
Department of Computer Science University of North Carolina at Chapel Hill November 2005

The Challenge
We present a method to accelerate line-of-sight
computation for computer generated forces (CGF)
with a high number of entities. Our algorithm uses
graphics processing units (GPUs) to accelerate the
line of sight (LOS) queries. We use the GPU to
limit the number of queries for which intersection
tests must be performed. We present a hybrid
algorithm that uses the GPU in a preprocess to
determine regions between which there is no LOS.
Our approach is well suited to LOS computations
in complex urban environments.

Our previous GPU/CPU hybrid LOS system used
the GPU to remove queries with definite line of
sight. A conservative rasterization of the terrain and
line segments representing LOS queries determined
which queries passed above the terrain. Such
queries had definite LOS and do not need further
computation. This system reduced the workload
of CPU which resolved the LOS of the non-culled
queries using ray-casting. Our new region-based
method layers on top of this system to further
reduce both GPU and CPU workload by culling
away queries between regions where there is no
possible LOS.

Military simulations can contain thousands of
entities that must be checked for line of sight. If
each unit must be checked against all other units
this can amount to millions of LOS queries that
must be performed. We use a new region-based
method to reduce the number of LOS queries to
be resolved.

Fast Line-of-Sight Computations in
Complex Environments using GPUs

Highlights
Line of sight (LOS) is a visibility query
between two entities with respect to a terrain
and other entities

Our previous system was able to conservatively
cull queries with definite LOS

We use a new region-based preprocess to
create a visibility table that specifies pairs of
cells completely occluded from each other

In urban environments, this approach is found
to further reduce millions of LOS queries
and accelerate the LOS computation by an
additional factor of 4 to 10, for a large-scale
military simulation containing thousands of
entities

Demonstrated 100-200x speed up of LOS calls
in OneSAF on a single CPU/GPU machine

Demonstrated 10x overall speedup
improvement in OneSAF system performance

GPU LOS Computations in Complex
Environments transitioning into Block D Build
24 of OneSAF

•

•

•

•

•

•

•

The Approach
Our LOS solution subdivides the environment
into cells and determines pairs of cells that are
fully blocked from each other. For entities in
such pairs of cells there is definitely no LOS.
During the simulation runtime there is no need to
perform any further CPU or GPU computations
for these queries. We store this cell-to-cell visibility
information in a visibility table and each LOS query
is first tested against this table. In highly occluded
urban environments many queries can be culled
away using this technique.

A line-of-sight (LOS) query is a point-to-point visibility query with respect to a terrain or an urban environment. Given a large environment with N
moving entities, we used GPU-based acceleration techniques to overcome the O(N2) bottleneck.

LOS
No LOS

A preprocess performs the spatial subdivision
of the environment and the cell-to-cell visibility
computations. Determining the visibility between
two cells exactly is computationally intensive. Instead,
our algorithm uses a conservative approximation that
detects most cell pairs for which all LOS queries are
blocked. Queries not resolved by the visibility table
are tested using our previous GPU/CPU technique
[Salomon et al. 2004] to ensure that the correct LOS
result is always returned.

The GPU is used to compute the visibility between
cells. We process each cell individually and compute
the conservative set of cells blocked from the
current cell. Each pixel in the frame buffer can
represent a subset of rays emanating from the cell
being tested. We rasterize each environment polygon
into the buffer, so that it covers only those pixels
representing rays that intersect it. The framebuffer
stores blockage for every ray emanating from the
current cell. By rasterizating the other cells into this
same framebuffer we can determine which cells are
fully blocked by obstacles in the environment.

Rather than rasterizing every polygon, we traverse
a spatial hierarchy containing the environment
polygons. We traverse this subdivision in a
hierarchical front to back order from the current
cell. By detecting that nodes of a hierarchy are
occluded from the current cell we can avoid testing
any of the contained polygons.

Results
We have tested our region-to-region LOS
acceleration algorithm on a highly occluded urban
environment with several thousands of moving
entities. In this environment, we are able to cull
approximately 80% of the LOS queries using the
visibility table. The average query time was 0.6
microseconds using the region-based culling vs. 3
microseconds without.

Project Leaders
Dinesh Manocha, professor, UNC
Ming Lin, professor, UNC

Government Project Leader
Maria Bauer, RDECOM

Project Members
Sean Hanlon, graduate research assistant
Brian Salomon, graduate research assistant
Dave Tuft, research staff

Other Investigators
Angel Rodriguez, RDECOM
Jaeson Munro, Eric Root, Marlo Verdesca, SAIC

Research Sponsors
Defense Advanced Research Projects Agency
Battle Command Simulation and Experimentation
Office
RDECOM
U.S. Army Research Office

Selected Publications
Govindaraju, N., M. Lin, and D. Manocha. “Fast
and Reliable Collision Culling using Graphics
Processors,” Proc. of ACM VRST, 2004.

B. Salomon, N. Govindaraju, A. Sud, R. Gayle,
M. Lin, D. Manocha, B. Butler, M. Bauer, A.
Rodriguez, L. Eifert, A. Rubel and M. Macedonia,
“Accelerating Line of Sight Computation using
Graphics Processing Units”, Proc. of Army Science
Conference, 2004.

If a unit is in the red cell, and another is in the green cell, then the LOS
Query will still need to be performed. From the red cell to the yellow cell
the query does not need to be performed because a table lookup shows
that there is no possible LOS from the red cell to the yellow cell.

Our algorithm culls queries twice. First a visibility table is used to remove
queries with out LOS. Next the GPU culling removes queries with
LOS. Finally the CPU based ray casting technique tests the un-culled
queries.

