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@ Goals

© Demonstrate advantages of mapping
linear algebra routines to graphics
hardware:

O Performance
© Growth rate

O LAPACK compliant set of linear algebra
algorithms on graphics hardware
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.
@ LU decomposition

© Sequence of row eliminations:
© Scale and add: A(i,j) = A(i,j) - A(i,k) A(k,j)
© Input data mapping: 2 distinct memory regions

© No data dependencies .
within a row elimination K

© Pivoting
© Pointer-swap vs. data copy
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.
@ LU decomposition

O Theoretical complexity (partial pivoting):
(2/3) n* + O(n?)

O Performance €% Architecture
© Order of operations
© Memory access (latency)
© Memory bandwidth
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' Commodity CPUs

i

OLINPACK Benchmark:

O Intel Pentium 4, 3.06 GHz: 2.88 GFLOPs/s

(Jack Dongarra, Oct 2005)
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.
@ Streaming architectures

O Specialized hardware
© High bandwidth/compute ratio

© Merrimac [Erez04]
© Molecular modeling: 38 GFLOPs vs. 2.7 GFLOPs (P4)
© $1,000/node

© Imagine [Ahn04]
©10.46 GFLOPs/s on QR-decomposition

© Research
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'CPU vs. GPU

b
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© Pentium EE 840

HniE!
T

3.2 GHz Dual Core
230M Transistors
90nm process
206 mm?

2 X IMB Cache
25.6 GFLOPs

Price: $ 1,040

© GeForce 7800 GTX
430 MHz

302M Transistors

110 nm process

326 mm?

512MB onboard memory
313 GFLOPs (shader)

1.3 TFLOPs (total)

Price: $ 450

o000 QOQOO®O
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Graphics GFLOPs

Shader GFLOPs

Die area (mm?2)

Die area normalized

Transistors (M)

Power (W)

GFLOPS/mm

GFLOPS/tr

GFLOPS/W
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™ CPU vs. GPU

PEE 840

25.6
25.6
206
206
230
130
0.1
0.1
0.2
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WY, (Henry Moreton: NVIDIA, Aug. 2005)

7800GTX

1300
313
326
218
302
65
6.0
4.3
20.0

GPU/CPU

50.8
12.2
1.6

1.1

1.3
0.5
47.9
38.7
101.6



' CPU vs. GPU: Bandwidth

12

System Memory
(2+ GB)

AGP Memory
(512 MB)

6.4 GB/s bandwidth

PCI-E Bus
(4 GB/s)
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X >
CPU GPU (500 MHz)
(3 GHz) .
Video Memory
2 X 1 MB Cache

(512 MB)

GPU (500 MHz)

Video Memory
(512 MB)

35.2 GB/s bandwidth




'Bandwidth

N

© Large high bandwidth memory
© 512 MB video memory vs. 2 MB L2 cache on CPUs

© High memory to compute clock ratio - reduces
memory stalls

13
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7. Graphics pipeline

4

TrTTTT

Shader Instruction Dispatch |
I

vertex

polygon

pixel

texture

programmable vertex
processing (fp32)

polygon setup,
culling, rasterization

programmable per-
pixel math (fp32)

per-pixel texture,
fp16 blending

(Y

Z-buf, fp16 blending, <=
anti-alias (MRT)
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™ Stream processor (non-graphics)
"%\, (David Kirk, NVIDIA, May'05)

programmable MIMD
processing (fp32)

SIMD
“rasterization”

lists

programmable SIMD
processing (fp32)

data fetch,
fp16 blending

predicated write, fp16
blend, multiple output

15
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



R
@ Potential of graphics processors

© Commodity horsepower

© Parallel computation
© Bandwidth

© Programmable graphics pipeline
© Stream processor

O Exploit large growth rate

16
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Y, faster than Moore’s law

Source: Anselmo Lastra
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@ General purpose computing on GPUs

© Physical Simulation
© Fluid Flow [Fan et al. 2004]
© FEM [Rumpf and Strzodka 2001]
© Cloud Dynamics [Harris et al. 2003]

O Sparse Linear Algebra

© Operators [Kriger and Westermann 2003]
O Iterative Solvers [Bolz et al. 2003]
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@ General purpose computing on GPUs

© Matrix-Matrix Multiplication
© Fixed graphics pipeline, fixed-point arithmetic
[Larsen and McAllister 2001]
© Floating-point (SP) [Fatahalian et al. 2004]

O High-level API
© BrookGPU [Buck et al. 2004]
© Sh [McCool et al. 2004]

19
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Motivation for LU-GPU

W

© LU decomposition maps well:
© Stream program
© Few data dependencies

© Pivoting
© Parallel pivot search
© Exploit large memory bandwidth

21
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PU based algori

©Data representation

© Algorithm mapping

22
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Data representation

16 fragment processors:

Cache efficient data generation
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Intemal bandwidth: 35.2 GB/s

)

- Matri il
Texture Memory: Matrix storage =/ |
< — Ping-Pong Surface Switch
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Data representation

b

© Matrix elements
© 2D texture memory
© One-to-one mapping

O Texture memory = on-board memory
© Exploit bandwidth
© Avoid CPU-GPU data transfer

24
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'GPU based algorithms

b

©Data representation

© Algorithm mapping
© Stream computation
©Input data mapping
©Fast row swaps

25
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g

Algorithm mapping

e

16 fragment processors:

1 < Cache efficient data genew
| N | | 1
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.
@ Stream computation

O Rasterize quadrilaterals

© Generates computation stream
© Invokes SIMD units
© Rasterization simulates blocking

O Rasterization pass = row elimination

© Alternating memory regions

27
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g

Input data mapping

16 fragment processors:

Cache efficient data generation
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.
@ Input data mapping

O Dedicated texture mapping hardware

© Traditionally for color interpolation
© Map input matrix elements to output elements
© Eliminates computation of memory locations

©25% performance improvement
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© Main issues:

© Pivot search
© Row/column swapping

30
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e

Pivoting

16 fragment processors:

Cache efficient data generation
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I —
@ Partial pivoting

OFast row swap
© Data copy: mapped rasterization

© Texture mapping hardware

© High memory bandwidth
© Improvement over pointer swapping

Input TEXTURE MAPPING  Output
HARDWARE

1 X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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Full pivoting

A

OFast column/row swap

O Parallel pivot search
© Divide and conguer approach

Partial pivoting Full pivoting

33
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. Outline

b

O LU Decomposition & Related Work
© The potential of GPUs
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© Results

© Conclusions & Ongoing Work
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Benchmarks

Commodity CPU

3.4 GHz Pentium IV with Hyper-Threading, 1 MB L2 cache
LAPACK sgetrf() (blocked algorithm, ATLAS library)
LAPACK sgetc2() (SSE-optimized IMKL library)

6800 GT 350 MHz 256 Mb 900 MHz
6800 Ultra 16 425 MHz 256 Mb 1100 MHz
7800 GTX 24 430 MHz 256 Mb 1200 MHz
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. Results: No pivoting

36
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. Results: Partial pivoting
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Results: Full Pivoting
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Y, Number of computational units

45

6800 Ultra (no pivoting)
407 4 | (Jun 2003)
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w GPU-CPU data transfer overhead
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[ 6800 Ultra 06800 GT

6800 Ultra Peak Bandwidth: 35.2 GB/s
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w Faster than Moore’s law

2
12
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£ °
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"Application: Fluid Simulation

b

O Solve parallel sub-problems
©N=2048
© Diagonally-dominant
© No pivoting required

©15% faster than ATLAS
on Pentium IV 3.06 GHz
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R RRRRREESBEEEBBEBED=DD
@ Limitations

O Maximum matrix size: 4096x4096
© Block-partitioned LU decomposition

© Precision

© Single precision floating point

© Not 100% IEEE floating point compliant
© CPU-GPU data transfer overhead

© Small matrices

44
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@ Graphics hardware advancements

©Improved floating point bandwidth
© 4 component vs. single component

©Floating point blending

© Use of non-programmable TFLOPs

45
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. Conclusions

>

© Algorithm mapped to graphics pipeline

© Novel mapping of row operations to rasterization
© Stream computation
© Blocking

47
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ONCiusions

© Optimized with GPU architecture

© Input data mapping
O Fast pivoting

48
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Conclusions

W

© Performance

© Comparable to industry-standard libraries
© Relatively small development effort

© GPU are useful co-processors
© Scientific computations
© Many applications
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ONCiusions

©LU-GPU Open Source library available:

http://gamma.cs.unc.edu/LUGPULIB/
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http://gamma-web.iacs.umd.edu/LUGPULIB/

ngoing wor

©Sorting on GPUs

©Linear algebra:
© GPU-LAPACK / QR decomposition

51
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Sorting on GPUs

W

© Goal: Utilize the high parallelism, and
memory bandwidth on GPUs for fast sorting

[Govindaraju et al, SIGMODO5]

© GPUSort: Open Source library
[http.//gamma.cs.unc.edu/GPUSORT/]
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http://gamma-web.iacs.umd.edu/GPUSORT

Sorting on GPUs

2

5 4 GPU Bitonic Sort .
(Purcell et al. 03) CPUQsort (MSVC)

Sorting time (secs)

Govindaraju et al. 05b

oM 2M 4M 6M SM
Database size

6 times faster than Quicksort on 3.4 GHz Pentium IV PC!
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. Linear algebra

N

O LAPACK-compliant library for GPUs

© QR-decomposition in development
(LAPACK SGEQRF)
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" Thank you

XD

©For questions or comments:

nico@cs.unc.edu
naga@cs.unc.edu
henson@cs.unc.edu

http://gamma.cs.unc.edu/
http://gamma.cs.unc.edu/LUGPULIB/

56
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL


mailto:nico@cs.unc.edu
mailto:naga@cs.unc.edu
mailto:henson@cs.unc.edu
http://gamma-web.iacs.umd.edu/
http://gamma-web.iacs.umd.edu/LUGPULIB/

	LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware
	Goals
	Outline
	LU decomposition
	LU decomposition
	Outline
	Commodity CPUs
	Streaming architectures
	Outline
	CPU vs. GPU
	CPU vs. GPU(Henry Moreton: NVIDIA, Aug. 2005)
	CPU vs. GPU: Bandwidth
	Bandwidth
	Graphics pipeline
	Stream processor (non-graphics)(David Kirk, NVIDIA, May’05)
	Potential of graphics processors
	General purpose computing on GPUs
	General purpose computing on GPUs
	Outline
	Motivation for LU-GPU
	GPU based algorithms
	Data representation
	Data representation
	GPU based algorithms
	Algorithm mapping
	Stream computation
	Input data mapping
	Input data mapping
	Pivoting
	Pivoting
	Partial pivoting
	Full pivoting
	Outline
	Benchmarks
	Results: No pivoting
	Results: Partial pivoting
	Results: Full Pivoting
	Results: Number of computational units
	GPU-CPU data transfer overhead
	Bandwidth efficiency
	Faster than Moore’s law
	Application: Fluid Simulation
	Limitations
	Graphics hardware advancements
	Outline
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Ongoing work
	Sorting on GPUs
	Sorting on GPUs
	Linear algebra
	Acknowledgements
	Thank you

