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ABSTRACT

We present an efficient algorithm for line-of-sight (LOS) compu-
tations in modeling and simulation applications. LOS queries are
solved by performing point-to-point visibility computations in com-
plex environments with moving entities. Our approach divides the
environment into regions and uses region based visibility calcula-
tions to compute region-to-region visibility as a visibility table for
each region. This table indicates portions of the environment that
are definitely blocked from any point within a region. When an-
swering an LOS query we examine visibility tables of the regions
containing the endpoints. If the portions of the environment con-
taining the endpoints are blocked from each other according to the
RBV computation then we do not need to perform a ray cast test.
We have implemented our algorithm and have demonstrated its per-
formance on terrain and urban environments. We observe more than
three times speedup based on our region based visibility implemen-
tation.
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1 INTRODUCTION

Computer generated forces (CGFs) are computer systems that em-
ulate the behavior of multiple entities and units in a complex envi-
ronment. In these systems the tactical behaviors and decisions are
either made by human operators or automated decision algorithms.
Such systems are increasingly used in computer games, battlefield
simulations, and training environments.

One of the recent challenges has been to perform these inter-
active simulations on complex terrain and urban environments.
Any entry level simulation requires interaction between the enti-
ties. Representing the effects of terrain requires some method for
computing an unbroken geometric line of sight (LOS) between any
two given entities or locations. An LOS query simply requires de-
termining whether two entities in the environment can see each
other with respect to all sources of occlusion. Occlusion may be
caused by environmental obstacles such as the terrain, man-made
structures, atmospheric effects, or other simulation entities. These
queries are used extensively in entity AI processing allowing enti-
ties to react to other entities within their visible range (or the range
of various sensors). Figure 2 depicts two LOS queries. Query A
intersects geometry and does not have LOS, while Query B does
have LOS.

Although a single LOS query is a fairly simple geometric
problem, LOS queries can account for upwards of 40% [15] of
total simulation time. In a battlefield simulation with n entities the
total number of LOS queries tends to grow as O(n2) [9]. This is
demonstrated by Figure 1. Simulation designers must reduce the
number of LOS queries and often employ filters and heuristics.

Figure 1: LOS Between Multiple Entities. LOS between multiple
entities is inherently an O(n2) algorithm. For the eight entities shown
here there are 28 LOS queries. The blocked LOS queries are shown
in black. The unblocked queries are shown in white.

Distance thresholds are commonly used to reduce the total number
of LOS calls. This requires calculating entity-to-entity distances
and reduces the number of queries by a constant factor but does
not address the theoretical complexity. Thus, as the desired
complexity of simulation increases, the fraction of CPU cycles
used to compute LOS rises. A few thousand entities may require
millions of LOS queries per time step. Moreover, advances in
acquisition and modeling technologies have allowed simulation
designers to create more complex environments, thereby increasing
the number of obstacles against which an LOS query must be
tested. Legacy combat simulation systems sample an LOS ray and
test points along the ray against a terrain rather than computing
exact interactions to cope with the number of LOS queries that
must be resolved [12].

LOS and Ray Casting: LOS is typically solved as a point-to-point
visibility problem using ray casting. A ray is traced through the en-
vironment and tested against obstacles. Simulators may account for
atmospheric effects by tracking the distance the ray travels through
a transparent medium such as smoke or fog. LOS algorithms can
borrow many of the techniques used in ray tracing for image syn-
thesis such as acceleration data structures (e.g. grid or kd-tree).
Ray tracing acceleration algorithms often rely on spatial coherence
between rays because the eye rays all have a common origin and
are shot through the same plane. However, LOS requires tracing
many non-coherent rays through the environment making it diffi-
cult to leverage more efficient ray tracing algorithms. Moreover,
for many scenarios it is sufficient to simply know whether the line
between the entities is blocked without computing the actual point
of intersection or blocking object.

Region based visibility (RBV) algorithms have been developed
in computer graphics as solutions for various problems. RBV



Figure 2: LOS. To determine LOS, a line is drawn between two
points. If the line intersects any geometry, LOS does not exist.

algorithms determine the visible portion of the environment from a
given region or cell. In this paper we show how RBV can be used
to decrease the number of ray cast tests that must be performed.

Main Results: We employ RBV to reduce the number of LOS
queries that must be resolved by a ray cast. The environment is di-
vided into a set of regions using a coarse uniform grid. Rather than
simply computing region-to-region visibility, we compute a visibil-
ity table for each region with cells that are much finer than those of
the coarse region grid. RBV culling gives the greatest benefit when
at least one of the entities is on or near the ground. Thus, the visi-
bility table is a 2D grid of cells aligned to the terrain rather than 3D
grid. The table for each region simply consists of one bit per cell
indicating whether that cell is blocked from the region. Each region
in 3D stores a table of visibility from itself to the entire terrain. This
allows RBV culling for both aerial-to-ground and ground-to-ground
LOS queries.

The runtime system uses the visibility tables to determine
whether a ray cast is necessary. If one entity is in the blocked por-
tion of the other entity’s region according to that region’s visibility
table then we know the ray cast will find an intersection. Thus, the
ray cast is skipped and the query is answered as blocked. Currently,
our RBV culling only accounts for static geometry and cannot ac-
count for blockage due to entities. Such intersections would be
found by the ray casting algorithm.

We have implemented our algorithm and integrated it into a next
generation CGF. In test scenarios 70% to 90% of queries can be
culled using our technique. We used a simple urban scene and a
large dataset representing a 8km by 8km area around the Caspian
Sea with buildings. Our algorithm reduced the average LOS query
time from 6.2 microseconds to 2.7 microseconds. The storage over-
head for visibility tables is approximately 300MB. However, this
data is highly compressable, though our initial implementation does
not use compression. The size of the tables is independent of the
primitive or object count in the scene.

The rest of the paper is organized as follows: Section 2 reviews
the relevant work in LOS, ray tracing, and RBV. In Section 3 we
describe our approach to using RBV to assist in solving the LOS
problem. Initial results are presented in Section 4 and concluding
remarks in Section 5.

2 PREVIOUS WORK

We outline some of the previous work in LOS, ray tracing, and RBV
that is most related to our algorithm.
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Figure 3: Occluder fusion. In (a) neither of the individual umbras
occlude the object. However, in (b) the fused umbra fully occludes
the object.

2.1 Line of Sight

An LOS query is presented as two entity locations expressed as
3D points. Current simulation systems typically perform ray cast
tests to resolve LOS queries. Legacy systems used approximate al-
gorithms that sample the line segment connecting the entities and
compare sample points to a terrain representation and terrain fea-
tures [12]. The ray cast test is similar to tracing a single ray for
rendering purposes in that the primitives along the ray are inter-
sected with the ray. The only significant difference is that the LOS
test is actually a line segment test rather than a half-infinite ray. We
still use the terms “ray” and “ray cast” to emphasize the connection
to ray tracing.

The algorithm presented by Salomon, et al. [15] uses a GPU
to render the LOS ray between two points as a line segment. Hard-
ware occlusion queries are used to compare the line segment against
a representation of the terrain in the depth buffer using an ortho-
graphic projection. This method culls rays with definite visibility
and works best in scenarios in which most of the entities are visible
to each other, such as open fields. In this case many LOS calls can
be culled as visible. Non-culled queries are tested using ray casting.

Like this previous algorithm, our LOS algorithm is a culling ap-
proach. In fact, these algorithms are orthogonal and can be used in
combination. While the previous algorithm conservatively accepts
trivially visible queries, our new algorithm rejects trivially blocked
queries using region based visibility.

2.2 Ray Casting and Ray Tracing

Ray casting was first proposed for image synthesis by Appel [2].
Appel used rays originating from the eye and passing through pix-
els on the image plane. In the 1960s scientists at MAGI used ray
casting techniques developed for radiation simulation and applied
them to generating images.

Whitted [21] extended ray casting to generate more realistic
lighting effects using reflected, refracted and shadow rays. The
term “ray tracing” describes this use of eye rays followed by sec-
ondary rays. In the decades since there has been extensive research
into accelerating ray tracing computations. We cannot cover all of
the literature in this broad field and refer the interested reader to a
recent survey [19] for a more extensive coverage. However, effi-
cient ray tracing and ray casting algorithms have been developed
that historically have not been employed in simulation systems for
LOS. The most important of these are spatial data structures such
as bounding volume hierarchies, grids, and kd-trees. Our algorithm
uses a kd-tree to accelerate ray casting.

Many recent ray tracing acceleration approaches built on top of
spatial acceleration structures rely on ray coherence. For image



synthesis all rays originate at the eye and thus the initial set of rays
exhibit very high coherence. Secondary rays originating at highly
specular surfaces may also exhibit high coherence. Early research
using coherence includes [8], pencil tracing [18] and cone tracing
[1]. One recent approach [20] leverages modern architectures by
grouping rays into bundles and accelerates traversal and intersec-
tion with primitives for all rays simultaneously by taking advan-
tage of SIMD instructions. Reshetov et al. [14] present a variation
on beam tracing to exploit coherence in traversing a kd-tree spatial
structure.

LOS has different coherence characteristics than traditional ray
tracing for image synthesis. LOS queries are issued by AI simula-
tors and other simulation steps for the various entities in an inco-
herent manner and thus tracing multiple rays simultaneously is not
feasible. Furthermore, the design of existing simulators precludes a
simple method for bundling queries after they are issued. In effect
each query must be answered sequentially in the order issued.

2.3 Region Based Visibility

Given a subspace of a virtual environment, RBV algorithms com-
pute a visible subset of the environment from the subspace. Typi-
cally the subspace is a convex polyhedral such as a box. RBV algo-
rithms have many applications in computer graphics. One main use
is to increase rendering speeds by culling invisible geometry. RBV
has also been used to decrease network traffic for remote render-
ings. However, it has been shown that computing RBV exactly is
an O(n4) problem [13]. As with ray tracing, this a very broad topic
which has been extensively researched. We provide an extremely
brief overview and refer readers to recent surveys [4, 3].

To alleviate the computational complexity three classes of algo-
rithms have been developed: approximate, conservative, and ag-
gressive. Conservative algorithms compute a superset of the actual
visible set. Aggressive algorithms compute a subset of the visible
set [11]. Approximate algorithms compute a possibly bounded esti-
mate of the visible set which may be neither a subset nor a superset.
Our aim is to conservatively cull LOS queries that are definitely
blocked by the environment. Thus, we restrict ourselves to conser-
vative algorithms.

Early work in region based visibility focused on using a single
occluder [5, 16], or approximated multiple occluders [7]. In order
to perform more effective visibility culling, umbras of multiple oc-
cluders must be joined to create larger occluders. The concept of
merging the umbras of occluders is called occluder fusion. An ex-
ample of occluder fusion is presented in Figure 3. In this figure, the
occluders are represented by the gray bars. The object being viewed
is not blocked by any one occluder alone. However, the occlusion
umbra cast by both occluders together occludes the object. The al-
gorithm presented in [6] was one of the first to effectively exploit
occluder fusion in 3D.

Two practical RBV algorithms for 3D environments that perform
occluder fusion are: ray space factorization [10] and a volumetric
approach [17]. These RBV algorithms perform a spatial decom-
position on the environment (e.g. octree or kd-tree). RBV is then
computed for every spatial region. The ray space factorization al-
gorithm performs computations in the space of possible rays ema-
nating from a region and uses the GPU for acceleration. We present
the volumetric approach of Schaufler et al. in more detail because
we have employed it for our LOS algorithm.

The volumetric approach[17] requires all occluders to be submit-
ted as closed volumes. A spatial subdivision hierarchy is imposed
on the environment. The cells of the hierarchy are marked as in-
terior if they are completely inside an occluder, exterior if they are
completely outside all occluders and boundary if they are partially
inside the occluders and are at the maximum level allowed level of
subdivision.

Figure 4: Visualization of Volumetric Approach. This image shows
a region in white, the leaf level of the hierarchy and an occluder.
The red cells are exterior cells, the green cells are interior cells, and
the blue cells are blocked cells. The yellow cell is current cell in the
traversal. It is a blocked cell that is being used as an occluder. The
extents have been enlarged to cover neighboring blocked and interior
cells to create a larger occluder (magenta).

To calculate occlusion for a region the subdivision is traversed in
a hierarchical front to back manner. As the traversal proceeds each
cell visited is marked as either visible or blocked with respect to the
region. The traversal stops when it finds a node that can be used as
an occluder. The authors show that blocked cells can be used, in
addition to interior cells, as occluders to facilitate occluder fusion.
Furthermore, rather than using just the cell as an occluder, the ex-
tents of the cell are enlarged to enclose neighboring cells which are
also interior or blocked into a single occluder. An umbra is com-
puted for the occluder as a set of planes and cells inside the umbra
are marked as blocked. Figure 4 shows an illustration of the algo-
rithm in progress. The output is a partitioning of the environment
volume into conservatively blocked and potentially visible sets.

3 LOS USING RBV

As mentioned earlier, there are many techniques that reduce the
complexity of ray casting for static scenes. These techniques are
usually based on spatial subdivisions and coherent rays. Spatial
subdivisions can be used to speed up LOS and, indeed, our LOS
algorithm uses a kd-tree for ray casting. However, ray coherence
methods do not apply well to LOS calculations. As previously dis-
cussed, LOS rays tend to be extremely incoherent. Even though
many rays may originate at the same entity, they are not necessar-
ily generated in an entity coherent order. Moreover, directions of
LOS rays are extremely incoherent. Ray casting algorithms devel-
oped for ray tracing benefit from coherence in both ray origins and
directions. While the kd-tree structure dramatically speeds up ray
casting, we show that a large fraction of LOS rays can be culled
from ray casting altogether with a simple table lookup. Thus, these
techniques work in tandem to reduce the average LOS call time.

Conservative RBV can be used to accelerate LOS calculations
for static environments with dynamic entities. We subdivide the en-
vironment into regions and then compute region-to-region visibil-



Figure 5: Visible Cells. The white grid is a 2D slice of regions for
which visibility is computed. The visibility table is shown in black
and green. This visibility table corresponds to the red region. The
cells in green represent the blocked portion of the visibility table.

ity. If region B is blocked from region A there are no unobstructed
rays from A to B. Therefore, any LOS query between an entity in A
and an entity in B will be blocked. Each region stores its visibility
to all other regions as a boolean table. The tables are then used to
cull LOS queries at run time between regions that are blocked from
each other.

We implemented both the ray space factorization [10] and vol-
umetric [17] algorithms. We found that the results of the method
of the former were highly sensitive to the order in which primitives
are processed. Furthermore, we had difficulty with numerical preci-
sion issues leading to unfused umbras. Both of these problems arise
from the fact that the method uses vertical slices of rays originat-
ing in the region and can only store one umbra per slice (or a small
fixed number). This property can also lead to overly conservative
results when occluders have significant complexity in the vertical
direction. We chose to instead use the volumetric algorithm in our
implementation

The main limitation of the chosen algorithm is that it requires
volumetric occluders. Our test scenes included terrains and build-
ings that consisted of boxes. We imposed an octree on the envi-
ronment and marked any cells within buildings or below the terrain
as interior cells. We then applied the RBV algorithm to each re-
gion of the region grid using this octree. The algorithm uses hier-
archical front-to-back traversal of the octree with occluder fusion
and polygonal umbras to determine which nodes of the octree are
blocked from the region. After running the RBV algorithm, the oc-
tree cells are marked as blocked or unblocked from the region. This
is converted into our visibility table representation (discussed in the
next section) by discovering which cells of the visibility table fall
entirely within the blocked portion of the octree.

3.1 RBV Visibility Tables

Determining the resolution of the region subdivision presents a
challenging tradeoff. Higher resolution allows increased culling
because smaller regions are more likely to be blocked but storage
of the visibility tables grows as O(n2) where n is the number of re-

A

B

Figure 6: Region Based Visibility Table. The dark blue and pink cells
represent the visibility table for the region highlighted in black. These
cells are smaller than the regions for which visibility is calculated. The
cells making up the visibility table are 2D and the grid of regions are
3D. A) The visible cells are shown in dark blue and the blocked cells
in pink for the aerial region in black. B) The same is show for the
ground region in black.

gions. We strike a compromise by using both a fine and coarse grid.
We subdivide the environment into a coarse grid of regions. Each
region stores a visibility table at a finer resolution. We call this finer
resolution table the visibility table. Each cell of the visibility table
represents a very small box in the environment. The cells store a
single bit indicating whether the cell is blocked from the region ac-
cording to the output of the RBV algorithm. The same set of cells is
used for the visibility tables for all regions; only the boolean table
is stored per region. It is important to note that the size of the vis-
ibility table depends on the overall size of the environment rather
than the number of primitives. This is different from ray tracing
techniques that generally depend upon the primitive count. In other
words, adding geometric details to the terrain or buildings will not
affect the storage size or runtime cost.

In current simulators the majority of entities are ground based
and some entities are aerial based. This gives three cases for LOS
queries: ground-to-ground, aerial-to-ground, and aerial-to-aerial.
The aerial-to-aerial query is a fast query and is determined to be
visible in most cases. The GPU culling method [15] will cull most
of these queries. We do not use the RBV algorithm for aerial-
to-aerial queries. The remaining aerial-to-ground and ground-to-
ground queries have at least one entity on the terrain. This allows
us to store the visibility table for each region as a 2D table at the
level of the terrain. Assuming the z-axis points in the vertical di-
rection, the visibility table is a uniform grid in x and y. The z ex-
tents of a cell is computed to bound the terrain surface within its
xy-rectangle. The entire set of visibility tables represents a conser-
vative approximation of the visibility from all points in 3D to the
2D terrain surface.

Figure 5 shows a visibility table in green and black for the region
highlighted in red. The green pixels are cells of the visibility table
that are blocked from the highlighted region, while the black pixels
are not blocked.

Figure 6 demonstrates how visibility tables are calculated. The



heights of the cells in the visibility table are adjusted to the height
of the terrain. Changes in visibility occur more frequently due to
horizontal movement than vertical. Therefore our grid of regions
is much coarser in the vertical direction. Figure 6 shows that the
regions are taller than they are wide. These modifications reduce
both the storage space and the computation time for the algorithm.

3.2 Run-Time

The run-time portion of the algorithm consists of calculating LOS
between all entities in the simulation. Queries are culled first by
the RBV lookup tables. Next they are culled by the GPU method
described in [15]. If both of these cull tests pass, then the ray cast
computation is performed.

The RBV cull test for ground-to-ground entities requires two ta-
ble lookups. An LOS query contains two entities, e1 and e2. The
first step is to identify the visibility table, V1, of the region con-
taining e1. Similarly, we identify the relevant visibility table for
e2 which is labeled V2. Then, we lookup the boolean value of the
cell containing e1 in V2 and e2 is looked up in V1. If either of the
lookups return false then the LOS query is culled. Because the
RBV algorithm is conservative, one or both of these tables may
be unblocked even though there is no visibility. The bidirectional
test reduces the number of queries between blocked regions that
are then ray casted due to the conservative nature of the algorithm.
Both of these lookups are O(1). For calculations between aerial-to-
ground queries we use one table lookup. The ground unit is looked
up in the visibility table of the region containing the aerial unit.

4 RESULTS

We gathered results on two data sets. The first was a synthetic data
set consisting of a flat terrain and dense tall buildings. Figure 7
shows this data set. The second scenario was an 8 by 8 kilometer
region of terrain near the Caspian Sea with an urban environment
consisting mostly of one and two story buildings.

In order to test this algorithm, entities were randomly distributed
across the scenario. Entities moved in a random walk. LOS queries
were computed between all pairs of entities. We timed all of the
LOS queries with RBV culling on and again with RBV culling
off. In the first scenario the query time went from 5 microseconds
for each LOS call to 1 microsecond per call when the RBV based
culling method was enabled. On the second scenario the average
time per query was 6.2 microseconds. With culling, the average
time dropped to 2.7 microseconds. In this scenario an average of
70% of queries were culled.

As this is a culling technique, results vary based on the distri-
bution of the entities. If entities are close together they are less
likely to be culled than when they are spread out. Also, the na-
ture of the environment affects the performance of our algorithm.
Greater culling can be achieved in densely occluded environments
such as city blocks or mountainous terrain. However, the previous
GPU culling algorithm performs well in cases of flat terrain making
these two approaches complementary.

For the Caspian Sea scenario we found a region grid size of
64x64x7 worked well. Our visibility tables were 256x256. The
total storage overhead for RBV culling was approximately 300MB.

The RBV pre-process generates a large table of 2D values for
every region in the environment. There is a tradeoff in selecting a
visibility table size. Although visibility tables entries can be rep-
resented by a single bit, this can still become quit large. However,
when the visibility tables are too small, RBV does not achieve ef-
fective culling. We would like to employ compression techniques
to reduce the storage overhead. However, we cannot allow decom-
pression to cause the the table look-up time to approach the cost of
a ray cast or we will lose the benefit of RBV.

Figure 7: Urban Environment. This simulated urban environment
was a test simulation for region based visibility as a method for culling
line of sight queries. The green squares are entities with LOS to the
white entity. The red squares are entities without LOS to the white
entity.

5 CONCLUSION AND FUTURE WORK

LOS is similar to ray tracing but its incoherence presents a different
set of challenges. We have shown how RBV can be used to ac-
celerate LOS computations by culling LOS queries. Our algorithm
culls queries between regions of terrain that are blocked from each
other using table lookups. Our implementation achieves significant
speedups and has been incorporated in an existing simulation sys-
tem.

There are several limitations to our algorithm and implemen-
tation that we would like to address in future work. Because
RBV algorithms entail an extensive pre-process dynamic en-
vironments pose a challenge. Algorithms that recompute only
portions of visibility tables could be developed. Also, the RBV
algorithm we used requires volumetric occluders. This property
may limit the types of environments that can benefit from this
algorithm. We are investigating improved RBV algorithms.
The visibility tables can be quite large with large homogenous
regions. It should be possible to highly compress this data. We
believe these limitations show promising directions for future work.
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