LU-GPU: Efficient Algorithms for Solving
‘4%, Dense Linear Systems on Graphics Hardware

Nico Galoppo, Naga K. Govindaraju, Michael Henson, Dinesh Manocha

http://gamma.cs.unc.edu/LU-GPU

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

@ Goals

© Demonstrate advantages of mapping
linear algebra routines to graphics
hardware:

O Performance
© Growth rate

O LAPACK compliant set of linear algebra
algorithms on graphics hardware

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Outline

>

© LU Decomposition & Related Work
© The potential of GPUs

©LU-GPU algorithm

O Results

© Conclusions & Ongoing Work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

.
@ LU decomposition

© Sequence of row eliminations:
© Scale and add: A(i,j) = A(i,j) - A(i,k) A(k,j)
© Input data mapping: 2 distinct memory regions

© No data dependencies .
within a row elimination K

© Pivoting
© Pointer-swap vs. data copy

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

.
@ LU decomposition

O Theoretical complexity (partial pivoting):
(2/3) n* + O(n?)

O Performance €% Architecture
© Order of operations
© Memory access (latency)
© Memory bandwidth

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Outline

>

O LU Decomposition & Related Work
© The potential of GPUs

©LU-GPU algorithm

O Results

© Conclusions & Ongoing Work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Commodity CPUs

i

OLINPACK Benchmark:

O Intel Pentium 4, 3.06 GHz: 2.88 GFLOPs/s

(Jack Dongarra, Oct 2005)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

.
@ Streaming architectures

O Specialized hardware
© High bandwidth/compute ratio

© Merrimac [Erez04]
© Molecular modeling: 38 GFLOPs vs. 2.7 GFLOPs (P4)
© $1,000/node

© Imagine [Ahn04]
©10.46 GFLOPs/s on QR-decomposition

© Research

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Outline

>

O LU Decomposition & Related Work
© The potential of GPUs

©LU-GPU algorithm

O Results

© Conclusions & Ongoing Work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

'CPU vs. GPU

b

@
©
@
@
e
©

e

10

© Pentium EE 840

HniE!
T

3.2 GHz Dual Core
230M Transistors
90nm process
206 mm?

2 X IMB Cache
25.6 GFLOPs

Price: $ 1,040

© GeForce 7800 GTX
430 MHz

302M Transistors

110 nm process

326 mm?

512MB onboard memory
313 GFLOPs (shader)

1.3 TFLOPs (total)

Price: $ 450

o000 QOQOO®O

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Graphics GFLOPs

Shader GFLOPs

Die area (mm?2)

Die area normalized

Transistors (M)

Power (W)

GFLOPS/mm

GFLOPS/tr

GFLOPS/W

11

™ CPU vs. GPU

PEE 840

25.6
25.6
206
206
230
130
0.1
0.1
0.2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

WY, (Henry Moreton: NVIDIA, Aug. 2005)

7800GTX

1300
313
326
218
302
65
6.0
4.3
20.0

GPU/CPU

50.8
12.2
1.6

1.1

1.3
0.5
47.9
38.7
101.6

' CPU vs. GPU: Bandwidth

12

System Memory
(2+ GB)

AGP Memory
(512 MB)

6.4 GB/s bandwidth

PCI-E Bus
(4 GB/s)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

X >
CPU GPU (500 MHz)
(3 GHz) .
Video Memory
2 X 1 MB Cache

(512 MB)

GPU (500 MHz)

Video Memory
(512 MB)

35.2 GB/s bandwidth

'Bandwidth

N

© Large high bandwidth memory
© 512 MB video memory vs. 2 MB L2 cache on CPUs

© High memory to compute clock ratio - reduces
memory stalls

13
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

7. Graphics pipeline

4

TrTTTT

Shader Instruction Dispatch |
I

vertex

polygon

pixel

texture

programmable vertex
processing (fp32)

polygon setup,
culling, rasterization

programmable per-
pixel math (fp32)

per-pixel texture,
fp16 blending

(Y

Z-buf, fp16 blending, <=
anti-alias (MRT)

14

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

™ Stream processor (non-graphics)
"%\, (David Kirk, NVIDIA, May'05)

programmable MIMD
processing (fp32)

SIMD
“rasterization”

lists

programmable SIMD
processing (fp32)

data fetch,
fp16 blending

predicated write, fp16
blend, multiple output

15
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

R
@ Potential of graphics processors

© Commodity horsepower

© Parallel computation
© Bandwidth

© Programmable graphics pipeline
© Stream processor

O Exploit large growth rate

16
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Y, faster than Moore’s law

Source: Anselmo Lastra

1000

®MTris /s

A CPUint2000 (norm)

GPU Growth Rate

|

100

Performance
{log scale)

CPU Growth Rate

1997

17

1998

1999

2000 2001 2002 2003

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

@ General purpose computing on GPUs

© Physical Simulation
© Fluid Flow [Fan et al. 2004]
© FEM [Rumpf and Strzodka 2001]
© Cloud Dynamics [Harris et al. 2003]

O Sparse Linear Algebra

© Operators [Kriger and Westermann 2003]
O Iterative Solvers [Bolz et al. 2003]

18
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

@ General purpose computing on GPUs

© Matrix-Matrix Multiplication
© Fixed graphics pipeline, fixed-point arithmetic
[Larsen and McAllister 2001]
© Floating-point (SP) [Fatahalian et al. 2004]

O High-level API
© BrookGPU [Buck et al. 2004]
© Sh [McCool et al. 2004]

19
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Outline

>

O LU Decomposition & Related Work
© The potential of GPUs

© LU-GPU algorithm

O Results

© Conclusions & Ongoing Work

20
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Motivation for LU-GPU

W

© LU decomposition maps well:
© Stream program
© Few data dependencies

© Pivoting
© Parallel pivot search
© Exploit large memory bandwidth

21
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PU based algori

©Data representation

© Algorithm mapping

22
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Data representation

16 fragment processors:

Cache efficient data generation

Vertex| |Vertex| |Vertex Vertex| [Vertex| |Vertex
Shader| [Shader| [Shader Shader| [Shader| |Shader|

l

l

I

I

I

]

Texture mapping hardware: Input data mapping

l

|

|

|

l

|

|

|

|

|

|

|

|

|

|

|

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

L
Textur:
Cach

l

]

l

l

l

l

l

]

]

l

l

]

]

]

l

|

Parallel rasterization : Fast row swapping

l

|

|

|

|

|

|

|

|

|

|

|

|

|

|

l

ROP ROP ROP ROP ROP [ROP [ROP ROP [—1 ROP [ROP ROP [ROP ROP [ROP ROP ROP
|:Subsys Subsys| [Subsys| [Subsys| [Subsys| |Subsys| |Subsys| |Subsys Subsys| |Subsys| |Subsys| [Subsys| |Subsys| [Subsys| |Subsys Subsys:|
tem || tem || tem || tem [| tem || tem || tem []| tem || tem || tem | | tem || tem []| tem [tem || tem || tem
Memory Memory Memory Memory

ition

Partition

Partition

Partition

23

Intemal bandwidth: 35.2 GB/s

)

- Matri il
Texture Memory: Matrix storage =/ |
< — Ping-Pong Surface Switch

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Data representation

b

© Matrix elements
© 2D texture memory
© One-to-one mapping

O Texture memory = on-board memory
© Exploit bandwidth
© Avoid CPU-GPU data transfer

24
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

'GPU based algorithms

b

©Data representation

© Algorithm mapping
© Stream computation
©Input data mapping
©Fast row swaps

25
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

g

Algorithm mapping

e

16 fragment processors:

1 < Cache efficient data genew
| N | | 1

Vertex
Shader|

Vertex
Shader|

Vertex
Shader

Vertex
Shader

Vertex
Shader

Vertex
Shader|

l

l

I

I

I

]

Texture mapping hardware: Input data mapping

l

|

|

|

l

|

|

|

|

|

|

|

|

|

|

|

[

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

L
Textur:
Cach

l

]

l

l

l

l

]

]

l

l

]

]

]

l

|

|
l

Parallel rasterization : Fast row swapping

|

|

|

|

|

|

|

|

|

|

|

|

|

l

|

Texture Memory: Matrix storage&

Ping-Pong Surface Swi

26

ROP ROP ROP ROP ROP [ROP [ROP ROP [—1 ROP [ROP ROP [ROP ROP [ROP ROP ROP
Subsys| |Subsys| |Subsys| |Subsys| |Subsys| [Subsys| [Subsys| [Subsys Subsys| |Subsys| |Subsys| |Subsys| |Subsys| [Subsys| |Subsys| [Subsys
tem || tem || tem || tem [| tem || tem || tem []| tem || tem || tem | | tem || tem []| tem [tem || tem || tem
Memory Memory Memory Memory
Partition Partition Partition Partition

Intemal bandwidth: 35.2 GB/s

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

.
@ Stream computation

O Rasterize quadrilaterals

© Generates computation stream
© Invokes SIMD units
© Rasterization simulates blocking

O Rasterization pass = row elimination

© Alternating memory regions

27
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

g

Input data mapping

16 fragment processors:

Cache efficient data generation

Vertex| |Vertex| |Vertex Vertex| [Vertex| |Vertex
Shader| [Shader| [Shader Shader| [Shader| |Shader|

Texture mapping hardware: Input data mapping

l

|

|

|

l

|

|

|

[

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

Pixel
Shader

Pixel

Shader

Pixel
Shader

Pixel
Shader|

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

L
Textur:
Cach

l

]

l

l

l

l

l

]

]

]

l

|

Parallel rasterization : Fast row swapping

|

|

|

|

|

|

|

|

|

|

|

|

|

l

ROP ROP ROP ROP ROP [ROP [ROP [{ ROP [—] ROP [ROP ROP [ROP ROP [ROP ROP ROP
|:Subsys Subsys| [Subsys| [Subsys| [Subsys| |Subsys| |Subsys| |Subsys Subsys| |Subsys| |Subsys| [Subsys| |Subsys| [Subsys| |Subsys Subsys:|
tem || tem || tem || tem [| tem || tem || tem []| tem || tem || tem | | tem || tem []| tem [tem || tem || tem
Bdemory |I:'0>A(emc)ry Bllemory yemory
artition artition artition artition .
i Intemnal bandwidth: 35.2 GB/s

Texture Memory: Matrix storage o

Ping-Pong Surface Switch

28
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

.
@ Input data mapping

O Dedicated texture mapping hardware

© Traditionally for color interpolation
© Map input matrix elements to output elements
© Eliminates computation of memory locations

©25% performance improvement

29
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

© Main issues:

© Pivot search
© Row/column swapping

30
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

e

Pivoting

16 fragment processors:

Cache efficient data generation

Vertex| |Vertex| |Vertex Vertex| [Vertex| |Vertex
Shader| [Shader| [Shader Shader| [Shader| |Shader|

|

|

|

|

|

|

|

Texture mapping hardware: Input data mapping

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader

Pixel
Shader|

l

]

l

l

l

|

|

|

|

|

|

|

ROP ROP ROP ROP ROP [ROP [ROP ROP [—1 ROP ROP ROP [ROP ROP ROP ROP ROP
|:Subsys Subsys| [Subsys| [Subsys| [Subsys| |Subsys| |Subsys| |Subsys Subsys| |Subsys| |Subsys| [Subsys| |Subsys| [Subsys| |Subsys Subsys:|
tem || tem || tem || tem [| tem || tem || tem []| tem || tem || tem | | tem || tem []| tem [tem || tem || tem
yemow gemow yemow yemow
artition artition artition artition .
) oy i 2 Intemal bandwidth: 35.2 GB/s
Texture Memory: Matrix storage ¢ .

Ping-Pong Surface Switch

31
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

I —
@ Partial pivoting

OFast row swap
© Data copy: mapped rasterization

© Texture mapping hardware

© High memory bandwidth
© Improvement over pointer swapping

Input TEXTURE MAPPING Output
HARDWARE

1 X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

32

Full pivoting

A

OFast column/row swap

O Parallel pivot search
© Divide and conguer approach

Partial pivoting Full pivoting

33
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Outline

b

O LU Decomposition & Related Work
© The potential of GPUs

©LU-GPU algorithm

© Results

© Conclusions & Ongoing Work

34
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Benchmarks

Commodity CPU

3.4 GHz Pentium IV with Hyper-Threading, 1 MB L2 cache
LAPACK sgetrf() (blocked algorithm, ATLAS library)
LAPACK sgetc2() (SSE-optimized IMKL library)

6800 GT 350 MHz 256 Mb 900 MHz
6800 Ultra 16 425 MHz 256 Mb 1100 MHz
7800 GTX 24 430 MHz 256 Mb 1200 MHz

35

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Results: No pivoting

36

"
9
o —® - ATLAS GETRF (Partial Pivot)
- ¢ - Ultra 6800 LU (no pivoting) /‘

7 —e—GT 6800 LU (no pivoting) /
Ny —&— 7800 LU (no pivoting)

@5

£

= 4
3 |
2 |
1 |
0

1000 1500 2000 2500 3000 3500
Matrix size N

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Results: Partial pivoting

4
12
- ¢ ' ATLAS GETRF (Partial Pivot) Y 4
10 — - GT 6800 Partial Pivot /
—=— Ultra 6800 Partial Pivot /
8 —a— 7800 Partial Pivot /
O
g°
|_
4 |
2 |
0

37

500 1000 1500 2000 2500 3000 3500
Matrix size N

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Results: Full Pivoting

2
250
—&— Ultra 6800 Full Pivot
200 -® LAPACK sgetc2 (IMKL) o
4
—— 7800 Full Pivot .
150 - .
“n v
GEJ ¢
[== . =
100 - L
&‘ ’
50 L e :
- - . :
- L . -
0 .7——5‘ - ;E—\’ —f— T T T
500 1000 1500 2000 2500 3000 3500
Matrix size N

38
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Y, Number of computational units

45

6800 Ultra (no pivoting)
407 4 | (Jun 2003)

12
16

(Mar 2004)

500 1000 1500 2000 2500 3000 3500 4000
Matrix Size (N)

39
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

w GPU-CPU data transfer overhead

2
12.00
m GT 6800 Partial Pivot
10.00 - M Ultra 6800 Partial Pivot
7800 Partial Pivot
800 | B CPU-GPU transfer
w
(D)
£ 6.00
I_
4.00
2.00
0.00 T T T \ ———
500 1000 1500 2000 2500 3000 3500

40

Matrix size N

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

[6800 Ultra 06800 GT

6800 Ultra Peak Bandwidth: 35.2 GB/s

6800 GT Peak

§

__

L

Bandwidth: 28.8
500

35

T T T T 1
L0 o Ln o Lo o
N N i —

(s/g9) sbesn yipimpueg

30 A

1500 2000 2500 3000 3500 4000

1000

Matrix size (N)

41

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

w Faster than Moore’s law

2
12
- ¢ ' ATLAS GETRF (Partial Pivot) ¥ 4
10 — - GT 6800 Partial Pivot /
—B— Ultra 6800 Partial Pivot /
8 —a— 7800 Partial Pivot / (Mar 2004)
@
£ °
a (Jun 2005)

42

500 1000 1500 2000 2500 3000 3500
Matrix size N

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

"Application: Fluid Simulation

b

O Solve parallel sub-problems
©N=2048
© Diagonally-dominant
© No pivoting required

©15% faster than ATLAS
on Pentium IV 3.06 GHz

43
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

R RRRRREESBEEEBBEBED=DD
@ Limitations

O Maximum matrix size: 4096x4096
© Block-partitioned LU decomposition

© Precision

© Single precision floating point

© Not 100% IEEE floating point compliant
© CPU-GPU data transfer overhead

© Small matrices

44
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

R
@ Graphics hardware advancements

©Improved floating point bandwidth
© 4 component vs. single component

©Floating point blending

© Use of non-programmable TFLOPs

45
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Outline

>

O LU Decomposition & Related Work
© The potential of GPUs

©LU-GPU algorithm

O Results

© Conclusions & Ongoing Work

46
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Conclusions

>

© Algorithm mapped to graphics pipeline

© Novel mapping of row operations to rasterization
© Stream computation
© Blocking

47
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ONCiusions

© Optimized with GPU architecture

© Input data mapping
O Fast pivoting

48
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Conclusions

W

© Performance

© Comparable to industry-standard libraries
© Relatively small development effort

© GPU are useful co-processors
© Scientific computations
© Many applications

49
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ONCiusions

©LU-GPU Open Source library available:

http://gamma.cs.unc.edu/LUGPULIB/

50
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

http://gamma-web.iacs.umd.edu/LUGPULIB/

ngoing wor

©Sorting on GPUs

©Linear algebra:
© GPU-LAPACK / QR decomposition

51
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Sorting on GPUs

W

© Goal: Utilize the high parallelism, and
memory bandwidth on GPUs for fast sorting

[Govindaraju et al, SIGMODO5]

© GPUSort: Open Source library
[http.//gamma.cs.unc.edu/GPUSORT/]

52
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

http://gamma-web.iacs.umd.edu/GPUSORT

Sorting on GPUs

2

5 4 GPU Bitonic Sort .
(Purcell et al. 03) CPUQsort (MSVC)

Sorting time (secs)

Govindaraju et al. 05b

oM 2M 4M 6M SM
Database size

6 times faster than Quicksort on 3.4 GHz Pentium IV PC!

53
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Linear algebra

N

O LAPACK-compliant library for GPUs

© QR-decomposition in development
(LAPACK SGEQRF)

54
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

.
@ Acknowledgements

© Army Research Office
©DARPA

O National Science Foundation
O Office of Naval Research
©ORDECOM

Olntel Corporation

ONVIDIA Corporation

©UNC GAMMA Group

55
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Thank you

XD

©For questions or comments:

nico@cs.unc.edu
naga@cs.unc.edu
henson@cs.unc.edu

http://gamma.cs.unc.edu/
http://gamma.cs.unc.edu/LUGPULIB/

56
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

mailto:nico@cs.unc.edu
mailto:naga@cs.unc.edu
mailto:henson@cs.unc.edu
http://gamma-web.iacs.umd.edu/
http://gamma-web.iacs.umd.edu/LUGPULIB/

	LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware
	Goals
	Outline
	LU decomposition
	LU decomposition
	Outline
	Commodity CPUs
	Streaming architectures
	Outline
	CPU vs. GPU
	CPU vs. GPU(Henry Moreton: NVIDIA, Aug. 2005)
	CPU vs. GPU: Bandwidth
	Bandwidth
	Graphics pipeline
	Stream processor (non-graphics)(David Kirk, NVIDIA, May’05)
	Potential of graphics processors
	General purpose computing on GPUs
	General purpose computing on GPUs
	Outline
	Motivation for LU-GPU
	GPU based algorithms
	Data representation
	Data representation
	GPU based algorithms
	Algorithm mapping
	Stream computation
	Input data mapping
	Input data mapping
	Pivoting
	Pivoting
	Partial pivoting
	Full pivoting
	Outline
	Benchmarks
	Results: No pivoting
	Results: Partial pivoting
	Results: Full Pivoting
	Results: Number of computational units
	GPU-CPU data transfer overhead
	Bandwidth efficiency
	Faster than Moore’s law
	Application: Fluid Simulation
	Limitations
	Graphics hardware advancements
	Outline
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Ongoing work
	Sorting on GPUs
	Sorting on GPUs
	Linear algebra
	Acknowledgements
	Thank you

