menge scales with population. Figure 8
reports the performance as we varied the population4. In its cur-
rent state, Menge uses primitive locks to maintain safe, concurrent
execution. Future versions will include more sophisticated mecha-
nisms and improve Menge’s scalability.

Stadium: In this scenario, we reproduce an experiment performed
with human subjects: exiting a soccer stadium. This illustrates
one way Menge can be used for simulating real-world scenarios.
Furthermore, it highlights Menge’s ability to perform simulation
in complex, three-dimensional scenarios with non-planar topology

4A simple task when using parametric AgentGenerator elements.

(a) (b) (c)

Figure 9: Images from the stadium experiment–pedestrians walk
down the aisles and exit through the stadium tunnel. (a) A photo
from the original data collected by [Burghardt et al. 2012]. (b) A
rendered screenshot of the experiment replicated in Menge. (c) The
complex 3D navigation mesh used for the Stadium scenario. The
navigation mesh provides elevation information, navigation, and
provides a spatial query structure.

(illustrated in Figure 9). In this case, the simulation makes use
of a navigation mesh structure as part of implementations of a
Velocity Component, Elevation, and Spatial Query
elements.

Office: The office scenario demonstrates the most complicated
BFSM in the set of examples, and shows a practical alternative
to simulating complex topologies. Behaviorally, each agent in the
scene engages in one of several actions: working at a desk, using
the restroom, getting refreshments, leaving the building, and visit-
ing the copy room. To perform the activity, the agent must move
to the activity location. Agents can plan across floors to reach the
activity location. However, instead of representing the three-story
office block literally (i.e., in three dimensions using a complex nav-
igation mesh), we improve the visual clarity of the simulation by
laying each floor out on a single plane. This physically disconnects
the stairs, but we can account for this by using a teleport Action
to seamlessly move agents traversing the stairs across the disconti-
nuity. We use a road map in the scene and explicitly connect nodes
across the disconnected regions. Conceptually, the agents behave
the same as if the three floors were stacked on top of each other.
This scenario illustrates a combination of goal-choice mechanisms,
actions, transitions, and states. It demonstrates Menge’s ability to
represent populations of agents performing different tasks, with dif-
ferent goals and different strategies all in a single simulation.

4.2 Novel Models in Menge

The previous section illustrates Menge’s flexibility in general; ab-
stract scenarios exercise straight-forward algorithms. But Menge
can serve as an effective platform for future research as well. To
illustrate this, we discuss several bodies of work – some pre-date
Menge and we have implemented them in the Menge framework
and others have in fact been developed on top of the Menge frame-
work. These examples underscore how flexible the Menge frame-
work. Finally, we show that by implementing otherwise disparate
research in a common framework, we can easily combine them to
model never-before seen scenarios.

General Adaptation Syndrome: The work on modeling General
Adaptation Syndrome (GAS) by Kim et al. models how humans
respond to stress [2012]. Essentially, as stress accumulates, peo-
ple respond by exhibiting more aggressive behaviors. The authors
modeled the accumulation of stress and used work by Guy et al.
to model personality changes [2011]. Guy et al. performed user
studies to correlate agent b-state parameter space with perceptions
of personality characteristics. This study was able to suggest a dis-
placement vector in b-state parameter space which was the direc-
tion of increased aggression. We were able to implement this in
Menge with a custom Action which applies the so-called aggres-



(a) (b) (c)

Figure 10: Images from the formation experiments in the video.
(a) and (b) two formations out of a sequence created by a group
of agents moving through space. (c) A dense formation of agents
navigating around obstacles.

sion displacement on agents. We assign the Action to a stress-
inducing FSM-state and include a transition which causes the agent
to periodically re-enter the state–shorter periods model a higher
rate of stress accumulation, longer periods, a slower accumulation
rate. We reproduced one of Kim et al.’s experiments: two groups
of agents moving in anti-parallel directions in a wide corridor (see
Figure 4f. As with the original results, as stress increases, the agent
performance (as measured by flow in the corridor) initially im-
proves before eventually breaking down under an excess of stress.

Formations: Although Menge’s agents are fundamentally modeled
independently, this does not preclude complex, coordinated group
behaviors such as those shown in [Gu and Deng 2013; Ju et al.
2010; Zhang et al. 2013]. As a representative sample, we imple-
mented the approach of Gu and Deng to illustrate how easily forma-
tions can be introduced into Menge [2013]. This approach defines
a formation via a canonical collection sentinel points–transform-
invariant positions which most importantly define the formation. At
each time step, the algorithm maps the canonical definition to sim-
ulation space and assigns agents in the formation, in a prioritized
manner, first to the sentinel points and then to the remaining points.
This transformation and assignment process can account for mov-
ing formations, changing formations, and even changing formation
populations. Please see the original authors’ work for the exact de-
tails [Gu and Deng 2013].

We reproduce this in Menge by introducing two new elements: a
Task and a VelocityModifier. The Task is responsible for
transforming the canonical formation and mapping agents to for-
mation positions. It executes once per time step, populating a data
structure used by the VelocityModifier. Agents in a com-
mon formation are affected by a common VelocityModifier.
After each agent computes its own preferred velocity (presumably
to the same goal) the VelocityModifier modifies it so that
it will cause the agent to converge towards its position in the for-
mation. Figure 10 illustrates some of the results using these new
elements. In the video, we show one example in which a single
group of agents changing formations as it traverses through space
and a second example in which a larger formation navigates around
obstacles.

Ped-Air: Ped-Air, a simulator described by [Best et al. 2014a],
uses Menge to simulate passenger loading, unloading, and evacua-
tion behaviors in aircraft. Simulating passengers on aircraft is chal-
lenging for several reasons: passengers can span a broad space of
physical and psychological types, they often are pursuing simulta-
neously contradictory objectives, and they must act in an incredibly
constrained environment.

Ped-Air exploits Menge’s GoalSelector element to model pas-
senger seat assignment and experiment with boarding strategies.
The GoalSelector defines which seat an agent is heading to-
wards (i.e., its seat assignment). By simply changing the parameters
of the GoalSelector element, Ped-Air can simulate back-to-
front, front-to-back, random, and zone-based seating assignments.

(a) (b) (c)

Figure 11: Visualization of the “Formation Stress” scenario. This
brief experiment conveys the simplicity of combining previously in-
compatible algorithms to produce a novel simulator. This experi-
ment combines results from stress modeling, formations, and Fun-
damental Diagram adherence [Kim et al. 2012; Best et al. 2014b;
Gu and Deng 2013]. (a) The agents travel in a three row formation
towards the building. (b) After the alarm sounds, the agents run for
the entrance, breaking formation. (c) When agents reach the cor-
ridor after the entryway, they must navigate through a cross-flow,
respecting local density constraints on their velocity.

A GoalSelector element is also used to model agents stow-
ing luggage in bins. The bin space is discretized into slots with
fixed capacity. As each agent boards the plane, it searches for a
bin Goal near its seat with sufficient capacity for its luggage. The
GoalSelector easily determines a viable target bin, while con-
stantly accounting for capacity.

When disembarking an airplane, it is common for some passengers
to remain in their seats until the plane is mostly empty. Ped-Air
models this behavior with a custom transition Condition. A de-
laying passenger only transitions from its “seated” FSM-state to an
“exiting” FSM-state when the aisle forward of its seat is empty of
passengers. Furthermore, in some cases, such a passenger requires
assistance to disembark. Ped-Air uses custom Condition and
Goal elements to achieve this. When the aisle to a waiting pas-
senger is clear, an agent representing a member of the flight staff
moves to the waiting agent. The Condition for the waiting agent
to begin exiting is that the flight staff agent reach it. Then, when
the waiting agent begins the exit, the flight staff agent uses a custom
Goal to accompany the agent; in effect, the exiting agent defines a
moving goal for the accompanying agent.

Density-dependent Behaviors: The Fundamental Diagram is a
commonly observed phenomenon in crowd behaviors; as crowds
get denser, they get slower [Weidmann 1993]. Best et al. propose
an algorithm (DenseSense), based on Menge, which successfully
reproduces this behavior [2014b]. The approach works by modify-
ing an agent’s preferred velocity based on local density; it operates
on the hypothesis that in dense environments, pedestrians are less
comfortable moving at high speed. The authors use a relationship
between various biomechanical and psychological factors and pre-
ferred velocity to model this.

Like in the formation work, DenseSense uses a
VelocityModifier to achieve its goal. The
VelocityModifier computes the density in an agent’s
region and then uses it to compute a “comfortable” velocity for the
agent to take (see the paper for details). To further optimize this
task, it also introduces a new Task. At each time step, the custom
Task computes a density field in the simulation domain. The den-
sity field is shared for all agents and the VelocityModifier
can simply “look up” the density for the agent in question.

Formation Stress: The Formation Stress example underscores
Menge’s greatest benefit. In this example, we have combined three
separate research results into a single scenario: GAS, formations,
and density-dependent behaviors. By having them implemented in
a common framework, we can author a scenario that makes use of



all three. In this scenario, a formation of agents moves towards
the entrance of a building. After a predetermined time, an alarm
sounds causing the agents to begin accumulating stress. The stress
causes the agents to leave their formation and run to the entrance
in a chaotic manner, creating a bottleneck at the entrance. After
traveling through a short corridor, they enter a large hallway where
they must cross through a confused flow of agents, all the while ex-
hibiting the hallmark sensitivity to density seen in real pedestrians
(see Figure 11).

5 Analysis and Comparisons

5.1 System Comparisons

Menge shares a common philosophical foundation with SteerSuite
[Singh et al. 2009a]. Like Menge, SteerSuite is an open-source
framework presented with the intention to serve as a common plat-
form for research. It includes a suite of benchmarks and analyti-
cal tools to measure performance. The primary difference between
SteerSuite and Menge is in the level of extensibility. SteerSuite’s
purpose, as the name implies, is concerned with steering algo-
rithms. Menge seeks to make all aspects of crowd simulation ex-
tensible.

The ADAPT framework [Kapadia et al. 2014] also addresses the
challenges of crowd movement simulation. Like Menge, ADAPT
uses a modular architecture to simulate agents moving through a
shared environment. Unlike menge, ADAPT focuses primarily on
the animation of virtual agents and motion synthesis as it relates to
crowd simulation. ADAPT represents simulation agents as fully ar-
ticulated characters and offers a variety of modular controls for an-
imation. The modular components principal to the navigation sys-
tem, however, are less flexible than Menge’s equivalent elements.
In addition, ADAPT uses a behavior tree as opposed to a BFSM.
The two mechanisms are essentially equivalent; each has strengths
and weaknesses but the same expressive capacity.

5.2 Conclusion

We have presented the design of a novel, modular framework for
the simulation of crowd movement. Through the combination of
various modular constructs, called elements, novel crowd simula-
tors can be dynamically constructed to simulate a wide range of
scenarios and behaviors. Furthermore, because of its plug-in ar-
chitecture, particular implementations of Menge elements can be
released as code or binary objects, enabling users of the framework
to share their own advances and benefit from the contributions of
others. We have discussed the validity of Menge’s paradigm in the
context of representative samples from crowd simulation literature
and shown, through specific examples, the strengths and properties
of this framework.

Menge provides a platform for crowd research that allows combi-
nations of algorithmic techniques that were not possible previously.
It is an established practice to produce algorithms which target a
particular subproblem in crowd simulation without consideration
of how those algorithms fit into a rich and robust pedestrian simu-
lator. Menge encourages researchers to produce algorithms which
are inter-operable and provides algorithmic implementations which
are themselves inter-operable. Researchers have the opportunity to
build on common work in a way not previously available to them.
Simulators can be constructed in Menge that take advantage of a
number of models which would not otherwise be compatible with-
out a common core framework upon which to build.

Menge is open-source, cross-platform, and publicly available at
http://gamma.cs.unc.com/Menge/. Ultimately, we hope

that the adoption of a framework such as Menge, would foster
tighter integration among the crowd simulation community. New
researchers would enter the domain able to exploit the current state
of the art and directly apply their efforts to novel algorithms. Pub-
lished work could be closely supported by the releases of the sup-
porting code or binaries for the community’s benefit and future
comparisons.

5.3 Limitations and Future Work

Menge has some limitations. First, it currently only allows one
mechanism for generating high level behaviors–the BFSM. Behav-
ior trees are a common structure in game AI [Rabin 2008]. Both ap-
proaches essentially encode agent behavior in graph nodes, but they
largely differ in how the network of nodes is traversed. Currently,
this traversal is not an exposed part of the Menge interface, ren-
dering behavior trees unusable. Second, planning and personality
are tightly coupled in the BFSM. A single FSM-state specifies both
what the agent seeks to accomplish and how (i.e., its personality and
mood). While this does not actually limit Menge’s ability to model
complex scenarios, it can make the task more difficult, requiring
redundancies in the specification where two FSM-states share the
same objective but possess different behavioral profiles. Third,
Menge has implicitly excluded the subproblem of motion synthe-
sis, but Menge’s architecture does not prevent a Pedestrian
Model implementation from considering biomechanical factors in
adapting preferred velocity. Menge would certainly benefit from
the inclusion of a system for synthesizing motion in a modular man-
ner similar to the other elements.

Additionally, Menge is an agent-based crowd simulation frame-
work. Some recent work, including [Shum et al. 2008] and [Hyun
et al. 2013], uses motion-patches to create populated scenes of
pedestrians. These methods create agents as needed to fill mo-
tion scripts and do not contain agents exploring shared spaces and
planning/interacting as they accomplish disparate goals. Although
a Pedestrian Model and Velocity Component could be
implemented that compute paths for agents with respect to a prede-
fined set of motion-patches, this would be a substantial undertaking.

Menge’s implementation is in its infancy. As such, there are some
short-term implementation issues which limit its utility. As previ-
ously noted, it uses a primitive parallelism mechanism which causes
its scalability to suffer. In addition, Menge simulations use a fixed
population; there is no mechanism in place for removing or intro-
ducing agents during the course of the simulation. Menge’s core
element implementations have been written with this functionality
in mind, so that it can be introduced in the future with a minimum
of difficulty.

In the future, Menge will seek to address these limitations and oth-
ers as the community explores spaces as yet unconsidered. We
invite others to explore the Menge framework and produce novel
implementations of the many elements. We hope that Menge’s fu-
ture growth will be fueled by groups around the world expanding
its feature set according to their varied needs.

References
BANDINI, S., FEDERICI, M., MANZONI, S., AND VIZZARI, G. 2006. Towards

a methodology for situated cellular agent based crowd simulations. Engineering
societies in the agents world VI, 203–220.

BEST, A., CURTIS, S., KASIK, D., SENESAC, C., SIKORA, T., AND MANOCHA, D.
2014. Ped-air: a simulator for loading, unloading, and evacuating aircraft. In 7th
International Conference on Pedestrian and Evacuation Dynamics.

BEST, A., NARANG, S., CURTIS, S., AND MANOCHA, D. 2014. Densesense: In-
teractive crowd simulation using density-dependent filters. In Symposium on Com-
puter Animation.

http://gamma.cs.unc.com/Menge/


BRUDERLIN, A., AND CALVERT, T. W. 1989. Goal-directed, dynamic animation of
human walking. In Proc. of SIGGRAPH ’89, 233–242.

BURGHARDT, S., KLINGSCH, W., AND SEYFRIED, A. 2012. Analysis of flow-
influencing factors in mouths of grandstands. In Pedestrian and Evacuation Dy-
namics.

COHEN-OR, D., CHRYSANTHOU, Y., SILVA, C., AND DURAND, F. 2003. A survey
of visibility for walkthrough applications. IEEE Transactions on Visualization and
Computer Graphics 9, 3 (July-Sept.), 412–431.

CURTIS, S., SNAPE, J., AND MANOCHA, D. 2012. Way portals: Efficient multi-
agent navigation with line-segment goals. Proc. of Symposium on Interactive 3D
Graphics and Games, 15–22.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive modeling: knowledge,
reasoning and planning for intelligent characters. In Proc. of SIGGRAPH, 29–38.

GERAERTS, R., KAMPHUIS, A., KARAMOUZAS, I., AND OVERMARS, M. 2008.
Using the corridor map method for path planning for a large number of characters.
In Motion in Games. Springer, Heidelberg, 11–22.

GOLAS, A., NARAIN, R., AND LIN, M. 2013. Hybrid long-range collision avoidance
for crowd simulation. Proc. of Symposium on Interactive 3D Graphics and Games
(I3D), 29–36.

GU, Q., AND DENG, Z. 2013. Generating freestyle group formations in agent-based
crowd simulations. IEEE Computer Graphics and Applications 33, 1, 20–31.

GUY, S. J., KIM, S., LIN, M. C., AND MANOCHA, D. 2011. Simulating heteroge-
neous crowd behaviors using personality trait theory. In SCA ’11, 43–52.

HE, L., AND VAN DEN BERG, J. 2013. Meso-scale planning for multi-agent naviga-
tion. In Proc. IEEE Int. Conf. on Robotics and Automation - ICRA.

HECK, R., AND GLEICHER, M. 2007. Parametric motion graphs. In Proceedings of
Symposium on Interactive 3D Graphics and Games, 129–136.

HELBING, D., AND MOLNÁR, P. 1995. Social force model for pedestrian dynamics.
Physical Review E 51, 5 (May), 4282–4286.

HELBING, D., FARKAS, I., AND VICSEK, T. 2000. Simulating dynamical features of
escape panic. Nature 407, 487–490.

HUTTON, A. 2012. London bridge station, the role of ped modelling: Pedestrian
modelling and design development. In 6th International Conference on Pedestrian
and Evacuation Dynamics.

HYUN, K., KIM, M., HWANG, Y., AND LEE, J. 2013. Tiling motion patches. IEEE
Trans. Vis. Comput. Graph 19, 11, 1923–1934.

JAILLET, L., AND SIMEON, T. 2004. A PRM-based motion planning for dynamically
changing environments. In Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., vol. 2,
1606–1611.

JU, E., CHOI, M. G., PARK, M., LEE, J., LEE, K. H., AND TAKAHASHI, S. 2010.
Morphable crowds. ACM Trans. Graph 29, 6, 140.

KALLMAN, M., AND MATARIC, M. 2004. Motion planning using dynamic roadmaps.
In Proc. IEEE Int. Conf. Robot. Autom., vol. 5, 4399–4404.

KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P. 2009. Egocen-
tric affordance fields in pedestrian steering. In Proceedings of the Symposium on
Interactive 3D Graphics and Games, 215–223.

KAPADIA, M., MARSHAK, N., SHOULSON, A., AND BADLER, N. I. 2014. ADAPT:
The agent development and prototyping testbed. IEEE Transactions on Visualiza-
tion and Computer Graphics 20, 7 (July), 1035–1047.

KARAMOUZAS, I., HEIL, P., VAN BEEK, P., AND OVERMARS, M. H. 2009. A pre-
dictive collision avoidance model for pedestrian simulation. In Motion in Games,
Springer, vol. 5884 of Lecture Notes in Computer Science, 41–52.

KHATIB, O. 1986. Real-time obstacle avoidance for manipulators and mobile robots.
Int. J. Robot. Res. 5, 90–98.

KIM, S., GUY, S. J., MANOCHA, D., AND LIN, M. C. 2012. Interactive simula-
tion of dynamic crowd behaviors using general adaptation syndrome theory. ACM
Symposium on Interactive 3D Graphics and Games, 55–62.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. ACM Trans.
Graph. 21, 3, 473–482.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowd of virtual humans: a new ap-
proach for real time navigation in complex and structured environments. Computer
Graphics Forum 23, 3, 509–518.

LATOMBE, J.-C. 1991. Robot Motion Planning. Springer, Heidelberg.

LEE, K. H., CHOI, M. G., HONG, Q., AND LEE, J. 2007. Group behavior from
video: a data-driven approach to crowd simulation. In Symposium on Computer
Animation, 109–118.

MULTON, F., FRANCE, L., CANI-GASCUEL, M.-P., AND DEBUNNE, G. 1999. Com-
puter animation of human walking: a survey, vol. 10. 39–54.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009. Aggregate dynamics
for dense crowd simulation. ACM Trans. Graph. 28, 122:1–122:8.

NEWELL, A. 1990. Unified theories of cognition. Harvard University Press, Cam-
bridge, MA, USA.

OLIVA, R., AND PELECHANO, N. 2011. Automatic generation of suboptimal
navmeshes. In MIG, Springer, J. M. Allbeck and P. Faloutsos, Eds., vol. 7060
of Lecture Notes in Computer Science, 328–339.

ONDŘEJ, J., PETTRÉ, J., OLIVIER, A.-H., AND DONIKIAN, S. 2010. A synthetic-
vision based steering approach for crowd simulation. In Proc. SIGGRAPH, 123:1–
123:9.

PARIS, S., AND DONIKIAN, S. 2009. Activity-driven populace: A cognitive approach
to crowd simulation. Computer Graphics and Applications, IEEE 29, 4, 34–43.

PELECHANO, N., ALLBECK, J., AND BADLER, N. 2007. Controlling individual
agents in high-density crowd simulation. In Symposium on Computer Animation,
99–108.

PETTRÉ, J., ONDŘEJ, J., OLIVIER, A.-H., CRETUAL, A., AND DONIKIAN, S. 2009.
Experiment-based modeling, simulation and validation of interactions between vir-
tual walkers. In Symposium on Computer Animation, 189–198.

RABIN, S. 2008. AI Game Programming Wisdom 4 (AI Game Programming Wisdom
(W/CD)), 1 ed. Charles River Media.

REYNOLDS, C. 1987. Flocks, herds and schools: A distributed behavioral model. In
Proc. of SIGGRAPH.

SAMET, H. 2006. Foundations of MultiDimensional and Metric Data Structures.
Morgan Kaufmann.

SCHADSCHNEIDER, A. 2002. Cellular automaton approach to pedestrian dynamics -
theory. Pedestrian and Evacuation Dynamics, 75–86.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedestrians. In Symposium
on Computer Animation, 19–28.

SHUM, H. P. H., KOMURA, T., SHIRAISHI, M., AND YAMAZAKI, S. 2008. Interac-
tion patches for multi-character animation. ACM Trans. Graph 27, 5, 114.

SINGH, S., KAPADIA, M., FALOUTSOS, P., AND REINMAN, G. 2009. An open
framework for developing, evaluating, and sharing steering algorithms. In Pro-
ceedings of the 2nd International Workshop on Motion in Games, 158–169.

SINGH, S., KAPADIA, M., FALOUTSOS, P., AND REINMAN, G. 2009. Steerbench:
a benchmark suite for evaluating steering behaviors. Computer Animation and
Virtual Worlds 20, 5-6, 533–548.

SNOOK, G. 2000. Simplified 3D movement and pathfinding using navigation meshes.
In Game Programming Gems. Charles River, Hingham, Mass., ch. 3, 288–304.

SUN, H. C., AND METAXAS, D. N. 2001. Automating gait generation. In Proc. of
ACM SIGGRAPH, 261–270.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum crowds. In Proc.
of ACM SIGGRAPH, 1160–1168.

ULICNY, B., AND THALMANN, D. 2002. Towards interactive real-time crowd behav-
ior simulation. Computer Graphics Forum 21, 4, 767–775.

VAN BASTEN, B. J. H., STUVEL, S. A., AND EGGES, A. 2011. A hybrid interpola-
tion scheme for footprint-driven walking synthesis. Graphics Interface, 9–16.

VAN DEN BERG, J., GUY, S. J., LIN, M., AND MANOCHA, D. 2011. Reciprocal
n-body collision avoidance. In Inter. Symp. on Robotics Research, 3–19.

WEIDMANN, U. 1993. Transporttechnik der fussgaenger. Tech. Rep. 90.

YANG, Y., AND BROCK, O. 2007. Elastic roadmaps: globally task-consistent motion
for autonomous mobile manipulation. In Proc. Robot. Sci. Syst., 279–286.

ZHANG, P., LIU, H., AND DING, Y.-H. 2013. Crowd simulation based on constrained
and controlled group formation. The Visual Computer, 1–14.

5.4 Funding Acknowledgment

The work at UNC Chapel Hill has been supported by NSF award
1305286, and a grant from the Boeing Company.



A Menge Simulation Specification Example

Here we give an example of Menge’s simulation specification lan-
guage. We present and discuss the complete description of a simple
scenario: uni-directional flow down a corridor with periodic bound-
aries. Figure 12 shows the initial condition and some later point in
the simulation. See below for a detailed description of the figures.

A.1 Scene Specification

Listing 1 provides the complete scene specification. It is responsi-
ble for defining the agent population and initial state.

Line 1 The root element of the specification XML.

Line 2 The declaration of the SpatialQuery type – in this case,
a kd-tree.

Lines 4-6 The specification of the global Pedestrian Model
parameters, including those shared by all pedestrian mod-
els (Common) and those particular to the simple social force
model (Helbing) and the predictive social force model
(Karamouzas)5.

Lines 8-15 The definition of an “agent profile”, defining the space
of values of agent b-state parameters. The profile is named,
group1, for reference purposes.

Lines 9-14 The per-agent Pedestrian Model param-
eters, including the shared parameters (Common),
and for three particular implementations (Helbing,
Karamouzas, ORCA).

Line 10 The property allows for definitions of b-state
parameters using a numerical distribution. In this
case, the preferred speed is defined as a normal
distribution with a mean value and standard devi-
ation of 1.3 m/s and 0.15 m/s, respectively.

Lines 17-21 The instantiation of a group of agents. The number
and position of each agent is defined by the Generator, as-
signed b-state parameter values by its ProfileSelector,
and assigned an initial FSM-state by its StateSelector.

Line 18 The ProfileSelector uses a const type.
Which means that all agents will be assigned the
group1 agent profile. In contrast, distribution-style
ProfileSelector could assign a profile from a set
of specified profiles.

Line 19 The StateSelector, like the
ProfileSelector, is of const type and as-
signs all agents to the same initial FSM-state.

Line 20 The AgentGenerator instantiates a hexagonal
lattice of agent positions. The arguments specify the
geometry of the lattice, average density, and the ap-
proximate count of agents. In addition, it provides a
displacement distribution to perturb the initial positions
from the perfect lattice positions. The noisy lattice can
be seen in Figure 12(a).

Lines 23-30 These define the obstacles in the environment. In this
case, the type of the ObstacleSet is explicit; each ob-
stacle is explicitly defined in the specification file (in contrast
to being read from an external file).

5The ORCA model does not have any global parameters.

Lines 24-29 The definition of a single obstacle. The obstacle
is a closed polygon, defined by a two-dimensional ver-
tex list. The order of vertices defines the “inside” and
“outside” of the obstacle.

A.2 Behavior Specification

The behavior specification includes the explicit instantiation of a
particular BFSM, as well as supporting data structures. Listing 2
contains the full BFSM specification for the example scenario. The
key feature to this BFSM is the teleport Action element on
line 13. This is what creates the effect of periodic boundary condi-
tions.

Line 1 The root element of the behavior specification XML.

Lines 2-4 The definition of a set of goals. A behavior specification
can contain any number of such sets. Each goal set contains
one or more Goals. Each goal set must possess a unique,
numerical id for referencing by other entities.

Line 3 The single Goal defined in this scenario. In this case,
the Goal is an AABB (axis-aligned bounding box).
Agents will always move to the closest point in the goal
region. The box is shown as the purpose region in Fig-
ure 12.

Lines 6-9 The definition of the “walking” FSM-state. Uniquely
identified by the name Walk. The state also indicates that
it is a non-final state–the simulation will not end if there are
agents in this FSM-state.

Line 7 The GoalSelector for this FSM-state. When
agents enter the state, they are assigned a Goal. In this
case, every agent explicitly is assigned a specific Goal
from a specific goal set (Goal 0 from goal set 0).

Line 8 The VelocityComponent which causes agents to
move directly toward their Goal. In this simple sce-
nario, no more sophisticated mechanism is necessary
beyond simply walking straight to the goal.

Lines 10-14 The definition of the “goal reached” FSM-state. This
state serves a single purpose, to discontinuously move (tele-
port) agents to a target region. Its various components will
reflect this purpose.

Line 11 This FSM-state’s GoalSelector is of type
identity. This means that each agent’s Goal is the
point at which the agent is when it enters the state. This
is useful for causing agents to hold position.

Line 12 This FSM-state’s VelocityComponent is the
zero type. Every agent in this state will have the zero
preferred velocity.

Line 13 The teleport Action is assigned to this FSM-
state. When agents enter this FSM-state, the action is
applied and the agents are moved to a random point in-
side the box implied by the min x, max x, min y, and
max y parameters (shown in yellow in Figure 12(b).

Lines 16-18 The definition of the transition from the Walk to
GoalReached FSM-states. This makes use of the implied
transition Target element.

Line 17 The transition Condition which causes an agent
to move FSM-states. This transition is taken when the
agent enters an AABB. The region is shown as the cyan



(a)

(b)

Figure 12: The scenario described in the appendix. Agents move from right to left down a corridor. The effect of periodic boundaries is
realized with a teleport Action. As agents move toward the left-hand purple goal region, they enter the cyan box immediately preceding
it. Upon entering this region, the agents are teleported back to the yellow region on the right. This motion allows agents to walk down the
corridor indefinitely – well-approximating periodic boundaries.

box on the left in Figure 12(b). Because of this transi-
tion, no agent will ever actually reach its goal, but will,
instead, be teleported back to the yellow region.

Lines 19-21 The definition of the transition from the
GoalReached back to Walk FSM-states.

Line 17 This transition Condition is an auto condition;
it is the tautology. It implies that any agent enter-
ing the GoalReached FSM-state will automatically
be transitioned to the Walk FSM-state. This type
of automatic transitions allows FSM-states to be in-
troduced which have a one-time effect. This transi-
tion is also the reason why the GoalSelector and
VelocityComponent in the GoalReached state
are immaterial; they will never really be used.

A.3 Additional Documentation

The examples provided with Menge illustrate the various meth-
ods of creating and running scenes. Complete documentation of
the Menge codebase is available at the project website, http:
//gamma.cs.unc.edu/Menge/.

• An installation guide and Getting Started is available
at http://gamma.cs.unc.edu/Menge/learn/
gettingStarted.html

• Documentation on the Namespaces in Menge can be
found at http://gamma.cs.unc.edu/Menge/docs/
code/menge/html/namespaces.html.

• A complete class reference can be found at
http://gamma.cs.unc.edu/Menge/docs/code/
menge/html/classes.html.

• Documentation on the plugins included with Menge can be
found at http://gamma.cs.unc.edu/Menge/docs/
code/PedPlugins/html/index.html

http://gamma-web.iacs.umd.edu/Menge/
http://gamma-web.iacs.umd.edu/Menge/
http://gamma-web.iacs.umd.edu/Menge/learn/gettingStarted.html
http://gamma-web.iacs.umd.edu/Menge/learn/gettingStarted.html
http://gamma-web.iacs.umd.edu/Menge/docs/code/menge/html/namespaces.html
http://gamma-web.iacs.umd.edu/Menge/docs/code/menge/html/namespaces.html
http://gamma-web.iacs.umd.edu/Menge/docs/code/menge/html/classes.html
http://gamma-web.iacs.umd.edu/Menge/docs/code/menge/html/classes.html
http://gamma-web.iacs.umd.edu/Menge/docs/code/PedPlugins/html/index.html
http://gamma-web.iacs.umd.edu/Menge/docs/code/PedPlugins/html/index.html


A.4 Specification XML Files

Listing 1: Scene specification for a periodic hallway

1 <Experiment v e r s i o n =” 2 . 0 ”>
2 <Spat ia lQuery t y p e =” kd−t r e e ” t e s t v i s i b i l i t y =” f a l s e ” />
3

4 <Common t i m e s t e p =” 0 . 1 ” />
5 <Helbing a g e n t s c a l e =” 2000 ” o b s t a c l e s c a l e =” 4000 ” r e a c t i o n t i m e =” 0 . 5 ” b o d y f o r c e =” 1200 ”

f r i c t i o n =” 2400 ” f o r c e d i s t a n c e =” 0 .015 ” />
6 <Karamouzas o r i e n t w e i g h t =” 0 . 8 ” fov =” 200 ” r e a c t i o n t i m e =” 0 . 4 ” w a l l s t e e p n e s s =” 2 ”

w a l l d i s t a n c e =” 2 ” c o l l i d i n g c o u n t =” 5 ” d min=” 1 ” d mid=” 8 ” d max=” 10 ” a g e n t f o r c e =” 4 ” />
7

8 <A g e n t P r o f i l e name=” group1 ” >
9 <Common m a x a n g l e v e l =” 360 ” m a x n e i g h b o r s =” 10 ” o b s t a c l e S e t =” 1 ” n e i g h b o r d i s t =” 5 ” r =” 0 . 1 9 ”

c l a s s =” 2 ” p r e f s p e e d =” 1 . 0 4 ” max speed=” 2 ” m a x a c c e l =” 5 ” p r i o r i t y =” 0 . 0 ”>
10 <Property name=” p r e f s p e e d ” d i s t =” n ” mean=” 1 . 3 ” s t d d e v =” 0 . 1 5 ” />
11 < /Common>
12 <Helbing mass=” 80 ” />
13 <Karamouzas p e r s o n a l s p a c e =” 0 . 6 9 ” a n t i c i p a t i o n =” 8 ” />
14 <ORCA t a u =” 3 . 0 ” t a u O b s t =” 0 . 1 5 ” />
15 < / A g e n t P r o f i l e>
16

17 <AgentGroup>
18 <P r o f i l e S e l e c t o r t y p e =” c o n s t ” name=” group1 ” />
19 <S t a t e S e l e c t o r t y p e =” c o n s t ” name=”Walk” />
20 <Generator t y p e =” h e x l a t t i c e ” a n c h o r x =” 1 . 5 ” a n c h o r y =” 0 . 0 ” a l i g n m e n t =” c e n t e r ” r o w d i r e c t i o n =” y ”

d e n s i t y =” 1 . 8 ” wid th =” 4 . 0 ” p o p u l a t i o n =” 100 ” r o t a t i o n =”−90” d i s p l a c e d i s t =” n ”
d i s p l a c e m e a n =” 0 . 1 ” d i s p l a c e s t d d e v =” 0 . 0 3 ” />

21 < / AgentGroup>
22

23 <O b s t a c l e S e t t y p e =” e x p l i c i t ” c l a s s =” 1 ”>
24 <Obstac le c l o s e d =” 1 ” >
25 <Vertex p x =”−20” p y =” 2 . 0 ” />
26 <Vertex p x =” 20 ” p y =” 2 . 0 ” />
27 <Vertex p x =” 20 ” p y =”−2” />
28 <Vertex p x =”−20” p y =”−2” />
29 < / Obstac le>
30 < / O b s t a c l e S e t>
31 < / Experiment>

Listing 2: Behavior specification for a periodic hallway

1 <BFSM>
2 <GoalSet i d =” 0 ”>
3 <Goal t y p e =”AABB” i d =” 0 ” min x=”−20” max x=”−15” min y=”−2.0 ” max y=” 2 ” />
4 < / GoalSet>
5

6 <S t a t e name=”Walk” f i n a l =” 0 ” >
7 <G o a l S e l e c t o r t y p e =” e x p l i c i t ” g o a l s e t =” 0 ” g o a l =” 0 ” />
8 <VelComponent t y p e =” g o a l ” />
9 < / S t a t e>

10 <S t a t e name=” GoalReached ” f i n a l =” 0 ”>
11 <G o a l S e l e c t o r t y p e =” i d e n t i t y ” />
12 <VelComponent t y p e =” z e r o ” />
13 <Action t y p e =” t e l e p o r t ” d i s t =” u ” min x=” 1 3 . 5 ” max x=” 14 ” min y=”−1.5 ” max y=” 1 . 5 ” />
14 < / S t a t e>
15

16 <T r a n s i t i o n from=”Walk” t o =” GoalReached ” >
17 <Condit ion t y p e =”AABB” min x=”−40” max x=” −13.5 ” min y=”−2.0 ” max y=” 2 . 0 ” i n s i d e =” 1 ” />
18 < / T r a n s i t i o n>
19 <T r a n s i t i o n from=” GoalReached ” t o =”Walk” >
20 <Condit ion t y p e =” a u t o ” />
21 < / T r a n s i t i o n>
22 < /BFSM>


