

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

Accelerating Line-of-Sight Computations in Large OneSAF Terrains with Dynamic Events

C. Lauterbach, M. C. Lin, D. Manocha S. Borkman, E. LaFave, G. Peele M. Bauer

Univeristy of North Carolina Applied Research Associates

STTC, RDECOM

Chapel Hill, NC Orlando, FL

Orlando, FL

{cl,lin,dm}@cs.unc.edu {sborkman,elafave,gpeele}@ara.com maria.bauer@us.army.mil

ABSTRACT

We describe novel algorithms to accelerate the performance of line-of-sight (LOS) computations in large terrains
with dynamic entities and events. The underlying approach can handle all kinds of dynamic environments with large
number of moving entities, modifiable and dense urban features and may include environmental elements such as
terrain skin and features (trees, roads, buildings) an entities such as smoke, clouds, etc. Our algorithm makes use of
dynamic bounding volume hierarchies (D-BVHs), which are represented in terms of axis-aligned-bounding-boxes
(AABBs). We describe efficient algorithms to compute the D-BHVs by using a combination of refitting and
restructuring techniques and perform fast intersection tests between AABBs and the LOS to improve the runtime
performance. We have integrated our algorithm with the OneSAF Objective System (Versions 1.1 and 1.5) and
created an LOS services library inside of the OneSAF Environment Runtime Component (ERC). We have
measured the LOS performance of the existing OneSAF algorithm and our novel D-BVH algorithm on many test
suites including JNTC and JRTC databases. Our new integrated LOS algorithm executes the query in 18 micro-
seconds per call on a current desktop PC within high-resolution, urban exercises. In practice, our D-BVH algorithm
is about 3X faster than the current OneSAF v1.5 LOS routines and about 10X faster than OneSAF v1.1 LOS
routines. To the best of our knowledge, this is the first efficient approach to accelerate LOS computations in large
terrains with dynamic entities and events. Our formulation can also be used to accelerate route planning, collision
detection and physics-based simulations in dynamic terrains.

2008 Paper No. nnnn Page 1 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. nnnn Page 2 of 9

Accelerating Line-of-Sight Computations in Large OneSAF Terrains with Dynamic Events

C. Lauterbach, M. C. Lin, D. Manocha S. Borkman, E. LaFave, G. Peele M. Bauer

Univeristy of North Carolina Applied Research Associates

STTC, RDECOM

Chapel Hill, NC Orlando, FL

Orlando, FL

{cl,lin,dm}@cs.unc.edu {sborkman,elafave,gpeele}@ara.com maria.bauer@us.army.mil

BACKGROUND BOUNDING VOLUME HIERARCHIES

In this paper, we address the problem of accelerating
the computation of line-of-sight (LOS) in terrains with
dynamic entities and geometric features. Our driving
application is the OneSAF Objective System (OOS)
Environment Runtime Component (ERC), where the
prior implementation of Line-of-Sight is relatively
expensive and can take a significant percentage of CPU
cycles. Most prior methods used to accelerate the
performance of LOS computations are mainly limited
to static terrains [Verdesca et al. 2005] and may not
extend to large terrains with dynamic events. The
simplest algorithms for LOS computations in dynamic
terrain datasets walk every triangle along the LOS ray
to see if any of them blocks the ray. Checking the ray
against the terrain features, both integrated and non-
integrated, complicates the process. Integrated features
are features used in triangulating the terrain skin,
ensuring that all terrain triangles are associated with
exactly one feature. If the integrated feature has
volumetric properties, the ray is also checked against
the volume created by the integrated feature. Non-
integrated features are placed on the terrain surface
using an anchor point. All of the point features in an
area are loaded, converted into a volume, and then
checked against the LOS ray. The advantage of
integrated features versus non-integrated point features
is that only the features that lie directly beneath an
LOS ray are checked in an LOS call. The point
features are stored in blocks—basically sub-pages of a
geotile. If a ray intersects one of these blocks, all of
the features in that block have to be checked for
intersection. These blocks are large, and the majority
of these features will not be anywhere near the LOS
ray. In this manner, the LOS computation can be
expensive when the terrain is represented using a high
number of triangles and features.

Our algorithm to accelerate this computation is based
on use of bounding volume hierarchies (BVHs). A
BVH is a versatile and general data structure that have
been widely used to accelerate intersection
computations for ray tracing (Rubin and Whitted,
1980), collision detection (Ericson, 2004) and visibility
computations. One of the main advantages of BVHs is
that they can support deformable models by adjusting
the hierarchy to account for changes in geometric
objects, which sets them apart from competing data
structures such as spatial partitioning hierarchies such
as a KD-tree. In the past, hierarchical approaches have
been mainly limited to static scenes and terrains. In this
paper, we introduce the notion of dynamic-BVHs that
can accelerate many computations in dynamic terrains.
Our major contributions are novel formulation to
compute dynamic-BVHs, using them for fast LOS
computations and finally integrating these technologies
into the OneSAF system.

A BVH denotes a tree of nodes where every node is
associated with some kind of bounding volume (BV).
The main property of a BVH then is that each node’s
volume always fully contains all the bounding volumes
of all its children (see Fig. 1 for illustration). At the
bottom of the tree, nodes then contain the actual
geometric objects.

Bounding volumes

The principal decision when using BVHs is the choice
of underlying bounding volume (BV). Many
alternatives such as axis-aligned or oriented boxes,
spheres, k-DOPs and many more exist. There are
multiple factors involved when picking a bounding
volume:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

• Fit of the BV: how closely it conforms to the
geometric objects without leaving empty
space. This is usually closely correlated with
the culling performance.

• Intersection performance: the most common
operation on BVs is intersection either with
other BVs or objects such as rays. This has the
largest impact on runtime query performance.

• Construction performance: finding the BV
that encapsulates a set of objects the most very
frequent operation during the construction of
the hierarchy.

• Storage complexity: the memory footprint of
the BVH depends on how much memory it
costs to store each BV, and can be an
important factor for large scenes.

We use axis-aligned bounding boxes (AABBs) in our
algorithm to speed up LOS computations. In general,
AABBs present a good balance in terms of the factors
described above. Even though an AABB may not offer
as close a fit to objects as more complex BVs for some
scenes, their improve performance in terms of fast
intersection computation and storage overhead makes
them a worthwhile candidate.

Ray Intersection using BVHs
One of the most interesting applications of a BVH is
that for a set of geometric objects it allows to quickly
answer queries such as testing visibility between two
points or finding an intersection of any line and the
objects along a ray. The naïve way to test this would be
to test the ray against every object until an intersection
is found or all objects have been tested. Of course, as
the number of objects grows, this becomes very
inefficient. The BVH provides an alternative that will
usually only have to test a small number of objects
against the ray.

The idea for intersecting a ray with a BVH is the
following: given the property that the bounding volume
of each BVH node contains all its children, it can be
concluded that if a ray does not intersect the BV of a
node, it also cannot intersect any of its children and
thus also cannot intersect any of the geometric objects
in that part of the tree. Therefore, just by performing
one intersection it is possible to rule out or cull a very
large number of geometric objects at a time.

An implementation of this approach involves
intersection computation of a ray with a BVH node
(starting with the root of the tree). If the ray hits the
BV, then all the children of the node can also
potentially be intersected, so they are put in a work list.
If it does not hit, then all the children are ignored. The
algorithm continues by fetching a node from the work

list until it is empty. Every time it reaches the bottom
of the tree, the ray needs to be intersected with the
actual geometric object. If a viable intersection is found
at this point, then the algorithm has the option of either
returning this information (for example, if testing for
visibility between points, as soon as an occluding
object is found) or it can continue to find additional
intersections.

Figure 1: BVH example. Left: Four geometric
object are encapsulated by spherical BVs. Right:
The BVH representing this shown as a tree.

Node

In practice, our algorithm can reduce the number of
intersection with geometric objects to only a few. The
overall complexity increases sub-linearlyas a function
of terrain size and geometric features. Moreover, it
only accesses a logarithmic number of tree nodes of
the BVH.We refer the reader to [Lauterbach et al.
2006] for more details.

BVH construction and update
The actual hierarchy for the BVH is built as a
preprocessing step. In our approach, we use a binary
tree, but it is equally possible to choose a higher
branching factor. The construction proceeds by
recursively partitioning the set of objects in the scene
into two subsets until each set only has one object in it.
This approach creates a tree of nodes in the form as
described above and also assigns the BVs to each
node.

The partitioning step makes use of a metric called the
surface area heuristic (SAH) [Goldsmith and Salmon
1987, MacDonald and Booth 1990, Havran 2000] to
decide the manner in which to split up the set of
objects. The SAH metric has been widely used in the
interactive ray tracing literature to construct tight
fitting hierarchies that can minimize the number of
runtime intersections between the ray and the nodes of
the tree. In this paper, we use the same metric for fast
LOS computation. While in theory any top-down
partitioning of the BVH is possible, the actual choice
has a strong influence on the actual intersection
performance with the BVH (as correlated with the

2008 Paper No. nnnn Page 3 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

number of nodes needed to be tested for a given ray).
The SAH uses a cost function based on the
probabilities that a ray or LOS can hit a bounding
volume and then locally minimizes this cost during
each partition. Results have shown that the effect of
SAH partitioning can more than double the
performance of ray intersections (Wald et al. 2007).

Handling Dynamic Events with BVHs

The real advantage of BVHs is that they can support
dynamic scenes where individual geometric objects
deform or move or explode by recomputing the BVs.
Therefore, BVHs only have to be built once before
being used and can then be reused even after object
changes.

One of the simplest BVH recomputing algorithms is
based on refitting. The refitting step for BVHs
essentially processes each node and changes its
bounding volume so that it can tightly bound the
contained geometric objects. If starting at the bottom
levels, all the changes to the boxes are propagated
upwards in the tree until they reach the root and visit
all the nodes on the way. Note that this process means
that the actual structure of the tree is never changed
and only the BV information needs to be updated. This
is much faster than rebuilding a hierarchy and in
practice only takes milliseconds even for complex
environments (Lauterbach et al. 2006).

Multi-threading and scalability

Since current processors exploit parallelism for higher
performance, it is imperative that the underlying
algorithms perform well on such systems. Fortunately,
ray tracing in general is embarrassingly parallel in that
it is possible to answer any number of ray-BVH queries
in parallel, e.g. by using multiple threads. Thus, it is
perfectly scalable in most environments. Previous work
has shown that ray tracing with hierarchies is also very
cache-coherent and therefore works well in the
memory environment of current CPUs [Lauterbach et
al. 2006].

The refitting step for deformable models can also be
parallelized between multiple threads. Since the tree
structure does not change after the preprocessing BVH
construction step, we can find several sub-trees of
comparable size and refit them in parallel on several
cores or processors. Afterwards, one processor or core
can quickly propagate the results from the sub-trees for
the few nodes that contain them. While this is
relatively scalable in computation, this parallel update
usually becomes limited by available memory

bandwidth on commodity hardware and in our
experience works well on systems with 2-4 cores.

LOS COMPUTATION USING BVHs

One of our goals is to implement the dynamic BVH
algorithm within the OneSAF system. The BVH LOS
Service is a layer developed to exist between the new
BVH LOS suite and the existing OOS ERC code. This
layer essentially handles the communication between
OOS and the BVH structures. It is also responsible for
the storage and translation of important data types and
information.

In terms of design choices, the BVH LOS Services
layer has to meet the following requirements:

 Be capable of retrieving terrain triangle and
feature data from the OneSAF Objective
System.

 Convert the OneSAF data into BVH specific
data types.

 Compile, serialize, and write to disk BVH
pages in a pre-exercise application.

 Be capable of using both the BVH LOS
routine along with the current OneSAF ray-
trace LOS routine.

We designed an application layer to meet those
requirements. The layer exists between OneSAF and
the BVH library and consists of the following
components:

 BVH Tree Raytracer Services – The interface
to the new BVH-based LOS calls. Interfaces
between the LOS Controller and BVH Tree
Raytracer.

 BVH Tree Raytracer – BVH library being
developed by the BVH development team.

 Feature Manager – Component responsible for
managing feature and terrain data. Converts
the data from OneSAF data types into BVH
data types. Also responsible for handling
dynamic changes and translating them to the
BVH component.

 BVH Tree Builder – Responsible for
retrieving terrain data from OneSAF and
converting it into BVH data types.

 BVH Tree Cache – Responsible for managing
the BVH structures currently in memory. If a
BVH is needed and not currently in memory,
it either loads it from disk or creates it using
the tree builder.

 BVH Tree Disk Format – Compiled form of
the BVH tree. We originally planned to write

2008 Paper No. nnnn Page 4 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

all of the BVH structures out to disk and load
them, but we did not receive an API to do this.

 Feature Change Set – Responsible for storing
dynamic changes that occur after a compiled
BVH tree is created.

This is highlighted in the overall architecture diagram
shown in Figure 2.

 Los Computations

In this section, we describe various changes and new
algorithms that were implemented to support BVH-
based LOS computation within OneSAF.
Coordinate systems

The BVH representation needs the OneSAF data to be
converted from OneSAF data types into their unique
data formats/structures. This data includes the terrain
skin triangles, the integrated features, and point
features. OTF stores all of the terrain data in round
earth representation: every stored coordinate can be
referenced either in geodetic coordinates – latitude,
longitude, and elevation - or in geocentric coordinates
– Cartesian coordinate system with its origin at the
center of the Earth.

Cartesian coordinate systems are necessary for LOS
computations, which makes using geocentric
coordinates a necessity. However, geocentric values
are extremely large and may need 64-bit floating point
values to accurately model the terrain of the entire
Earth. Instead of using Geocentric values, we
transformed these coordinates into local tangent planes.
By converting these values over to a local tangent
system for each terrain page, Our approach is able to

use less expensive 32-bit floating point values to
accurately model the terrain data.

Terrain retrieval and conversion

The Terrain Retriever class was developed to be the
interface between OOS data types and the BVH LOS
library. It is responsible for extracting terrain data
from the OTF database both during pre-exercise terrain
compilation and during page loads mid-exercise. It
retrieves all of the terrain triangles through the ERC
Terrain Retrieval API and passes them to the BVH
Builder class.

Some special processing is performed to create the
triangles for integrated features. As the terrain
triangles are processed they are checked to determine if
they are associated with a feature that could block an
LOS query. If they are capable of blocking the LOS
ray, they need to be extruded from the terrain surface
using their height attribute. This requires making an
elevated triangle for the top of the feature, and the
“face” triangles that span from the original triangle
elevation to the raised triangle height.

Non-integrated point features are handled differently.
The Terrain Retriever requests all of the non-integrated
features for the compilation region and builds a
bounding volume for them based on their attributes
including the length, width, and height.

Feature Management

The fundamental structure for BVH - OOS integration
is the Feature Manager. The LOS Controller associates
a Feature Manager to a BVH page. Each Feature
Manager contains a BVH Wrapper—the interface to
the external BVH code.

The purpose of the Feature Manager is to maintain a
BVH Wrapper that can be used to perform LOS
calculations on all of the features in a page and to serve
as the connection between OneSAF features and BVH
Wrapper Model Instances. It contains all of the
triangles that create both the terrain skin and terrain
features.

 Figure 2: This figure gives an overview of our
D-BVH based LOS computation algorithm
integrated into OneSAF.

The LOS Controller uses the Feature Manager to add,
modify, and remove features. When a feature is added
to the Feature Manager, the Feature Manager takes
control of the feature and is responsible for the
management of its used memory. When the Feature
Manager receives each feature (including terrain
triangles) it transforms them into the local Cartesian
coordinate system appropriate for the compilation

2008 Paper No. nnnn Page 5 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. nnnn Page 6 of 9

region and adds them to the BVH structure through the
BVH Wrapper.

Management of Dynamic Terrain

OneSAF Dynamic Feature Capabilities: The driving
force for the BVH solution is to implement a high-
performance LOS solution that can handle dynamic
environments. Unfortunately, OneSAF v1.5 contains
limited support for dynamic events. In fact, this
version currently only support the addition, deletion,
and attribute modification of terrain features).
OneSAF currently has no ability to dynamically change
the terrain skin through events such as cratering.
Nevertheless, our BVH solution will be able to handle
more of these dynamic features in the future versions
of OneSAF.

The LOS Controller and each page’s Feature Manager
are responsible for handling thedynamic events. When
the LOS Controller receives a new dynamic feature
event (either add, delete, or modify) it identifies the
proper Feature Manager for that Feature’s page and
passes the call to the Feature Manager.

The Feature Manager identifies the feature being
modified and successfully communicates the event to
the BVH Wrapper. The Feature Manager also
conducts some “bookkeeping” exercises to properly
maintain its current state and allocated memory for the
BVH Wrapper. One important note: Since the BVH
tree cannot properly modify a feature at the current
time, a “modify” event is treated as a deletion of the
feature’s previous state and a creation of a new feature
(i.e. delete followed by an add).

Integrated LOS Services

The integration of the dynamic BVH into the ERC
LOS code is reasonably straightforward. The LOS
services library manages the BVH services. When an
attenuated ray-traced LOS is requested within ERC, the
call is delegated to the LOS controller, a class in the
LOS services library, which checks to see if the BVH
LOS is enabled. If so, it sends the ray to the BVH
based LOS and processes it.

On the first LOS, the BVH for the page that contains
the LOS ray is loaded from the terrain database into the
cache. After that, if an LOS query occurs on an
already loaded page, then the BVH-based LOS is
called for that particular page. If it is not currently in
the cache, then that page is loaded off disk and added
to the cache. If space is not available for the new page,
the least-recently-used page is unloaded to create space
for the new page.

Other OneSAF elements such as entities and
obscurants must always be checked even if the BVH
LOS determines a clear LOS, since they are not
included in the BVH structure. The algorithms to
perform these computations were embedded in the
existing ERC ray tracer LOS method and thus we had
to factor them out so that they could be used separately.

INTEGRATION & RESULTS

After implementation and integration of the BVH code
was complete, we were able to analyze their
performance timings and result accuracy on different
benchmarks.

Testing

Our major goals for this effort were to find significant
performance improvements compared to the traditional
OOS ray-trace LOS routine, while not sacrificing
accuracy of the results. Because of this goal, we
placed a strong emphasis on the integration and test
phase of this effort. The major focuses for integration
were:

• Accurate results
• BVH performance
• Overall LOS performance improvements

To achieve these objectives we designed a test suite to
assure correlation and to capture performance results.
We set up our test suite to run actual exercised
captured LOS rays on both the BVH LOS and the
original ERC LOS calls. Also we chose to test not
only against multiple exercises, but also on multiple
terrain databases. OneSAF is delivered with many pre-
developed exercises on two different databases: JNTC
and JRTC.

The two databases, specifically where the exercises
occur on the databases, are vastly different from one
another. The JRTC database is a feature-rich database
using a high fidelity urban inset, with a lot of feature
information, including buildings and trees. The JNTC
database is of a more barren area, with a low feature
count. Having multiple datasets allowed us to test the
system on a wide range of terrain data, from high
fidelity urban databases and low fidelity rural areas.

We captured “real” line-of-sight rays from executing
exercises to accurately test the system. A listener class
that records LOS rays to a file was attached to the LOS
routine. Four different exercises were chosen for
testing, two from both the JRTC and JNTC databases.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

 Number of
Tests

ERC v 1.5 Time
(µs)

BVH Time
(µs)

% of ERC
Time

JRTC Ambush 507840 47.311 17.679 37.37%

 Raid 400420 50.217 18.785 37.41%

JNTC Conduct Direct Air Fire 97160 33.884 19.666 58.04%

 Massacre 71580 11.572 15.892 137.33%

Table 1- Performance results between the original OOS ERC LOS routine and the BVH based LOS routine.

On higher resolution databases, the BVH based LOS routine was significantly faster.

 Number of Errors False False Correlation
Tests Positives Negatives

JRTC Ambush 25392 11 6 5 99.957%

 Raid 20021 8 0 8 99.960%

JNTC Conduct Direct Air Fire 4858 1 0 1 99.979%

 Massacre 3579 0 0 0 100.000%

Table 2 – Correlation test results between the original OOS ERC LOS routine and the BVH based routine.

With over 99% accuracy, the BVH based LOS and the ERC ray trace LOS have very high correlation.

These exercises were JNTC Massacre, JNTC Direct Air
Fire, JRTC Ambush, and JRTC Raid. Using the MCT,
the exercises were run as normal and the LOS rays were
captured to text files.

The ray files were then used to test and verify the
system. Using the four different exercises became an
invaluable testing system. Many times, tests would
execute correctly on one dataset and have correlation
issues on another dataset. The test suite allowed us to
identify many potential issues, and using it we were
able to integrate the culling code and meet our goals of
complete correlation along with reasonable
performance and effectiveness.

Benchmarks

Performance
We collected performance benchmarks of the BVH
solution and OneSAF ERC LOS on our four standard
test exercises. The OneSAF v1.5 ray-trace LOS calls
average approximately 48 µs per call. The performance
of the BVH solution was significantly faster than the
ERC solution on three of the four test cases. When ran
on the JRTC database in the urban inset area, the BVH
code took almost a third of the time as ERC. On the
JNTC, a rural, desert area, the BVH had mixed results.
As the timing numbers show, the BVH technique
achieves near constant results independent of terrain
resolution with all of the timings within a four

microsecond range. The ERC tests are more volatile
ranging from eleven to fifty microseconds and suffer on
high resolution terrain. The performance of the ERC
LOS degrades with triangle count, the more triangles
that it processes the slower the traversal. The JNTC
database is far lower resolution than the JRTC database.
This means that each of the LOS queries process less
triangles on JNTC, allowing the significant difference
in performance when compared to the higher resolution
JRTC database.

BVH - OneSAF Correlation
Table 2 shows the correlation between OneSAF ERC’s
LOS routine and the integrated BVH code. Although
the methods do not show 100% correlation, the results
far exceed our expectations. Explanations for the
discrepancies include UHRB interiors—which we do
not model—floating point inaccuracies, triangulation of
point feature cylinders, among many other things. The
fact that we have replaced an entire terrain model with
another one and achieved 99.9% correlation for every
database— and 100% correlation for one particular test
highlights the accuracy of our system. We hope that this
would be used for complex terrains in the future.

Memory
This effort was conducted as a research effort to study
how novel algorithms could be used to enhance
performance in OneSAF, particularly in dynamic

2008 Paper No. nnnn Page 7 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008
environments. Our approach has focused on integrating
the BVH LOS solution into OneSAF with the smallest
amount of disturbance to baselined LOS code. In our
current implementation, we chose to integrate the BVH
data structures in parallel with the current OneSAF data
structures.

Due to the parallel solution it is a little difficult to get
an accurate analysis of the memory overhead of our
BVH-based solution. However, BVH-based
representation can also be useful for many other
computations within OOS including avatar simulation,
collision checking and route planning. Currently,we
duplicate all of the terrain data: a set in the original
OneSAF data structures, and a set in the BVH data
structure. In the future, such data structures can be
easily merged and thereby, reduce the memory
overhead

CONCLUSIONS AND FUTURE WORK

Our solution for fast LOS computations in dynamic
terrains is quite effective. Moveover, we made a
focused effort to minimize modifications to existing
ERC code. All of the BVH-related code is separated
into its own library and only three existing non-test
classes are modified. The implementation is intended
to be very configurable to be able to handle varying
hardware capabilities and user wants.

The BVH solution proved to be valuable and
significantly faster than the current OneSAF approach.
The fact that it will be capable to handle a
repolygonalized terrain surface with very little
modification demonstrates its effectiveness. These
dynamic BVHs can also be used to accelerate many
other computations including route planning, collision
detection, physics-based simulation and crowd
simulations in dynamic terrains.

There are many avenues for future work. We will like
to apply our algorithms to more complex terrains with a
higher degree of dynamic events. We can exploit the
capabilities of multi-core CPUs or many-core GPUs to
further accelerate the computations. We will also like to
compare the performance of our LOS algorithm with
the LOS routines in the future versions of OneSAF (e.g.
Version 2.0).

ACKNOWLEDGEMENTS

The work described in this paper is supported in part by
RDECOM Contracts N61339-05-C-0145 and N61339-
04-C-0043. We would like to thank Kent Pickett, John
Logdson, Bruce Robbins, Angel Rodriguez, Oanh Tran
and Buck Surdu for their feedback and support. We are

also grateful to Michael Proctor for his feedback on an
earlier draft of this manuscript.

REFERENCES

ERICSON, C. (2004). Real-Time Collision Detection.

Morgan Kaufmann.
GOLDSMITH, J., & SALMON, J. (1987). Automatic

creation of object hierarchies for ray tracing. IEEE
Comput. Graph. Appl. 7, 5, 14–20.

HAVRAN, V. (2000). Heuristic Ray Shooting
Algorithms. PhD thesis, Czech Technical University
in Prague.

LAUTERBACH, C., YOON, S., TUFT, D., AND
MANOCHA, D. (2006). RT-DEFORM: Interactive
Ray Tracing of Dynamic Scenes using BVHs. IEEE
Symposium on Interactive Ray Tracing ‘06.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S.,
LUEBKE, D. AND MANOCHA, D. (2008). Fast
BVH Computations on GPUs. Technical Report,
Department of Computer Science, UNC Chapel Hill.

VERDESCA,M., MUNRO, J., HOFFMAN, M.,
BAUER, M. AND MANOCHA, D. (2005).
Using Graphics Processor Units to Accelerate
OneSAF: A Case Study in Technology Transition.
Proc. of I/ITSEC.

MACDONALD, J. D., AND BOOTH, K. S. (1990).
Heuristics for ray tracing using space subdivision. The
Visual Computer.

RUBIN, S. M., AND WHITTED, T. 1980. A 3-
dimensional representation for fast rendering of
complex scenes. Computer Graphics 14, 3 (July),
110–116.

WALD, I., BOULOS, S., AND SHIRLEY, P. (2007).
Ray Tracing Deformable Scenes using Dynamic
Bounding Volume Hierarchies. ACM Transactions
on Graphics 26, 1.

YOON, S., CURTIS, S., AND MANOCHA, D. (2007).
Ray Tracing Dynamic Scenes using Selective
Restructuring. Eurographics Symposium on
Rendering.

2008 Paper No. nnnn Page 8 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. nnnn Page 9 of 9

	ABSTRACT
	BACKGROUND
	BOUNDING VOLUME HIERARCHIES
	Bounding volumes
	Ray Intersection using BVHs
	BVH construction and update
	Handling Dynamic Events with BVHs
	Multi-threading and scalability

	LOS COMPUTATION USING BVHs
	 Los Computations
	Coordinate systems
	Terrain retrieval and conversion
	Feature Management
	Management of Dynamic Terrain
	Integrated LOS Services

	INTEGRATION & RESULTS
	Testing
	Benchmarks

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

