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ABSTRACT 
 
 
We describe novel algorithms to accelerate the performance of line-of-sight (LOS) computations in large terrains 
with dynamic entities and events. The underlying approach can handle all kinds of dynamic environments with large 
number of moving entities, modifiable and dense urban features and may include environmental elements such as 
terrain skin and features (trees, roads, buildings) an entities such as smoke, clouds, etc. Our algorithm makes use of 
dynamic bounding volume hierarchies (D-BVHs), which are represented in terms of axis-aligned-bounding-boxes 
(AABBs). We describe efficient algorithms to compute the D-BHVs by using a combination of refitting and 
restructuring techniques and perform fast intersection tests between AABBs and the LOS to improve the runtime 
performance.  We have integrated our algorithm with the OneSAF Objective System (Versions 1.1 and 1.5) and 
created an LOS services library inside of the OneSAF Environment Runtime Component (ERC).  We have 
measured the LOS performance of the existing OneSAF algorithm and our novel D-BVH algorithm on many test 
suites including JNTC and JRTC databases. Our new integrated LOS algorithm executes the query in 18 micro-
seconds per call on a current desktop PC within high-resolution, urban exercises. In practice, our D-BVH algorithm 
is about 3X faster than the current OneSAF v1.5 LOS routines and about 10X faster than OneSAF v1.1 LOS  
routines.  To the best of our knowledge, this is the first efficient approach to accelerate LOS computations in large 
terrains with dynamic entities and events. Our formulation can also be used to accelerate route planning, collision 
detection and physics-based simulations in dynamic terrains. 
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BACKGROUND BOUNDING VOLUME HIERARCHIES 
  
In this paper, we address the problem of accelerating 
the computation of  line-of-sight (LOS) in terrains with 
dynamic entities and geometric features. Our driving 
application is the OneSAF Objective System (OOS) 
Environment Runtime Component (ERC), where the 
prior implementation of Line-of-Sight is relatively 
expensive and can take a significant percentage of CPU 
cycles. Most prior methods used to accelerate the 
performance of LOS computations are mainly limited 
to static terrains [Verdesca et al. 2005] and may not 
extend to large terrains with dynamic events. The 
simplest algorithms for LOS computations in dynamic 
terrain datasets walk every triangle along the LOS ray 
to see if any of them blocks the ray.  Checking the ray 
against the terrain features, both integrated and non-
integrated, complicates the process.  Integrated features 
are features used in triangulating the terrain skin, 
ensuring that all terrain triangles are associated with 
exactly one feature.  If the integrated feature has 
volumetric properties, the ray is also checked against 
the volume created by the integrated feature.  Non-
integrated features are placed on the terrain surface 
using an anchor point.  All of the point features in an 
area are loaded, converted into a volume, and then 
checked against the LOS ray.  The advantage of 
integrated features versus non-integrated point features 
is that only the features that lie directly beneath an 
LOS ray are checked in an LOS call.  The point 
features are stored in blocks—basically sub-pages of a 
geotile.  If a ray intersects one of these blocks, all of 
the features in that block have to be checked for 
intersection.  These blocks are large, and the majority 
of these features will not be anywhere near the LOS 
ray. In this manner, the LOS computation can be 
expensive when the terrain is represented using a high 
number of triangles and features. 

Our algorithm to accelerate this computation is based 
on use of bounding volume hierarchies (BVHs). A 
BVH  is  a versatile and general data structure that have 
been widely used to accelerate intersection 
computations for ray tracing (Rubin and Whitted, 
1980), collision detection (Ericson, 2004) and visibility 
computations. One of the main advantages of BVHs is 
that they can support deformable models by adjusting 
the hierarchy to account for changes in geometric 
objects, which sets them apart from competing data 
structures such as spatial partitioning hierarchies such 
as a KD-tree. In the past, hierarchical approaches have 
been mainly limited to static scenes and terrains. In this 
paper, we introduce the notion of dynamic-BVHs that 
can accelerate many computations in dynamic terrains. 
Our major contributions are novel formulation to 
compute dynamic-BVHs,  using them for fast LOS 
computations and finally integrating these technologies 
into the OneSAF system. 
 
A BVH denotes a tree of nodes where every node is 
associated with some kind of bounding volume (BV). 
The main property of a BVH then is that each node’s 
volume always fully contains all the bounding volumes 
of all its children (see Fig. 1 for illustration). At the 
bottom of the tree, nodes then contain the actual 
geometric objects. 
 
Bounding volumes 
 
The principal decision when using BVHs is the choice 
of underlying bounding volume (BV). Many 
alternatives such as axis-aligned or oriented boxes, 
spheres, k-DOPs and many more exist. There are 
multiple factors involved when picking a bounding 
volume: 

  



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

• Fit of the BV: how closely it conforms to the 
geometric objects without leaving empty 
space. This is usually closely correlated with 
the culling performance. 

• Intersection performance: the most common 
operation on BVs is intersection either with 
other BVs or objects such as rays. This has the 
largest impact on runtime query performance. 

• Construction performance: finding the BV 
that encapsulates a set of objects the most very 
frequent operation during the construction of 
the hierarchy. 

• Storage complexity: the memory footprint of 
the BVH depends on how much memory it 
costs to store each BV, and can be an 
important factor for large scenes. 

  
We use axis-aligned bounding boxes (AABBs) in our 
algorithm to speed up LOS computations. In general, 
AABBs present a good balance in terms of the factors 
described above. Even though an AABB may not offer 
as close a fit to objects as more complex BVs for some 
scenes, their improve performance in terms of fast 
intersection computation and storage overhead makes 
them a worthwhile candidate. 
 
Ray Intersection using BVHs 
One of the most interesting applications of a BVH is 
that for a set of geometric objects it allows to quickly 
answer queries such as testing visibility between two 
points or finding an intersection of any line and the 
objects along a ray. The naïve way to test this would be 
to test the ray against every object until an intersection 
is found or all objects have been tested. Of course, as 
the number of objects grows, this becomes very 
inefficient. The BVH provides an alternative that will 
usually only have to test a small number of objects 
against the ray.  
 
The idea for intersecting a ray with a BVH is the 
following: given the property that the bounding volume 
of each BVH node contains all its children, it can be 
concluded that if a ray does not intersect the BV of a 
node, it also cannot intersect any of its children and 
thus also cannot intersect any of the geometric objects 
in that part of the tree. Therefore, just by performing 
one intersection it is possible to rule out or cull a very 
large number of geometric objects at a time.  
 
An implementation of this approach involves 
intersection computation of a ray with a BVH node 
(starting with the root of the tree). If the ray hits the 
BV, then all the children of the node can also 
potentially be intersected, so they are put in a work list. 
If it does not hit, then all the children are ignored. The 
algorithm continues by fetching a node from the work 

list until it is empty. Every time it reaches the bottom 
of the tree, the ray needs to be intersected with the 
actual geometric object. If a viable intersection is found 
at this point, then the algorithm has the option of either 
returning this information (for example, if testing for 
visibility between points, as soon as an occluding 
object is found) or it can continue to find additional 
intersections. 
 

Figure 1: BVH example. Left: Four geometric 
object are encapsulated by spherical BVs. Right: 
The BVH representing this shown as a tree. 

Node 

 
In practice, our algorithm can reduce the number of 
intersection with geometric objects to only a few. The 
overall complexity increases sub-linearlyas a function 
of terrain size and geometric features. Moreover, it 
only    accesses a logarithmic number of tree nodes of 
the BVH.We refer the reader to [Lauterbach et al. 
2006] for more details. 
 
BVH construction and update 
The actual hierarchy for the BVH is built as a 
preprocessing step. In our approach, we use a binary 
tree, but it is equally possible to choose a higher 
branching factor. The construction proceeds by 
recursively partitioning the set of objects in the scene 
into two subsets until each set only has one object in it. 
This approach creates a tree of nodes in the form as 
described above and also assigns the BVs  to each 
node. 
 
The partitioning step makes use of a metric called the 
surface area heuristic (SAH) [Goldsmith and Salmon 
1987, MacDonald and Booth 1990, Havran 2000] to 
decide the manner in which to split up the set of 
objects. The SAH metric has been widely used in the 
interactive ray tracing literature to construct tight 
fitting hierarchies that can minimize the number of 
runtime intersections between the ray and the nodes of 
the tree. In this paper, we use the same metric for fast 
LOS computation. While in theory any top-down 
partitioning of the BVH is possible, the actual choice 
has a strong influence on the actual intersection 
performance with the BVH (as correlated with the 
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number of nodes needed to be tested for a given ray). 
The SAH uses a cost function based on the 
probabilities that a ray or LOS can hit a bounding 
volume and then locally minimizes this cost during 
each partition. Results have shown that the effect of 
SAH partitioning can more than double the 
performance of ray intersections (Wald et al. 2007). 
 
Handling Dynamic Events with BVHs 
 
The real advantage of BVHs is that they can support 
dynamic scenes where individual geometric objects 
deform or move or explode by recomputing the BVs. 
Therefore, BVHs only have to be built once before 
being used and can then be reused even after object 
changes. 
 
One of the simplest BVH recomputing algorithms is 
based on refitting. The refitting step for BVHs 
essentially processes each node and changes its 
bounding volume so that it can tightly bound the 
contained geometric objects. If starting at the bottom 
levels, all the changes to the boxes are propagated 
upwards in the tree until they reach the root and visit 
all the nodes on the way. Note that this process means 
that the actual structure of the tree is never changed 
and only the BV information needs to be updated. This 
is much faster than rebuilding a hierarchy and in 
practice only takes milliseconds even for complex 
environments (Lauterbach et al. 2006). 
 
Multi-threading and scalability 
 
Since current processors exploit parallelism for higher 
performance, it is imperative that the underlying 
algorithms perform well on such systems. Fortunately, 
ray tracing in general is embarrassingly parallel in that 
it is possible to answer any number of ray-BVH queries 
in parallel, e.g. by using multiple threads. Thus, it is 
perfectly scalable in most environments. Previous work 
has shown that ray tracing with hierarchies is also very 
cache-coherent and therefore works well in the 
memory environment of current CPUs [Lauterbach et 
al. 2006]. 
 
The refitting step for deformable models can also be 
parallelized between multiple threads. Since the tree 
structure does not change after the preprocessing BVH 
construction step, we can find several sub-trees of 
comparable size and refit them in parallel on several 
cores or processors. Afterwards, one processor or core 
can quickly propagate the results from the sub-trees for 
the few nodes that contain them. While this is 
relatively scalable in computation, this parallel update 
usually becomes limited by available memory 

bandwidth on commodity hardware and in our 
experience works well on systems with 2-4 cores. 
 
LOS COMPUTATION USING BVHs 
 
One of our goals is to implement the dynamic BVH 
algorithm within the OneSAF system. The BVH LOS 
Service is a layer developed to exist between the new 
BVH LOS suite and the existing OOS ERC code.  This 
layer essentially handles the communication between 
OOS and the BVH structures.  It is also responsible for 
the storage and translation of important data types and 
information.   
 
In terms of design choices, the BVH LOS Services 
layer has to meet the following requirements: 
 

 Be capable of retrieving terrain triangle and 
feature data from the OneSAF Objective 
System. 

 Convert the OneSAF data into BVH specific 
data types. 

 Compile, serialize, and write to disk BVH 
pages in a pre-exercise application. 

 Be capable of using both the BVH LOS 
routine along with the current OneSAF ray-
trace LOS routine. 

 
We designed an application layer to meet those 
requirements.  The layer exists between OneSAF and 
the BVH library and consists of the following 
components: 
 

 BVH Tree Raytracer Services – The interface 
to the new BVH-based LOS calls.  Interfaces 
between the LOS Controller and BVH Tree 
Raytracer. 

 BVH Tree Raytracer – BVH library being 
developed by the BVH development team. 

 Feature Manager – Component responsible for 
managing feature and terrain data.  Converts 
the data from OneSAF data types into BVH 
data types.  Also responsible for handling 
dynamic changes and translating them to the 
BVH component. 

 BVH Tree Builder – Responsible for 
retrieving terrain data from OneSAF and 
converting it into BVH data types. 

 BVH Tree Cache – Responsible for managing 
the BVH structures currently in memory.  If a 
BVH is needed and not currently in memory, 
it either loads it from disk or creates it using 
the tree builder. 

 BVH Tree Disk Format – Compiled form of 
the BVH tree.  We originally planned to write 
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all of the BVH structures out to disk and load 
them, but we did not receive an API to do this. 

 Feature Change Set – Responsible for storing 
dynamic changes that occur after a compiled 
BVH tree is created. 

This is highlighted in the overall architecture diagram 
shown in Figure 2. 
 
 Los Computations 
 
In this section, we describe various changes and new 
algorithms that were implemented to support BVH-
based LOS computation within OneSAF. 
Coordinate systems 
 
The BVH representation needs the OneSAF data to be 
converted from OneSAF data types into their unique 
data formats/structures.  This data includes the terrain 
skin triangles, the integrated features, and point 
features.  OTF stores all of the terrain data in round 
earth representation: every stored coordinate can be 
referenced either in geodetic coordinates – latitude, 
longitude, and elevation - or in geocentric coordinates 
– Cartesian coordinate system with its origin at the 
center of the Earth.   

 

 
Cartesian coordinate systems are necessary for LOS 
computations, which makes using geocentric 
coordinates a necessity.  However, geocentric values 
are extremely large and may need 64-bit floating point 
values to accurately model the terrain of the entire 
Earth.  Instead of using Geocentric values, we 
transformed these coordinates into local tangent planes.  
By converting these values over to a local tangent 
system for each terrain page, Our approach is able to 

use less expensive 32-bit floating point values to 
accurately model the terrain data. 
 
Terrain retrieval and conversion 
 
The Terrain Retriever class was developed to be the 
interface between OOS data types and the BVH LOS 
library.  It is responsible for extracting terrain data 
from the OTF database both during pre-exercise terrain 
compilation and during page loads mid-exercise.  It 
retrieves all of the terrain triangles through the ERC 
Terrain Retrieval API and passes them to the BVH 
Builder class.   
 
Some special processing is performed to create the 
triangles for integrated features.  As the terrain 
triangles are processed they are checked to determine if 
they are associated with a feature that could block an 
LOS query.  If they are capable of blocking the LOS 
ray, they need to be extruded from the terrain surface 
using their height attribute.  This requires making an 
elevated triangle for the top of the feature, and the 
“face” triangles that span from the original triangle 
elevation to the raised triangle height.  
 
Non-integrated point features are handled differently.  
The Terrain Retriever requests all of the non-integrated 
features for the compilation region and builds a 
bounding volume for them based on their attributes 
including the length, width, and height.   
 
Feature Management 
 
The fundamental structure for BVH - OOS integration 
is the Feature Manager.  The LOS Controller associates 
a Feature Manager to a BVH page.  Each Feature 
Manager contains a BVH Wrapper—the interface to 
the external BVH code.    
 
The purpose of the Feature Manager is to maintain a 
BVH Wrapper that can be used to perform LOS 
calculations on all of the features in a page and to serve 
as the connection between OneSAF features and BVH 
Wrapper Model Instances.  It contains all of the 
triangles that create both the terrain skin and terrain 
features. 

 Figure 2: This figure gives an overview of our 
D-BVH based LOS computation algorithm 
integrated into OneSAF. 

 
The LOS Controller uses the Feature Manager to add, 
modify, and remove features.  When a feature is added 
to the Feature Manager, the Feature Manager takes 
control of the feature and is responsible for the 
management of its used memory. When the Feature 
Manager receives each feature (including terrain 
triangles) it transforms them into the local Cartesian 
coordinate system appropriate for the compilation 
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region and adds them to the BVH structure through the 
BVH Wrapper. 
 
Management of Dynamic Terrain 
 
OneSAF Dynamic Feature Capabilities: The driving 
force for the BVH solution is to implement a high-
performance LOS solution that can handle dynamic 
environments.  Unfortunately, OneSAF v1.5 contains 
limited support for dynamic events.  In fact, this 
version currently only support the addition, deletion, 
and attribute modification of terrain features).  
OneSAF currently has no ability to dynamically change 
the terrain skin through events such as cratering.  
Nevertheless, our BVH solution will be able to handle 
more of these dynamic features in the future versions 
of OneSAF. 
 
The LOS Controller and each page’s Feature Manager 
are responsible for handling  thedynamic events.  When 
the LOS Controller receives a new dynamic feature 
event (either add, delete, or modify) it identifies the 
proper Feature Manager for that Feature’s page and 
passes the call to the Feature Manager. 
 
The Feature Manager identifies the feature being 
modified and successfully communicates the event to 
the BVH Wrapper.  The Feature Manager also 
conducts some “bookkeeping” exercises to properly 
maintain its current state and allocated memory for the 
BVH Wrapper.  One important note: Since the BVH 
tree cannot properly modify a feature at the current 
time, a “modify” event is treated as a deletion of the 
feature’s previous state and a creation of a new feature 
(i.e. delete followed by an add). 
 
Integrated LOS Services 
 
The integration of the dynamic BVH into the ERC 
LOS code is reasonably straightforward.  The LOS 
services library manages the BVH services.  When an 
attenuated ray-traced LOS is requested within ERC, the 
call is delegated to the LOS controller, a class in the 
LOS services library, which checks to see if the BVH 
LOS is enabled.  If so, it sends the ray to the BVH 
based LOS and processes it.   
 
On the first LOS, the BVH for the page that contains 
the LOS ray is loaded from the terrain database into the 
cache.  After that, if an LOS query occurs on an 
already loaded page, then the BVH-based LOS is 
called for that particular page.  If it is not currently in 
the cache, then that page is loaded off disk and added 
to the cache.  If space is not available for the new page, 
the least-recently-used page is unloaded to create space 
for the new page. 

 
Other OneSAF elements such as entities and 
obscurants must always be checked even if the BVH 
LOS determines a clear LOS, since they are not 
included in the BVH structure.  The algorithms to 
perform these computations were embedded in the 
existing ERC ray tracer LOS method and thus we had 
to factor them out so that they could be used separately. 
 
INTEGRATION & RESULTS 
 
After implementation and integration of the BVH code 
was complete, we were able to analyze their 
performance timings and result accuracy on different 
benchmarks. 
 
Testing 
 
Our major goals for this effort were to find significant 
performance improvements compared to the traditional 
OOS ray-trace LOS routine, while not sacrificing 
accuracy of the results.  Because of this goal, we 
placed a strong emphasis on the integration and test 
phase of this effort.  The major focuses for integration 
were: 
 
• Accurate results 
• BVH performance 
• Overall LOS performance improvements 
 
To achieve these objectives we designed a test suite to 
assure correlation and to capture performance results.  
We set up our test suite to run actual exercised 
captured LOS rays on both the BVH LOS and the 
original ERC LOS calls.  Also we chose to test not 
only against multiple exercises, but also on multiple 
terrain databases.  OneSAF is delivered with many pre-
developed exercises on two different databases: JNTC 
and JRTC. 
 
The two databases, specifically where the exercises 
occur on the databases, are vastly different from one 
another.  The JRTC database is a feature-rich database 
using a high fidelity urban inset, with a lot of feature 
information, including buildings and trees.  The JNTC 
database is of a more barren area, with a low feature 
count.  Having multiple datasets allowed us to test the 
system on a wide range of terrain data, from high 
fidelity urban databases and low fidelity rural areas. 
 
We captured “real” line-of-sight rays from executing 
exercises to accurately test the system.  A listener class 
that records LOS rays to a file was attached to the LOS 
routine.  Four different exercises were chosen for 
testing, two from both the JRTC and JNTC databases.
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  Number of 
Tests 

ERC v 1.5 Time 
(µs) 

BVH Time 
(µs) 

% of ERC 
Time 

JRTC  Ambush  507840 47.311 17.679 37.37% 

   Raid  400420 50.217 18.785 37.41% 

JNTC  Conduct Direct Air Fire  97160 33.884 19.666 58.04% 

   Massacre  71580 11.572 15.892 137.33%

 
Table 1- Performance results between the original OOS ERC LOS routine and the BVH based LOS routine.  

On higher resolution databases, the BVH based LOS routine was significantly faster. 

    Number of  Errors False  False  Correlation
Tests  Positives  Negatives 

JRTC  Ambush  25392  11 6 5 99.957%

   Raid  20021  8 0 8 99.960%

JNTC  Conduct Direct Air Fire  4858  1 0 1 99.979%

   Massacre  3579  0 0 0 100.000%

  
Table 2 – Correlation test results between the original OOS ERC LOS routine and the BVH based routine.  

With over 99% accuracy, the BVH based LOS and the ERC ray trace LOS have very high correlation.

These exercises were JNTC Massacre, JNTC Direct Air 
Fire, JRTC Ambush, and JRTC Raid.  Using the MCT,  
the exercises were run as normal and the LOS rays were 
captured to text files. 
 
The ray files were then used to test and verify the 
system.  Using the four different exercises became an 
invaluable testing system.  Many times, tests would 
execute correctly on one dataset and have correlation 
issues on another dataset.  The test suite allowed us to 
identify many potential issues, and using it we were 
able to integrate the culling code and meet our goals of 
complete correlation along with reasonable 
performance and effectiveness.  
 
Benchmarks  
 
Performance 
We collected performance benchmarks of the BVH 
solution and OneSAF ERC LOS on our four standard 
test exercises.  The OneSAF v1.5 ray-trace LOS calls 
average approximately 48 µs per call.  The performance 
of the BVH solution was significantly faster than the 
ERC solution on three of the four test cases.   When ran 
on the JRTC database in the urban inset area, the BVH 
code took almost a third of the time as ERC.  On the 
JNTC, a rural, desert area, the BVH had mixed results.  
As the timing numbers show, the BVH technique 
achieves near constant results independent of terrain 
resolution with all of the timings within a four 

microsecond range.  The ERC tests are more volatile 
ranging from eleven to fifty microseconds and suffer on 
high resolution terrain.  The performance of the ERC 
LOS degrades with triangle count, the more triangles 
that it processes the slower the traversal.  The JNTC 
database is far lower resolution than the JRTC database.  
This means that each of the LOS queries process less 
triangles on JNTC, allowing the significant difference 
in performance when compared to the higher resolution 
JRTC database.  
 
BVH - OneSAF Correlation 
Table 2 shows the correlation between OneSAF ERC’s 
LOS routine and the integrated BVH code.  Although 
the methods do not show 100% correlation, the results 
far exceed our expectations.  Explanations for the 
discrepancies include UHRB interiors—which we do 
not model—floating point inaccuracies, triangulation of 
point feature cylinders, among many other things.  The 
fact that we have replaced an entire terrain model with 
another one and achieved 99.9% correlation for every 
database— and 100% correlation for one particular test 
highlights the accuracy of our system. We hope that this 
would be used for complex terrains in the future. 
 
 
Memory 
This effort was conducted as a research effort to study 
how novel algorithms could be used to enhance 
performance in OneSAF, particularly in  dynamic 
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environments.  Our approach has focused on integrating 
the BVH LOS solution into OneSAF with the smallest 
amount of disturbance to baselined LOS code.  In our 
current implementation, we chose to integrate the BVH 
data structures in parallel with the current OneSAF data 
structures. 
 
Due to the parallel solution it is a little difficult to get 
an accurate analysis of the memory overhead of our  
BVH-based solution. However, BVH-based 
representation can also be useful for many other 
computations within OOS including avatar simulation, 
collision checking and route planning.  Currently,we  
duplicate all of the terrain data: a set in the original 
OneSAF data structures, and a set in the BVH data 
structure.  In the future, such data structures can be 
easily merged and thereby, reduce the memory 
overhead  
 
CONCLUSIONS AND FUTURE WORK 
 
Our solution for fast LOS computations in dynamic 
terrains is quite effective. Moveover, we made a 
focused effort to minimize modifications to existing 
ERC code.  All of the BVH-related code is separated 
into its own library and only three existing non-test 
classes are modified.  The implementation is intended 
to be very configurable to be able to handle varying 
hardware capabilities and user wants.   
 
The BVH solution proved to be valuable and 
significantly faster than the current OneSAF approach.  
The fact that it will be capable to handle a 
repolygonalized terrain surface with very little 
modification demonstrates its effectiveness. These 
dynamic BVHs can also be used to accelerate many 
other computations including route planning, collision 
detection, physics-based simulation and crowd 
simulations in dynamic terrains.  
 
There are many avenues for future work. We will like 
to apply our algorithms to more complex terrains with a 
higher degree of dynamic events. We can exploit the 
capabilities of multi-core CPUs or many-core GPUs to 
further accelerate the computations. We will also like to 
compare the performance of our LOS algorithm with 
the LOS routines in the future versions of OneSAF (e.g. 
Version 2.0). 
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