Integrating Dynamics into Industrial Motion Planning

Q.-C. Pham NTU, Singapore

Path planning problem

Find a collision-free path between q_{start} and q_{goal}

From academic breakthroughs...

... to industrial successes

Siemens PLM Software

KineoWorks

Quickly and easily create collision-free paths with the worldwide leading path planning solution

How about dynamics ?

Torque constraints Friction constraints

Fluid constraints

ZMP constraints

Planning with dynamics ?

Planning in the state space ?

- More dimensions (2n)
- Obstacle avoidance difficult to guarantee
- Less intuitive

Trajectory decoupling (path + parameterization)

- Cluttered environments
- Can use regular PRM/RRT + many heuristics
- Optimal time parameterization (Bobrow 1985 and many others)

Time-Optimal Path Parameterization (TOPP)

Developed by Bobrow (and many others)

Applicable to many types of problems

- Velocity / acceleration / torque bounds
- Grip stability / friction constraints
- ZMP constraints

Time-Optimal Path Parameterization (TOPP)

Our implementation of Bobrow algorithm

- https://github.com/quangounet/TOPP
- Fast (torque constraints 7 DOF, 1s, 100 points : 6ms)
- Integrated with OpenRAVE

Currently supported constraints

- Velocity / acceleration / torque bounds
- Friction constraints
- ZMP constraints

Quasi-static planning

Final path not parameterizable ? Check quasi-static feasibility at each step Loss of completeness / optimality

Admissible Velocity Propagation (AVP)

Inputs

- Path in configuration space
- (vmin,vmax) at the beginning of the path

Output

Admissible (vmin,vmax) at the end of the path

Admissible Velocity Propagation (AVP)

Based on Bobrow algorithmImplemented in TOPP

Example : Non-prehensile transportation

No need to design specific grippers
Save time on grasp/release
Use friction

Conclusion

- Approach to integrate dynamics into motion planning
- Can be built upon existing sampling-based planners
- Negligible overhead over quasi-static planning
- Source code available https://github.com/quangounet/TOPP
- Current work
 - Liquid transportation
 - Humanoid robot
 - Integrate with other platforms (ROS/MoveIt!...)

