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Abstract 
We present an algorithm and implementation 

for solving the line of sight (point-to-point visibility) 
problem for simulations with many moving entities. This 
problem arises in military simulations and can 
bottleneck such systems. We employ the concept of 
region based visibility to precompute visibility for the 
environment. The simulation environment is segmented 
into regions and a visibility map is constructed for each 
region. The visibility map indicates portions of the 
environment that are definitely blocked from any point 
within a region. Once this computation is performed an 
entity needs only to perform line of sight ray-cast tests 
for entities in the unblocked part of its region’s visibility 
map. Using our implementation on an existing 
simulation dataset we achieved a three times speedup. 
 

1. Introduction 
Modern simulations of computer generated 

forces (CGF) in virtual environments are sophisticated 
and complex simulation systems relying on many 
simulation steps. One of the most taxing for many 
simulations is line of sight (LOS) calculations.  

An LOS query simply requires determining 
whether two entities in the environment can see each 
other with respect to all sources of occlusion. Occlusion 
may be caused by environment obstacles such as the 
terrain or man-made structures, atmospheric effects, or 
other simulation entities. These queries are used 
extensively in entity AI processing allowing entities to 
react to other entities within their visible range (or the 
range of various sensors). 

Although a single LOS query is a fairly simple 
geometric problem LOS queries can account for upwards 
of 40% [Salomon 2004] of total simulation time. The 
total number of LOS queries grows as O(n2) where n is 
the total number of simulated entities. Thus, as the 
desired complexity of simulation increases, the fraction 
of CPU cycles used to compute LOS rises. Moreover, 
advances in acquisition and modeling technologies have 
allowed simulation designers to create more complex 
environments, thus increasing the number of obstacles 
against which an LOS query must be tested. 

LOS is typically solved as a point-to-point 
visibility problem using ray-casting. A ray is traced 
through environment and tested against obstacles. Such 
an algorithm can borrow many of the techniques of 
raytracing used to generate images in computer graphics 
such as acceleration data structures (e.g. grid or kd-tree). 
Raytracing acceleration algorithms often rely on 
coherence between rays. Raytracing begins with 
coherent rays exiting the eye into the environment. 
However, LOS requires tracing many non-coherent rays 
through the environment making it difficult to leverage 
more advanced raytracing algorithms.  

Region based visibility (RBV) algorithms have 
been developed in computer graphics as solutions for 
various problems. RBV algorithms determine the visible 
portion of the environment from a given environment. 
Because of the high complexity of this problem, most 
practical algorithms determine an approximation or 
overestimation of this set.  

We employ RBV to reduce the number of ray-
casts that must be performed to resolve simulation LOS 
queries. The environment is divided into a set of regions. 
Visibility is precomputed for each region using the 
obstacles of the environment. We track the region 
containing each entity. We then use the visibility 
information of an entity’s region to determine whether a 
ray-cast test must be performed. If a second entity falls 
outside the visible set of the region then no ray-cast test 
needs to be performed as it will certainly find an 
intersection with an environment obstacle. 

We have implemented our algorithm and 
integrated it into OneSAF, a next generation CGF. In test 
scenarios 70 to 90 percent of queries can be culled using 
our technique. The average LOS query time in our 
implementation takes 2.7 microseconds.  

The rest of the paper is organized as follows: 
Section 2 describes an approach to high entity count 
LOS calculations described in [Salomon 2004] and how 
this approach can be combined with RBV-based LOS. In 
Section 3 we describe region based visibility and two 
algorithms appropriate for the LOS problem. Section 4 
discusses how we have applied RBV to the LOS 
problem. Section 5 provides details about the runtime 
computations. Initial results are presented in Section 6. 

 



2. Previous LOS Algorithm 
 The algorithm presented in [Salomon 2004] 
used graphics rendering hardware to render the LOS ray 
between two points as a line segment. Computer 
graphics cards contain built-in hardware that can 
perform comparisons between the LOS ray and the 
terrain in order to determine whether or not the ray 
passes below the terrain. This method culls rays with 
definite visibility and works best in scenarios in which 
most of the entities have LOS, such as wide open fields. 
In this case, many LOS calls can be culled as visible. 
Non-culled queries are tested using ray-casting. 

Like this previous algorithm our LOS algorithm 
is a culling approach. In face these algorithms are 
orthogonal and can be used in combination. While the 
previous algorithm conservatively accepts trivially 
visible queries, our new algorithm rejects trivially 
blocked queries using Region Based Visibility. 
  

3. Region Based Visibility 
If it can be shown that there are no unblocked 

rays between region A and region B of the virtual 
environment we can be certain that all LOS queries 
between all entities eA in region A and eB in region B will 
be blocked. We can decompose the virtual environment 
into regions and then use RBV to determine which 
regions are fully blocked from a given region. 

Given a subspace of a virtual environment, 
RBV algorithms compute a visible subset of that 
environment. RBV algorithms have many applications in 
computer graphics. One main contribution is that they 
can increase rendering speeds by culling invisible 
geometry. RBV has also been used to decrease network 
traffic for remote renderings. However, it has been 
shown [Plantinga, 1990] that computing RBV exactly is 
an O(n4) problem.  

To alleviate the computational complexity, 
approximate and conservative algorithms have been 
proposed. Approximate algorithms compute a possibly 
bounded estimate of the visible set. Conservative 
algorithms compute a superset of the actual visible set. 
Our aim is to conservatively cull LOS queries that are 
blocked by the environment so we explore only 
conservative algorithms. 

Early work in region-based visibility focused on 
using a single occluder [Cohen-Or et al. 1998; Saona-
Vazquez et al. 1999], or approximated multiple 
occluders [Gotsman et al. 1999]. In order to perform 
more effective visibility culling, umbras of multiple 
occluders must be joined to create larger occluders. The 
concept of merging the umbras of occluders or merging 
occluders into each other is called occluder fusion. An 
example of occluder fusion is presented in Figure 1. In 
this figure, the occluders are represented by the gray 
bars. The object being viewed is not blocked by any one 

occluder alone. However, the occlusion umbra cast by 
both occluders together occludes the object.  

Two recent practical RBV algorithms for 3D 
environments that perform occluder fusion are: ray space 
factorization ([Leyvand, 2003]) and volumetric 
([Schaufler, 2000]). We explore the advantages and 
disadvantages of these algorithms for LOS acceleration 
in CGF environments.  

These RBV algorithms perform spatial 
decomposition on the world, such as a grid or hierarchy 
(e.g. octree or kd-tree). RBV is then computed for every 
spatial region.  

In the next two subsections we describe ray 
space factorization and volumetric. We describe our 
implementation in section 4. 
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Figure 1: Occluder fusion. In (a) neither of the individual umbras 
occlude the object. However, in (b) the fused umbra fully occludes 
the object. 

 
3.1 Ray Space Factorization 
 We present an overview of ray space 
factorization and its relation to LOS computations and 
refer the reader to [Leyvand et al. 2003] for the details of 
the algorithm.  
 The algorithm performs visibility computations 
in ray space. This is the four-dimensional space of rays 
in the environment. The parameterization algorithm of 
[Leyvand et al. 2003] separates the horizontal and 
vertical components of the ray. 

 
Figure 2: Ray parameterization. In this top view of a region the 
horizontal component of the ray is parameterized in 2D as (s, t) 
coordinate where s is the intersection of the perimeter of the region 



and t is the intersection with an enlarged perimeter. A sample ray is 
shown in red. 

When considering the rays emanating from a 
cell, the origin of the ray can be ignored, thereby 
removing one dimension. The horizontal direction of the 
ray is parameterized by its intersection with the 
bounding rectangle ( s ) of the region and an outer 
rectangle ( t ) as shown in Figure 2.  

Each parameter-pair ),( ts  represents a vertical 
plane or slice of rays leaving the region. These 
parameters are used as coordinates to a framebuffer 
which stores the vertical parameterization of rays 
blocked by an occluder. Four angle values are used to 
represent an occluder within a vertical slice. These 
angles are the angles of the supporting lines (shown in 
red in Figure 3) and separating lines (blue) with respect 
to the ground plane. 

regionregion
 

Figure 3: Side view of a region showing a vertical slice and an 
occluder. The occluder is stored in the frame buffer as four angles 
that locate its end points. These are the angels of the separating (red) 
and supporting (blue) lines. 
 

Culling proceeds by processing the 
environment in a front to back order with respect to the 
region. The ),( ts  footprint of a bounding volume or 
primitive is computed. Within each pixel of the footprint 
angle comparisons determine whether the object falls 
within the umbra of previously encountered occluders. If 
so, it is occluded. Otherwise if the object is a scene 
primitive, the angle values are adjusted to include this 
primitive as an occluder. These computations can be 
implemented as fragment programs that utilize the GPU 
occlusion queries to determine whether an object is 
visible. 

The major limitation of this approach is that 
only one occluder can be stored for each vertical slice in 
a single 4-component color buffer. A GPU supporting k  
color buffers can store k  occluders in each vertical 
slice. However, this limitation does not preclude 
occluder fusion. Occluders that overlap in the vertical 
direction can be combined as a single virtual occluder 
that accounts for their fused umbra. This property makes 
ray space factorization appropriate for environments 
with less complexity in the vertical direction, such as 
terrain, architectural, and urban environments. 
 

3.2 Volumetric 
This section provides an overview of the 

algorithm and we refer the reader to [Schaufler 2000] for 
further detail.  

The algorithm operates on volumetric occluders 
in object space rather than ray space. The volumetric 
approach requires all occluders to be submitted as 2D 
manifolds. A special hierarchy is imposed on the 
environment. The cells of the hierarchy are marked as 
interior if they are completely inside a 2D manifold 
occluder, exterior if they are completely outside all 
occluders and boundary if they are partially inside the 
occluders. This is done one time before computing 
visibility for any region. 

 
 

 
Figure 4: Visualization of volumetric approach. This image shows a 
region in white, the leaf level of the hierarchy and an occluder. The 
red cells are exterior cells, the green cells are interior cells, and the 
blue cells are blocked cells. The yellow cell is current cell in the 
traversal. It is a blocked cell that is being used as an occluder. The 
extents have been enlarged to cover neighboring blocked and interior 
cells to create a larger occluder (magenta). 
 

To calculate occlusion for a region the 
hierarchy is traversed in a front to back hierarchical 
manner. As the traversal proceeds each cell visited is 
marked as either visible or blocked with respect to the 
region. If the cell being visited is an interior cell its 
umbra with respect to the region is computed and all 
cells within that umbra are marked as blocked. The 
traversal skips over the sub-tree of the current cell if it 
has previously been marked as blocked.  

In [Schaufler 2000] it is shown that blocked 
cells can be used, in addition to interior cells, as 
occluders to facilitate occluder fusion. Thus the traversal 
is modified to compute umbras for interior and blocked 
cells. Furthermore, rather than using just the cell as an 
occluder the extents of the cell are enlarged to enclose 
neighboring cells which are also interior or blocked. For 
example the yellow cell in Figure 4 is extended to the 



magenta rectangle. It is by this occluder extension that 
the algorithm is able to fuse disjoint occluders.  

Once an umbra is calculated it is necessary to 
determine which cells of the hierarchy fall within it. This 
is done by traversing the hierarchy in a depth first order. 
Each cell is tested against the planes defining the umbra. 
The traversal descends until a max depth is reached or 
the current cell is completely contained by or outside of 
the umbra. If the cell is completely contained by the 
umbra it is marked as blocked.  
 This algorithm over comes several limitation of 
ray space factorization. Ray space factorization assumes 
that the occluder complexity along one axis is simpler 
than the other two. Also, ray space factorization is 
subject to robustness problems and is sensitive to the 
order in which occluding primitives are processed. 
However a major limitation of the volumetric algorithm 
is that it requires closed 2D manifold occluders. In 
general occluder will not line up perfectly with the 
divisions of the hierarchy. Because of this the interior 
cells will be a subset of the true occluders. 
  

4. Implementation 
 After experimenting with rays space 
factorization and volumetric we chose volumetric 
because of its simplicity and robustness. We used an 
octree as our special hierarchy. Adjustments were made 
to optimize the algorithm for speed and limit the storage 
space required for the visibility results. In Section 4.1 we 
describe how the lookup tables were created. Section 4.2 
explains how the volumetric pre-process can be run in 
parallel.  Section 4.3 describes the integration into 
OneSAF. 
 

4.1 Lookup Table Creation 
In order to compute visibly for the virtual 

environment, the virtual environment must be divided up 
into regions. In order to attain O (1) lookups we use a 
uniform grid of regions. Each region stores a visibility 
table as a uniform grid at a finer resolution. Figure 5 
shows the grid of regions in white. The visibility is 
superimposed in green and black for the red region. This 
figure shows that the visibility table is a much finer 
resolution than the grid of from regions. We call the cells 
of the fine grid visibility cells. 
 The visibility for a region is computed using an 
octree as described in Section 3.2. To store the visibility 
table as a uniform grid, each cell of the grid is checked 
against the octree. If the cell is completely enclosed by 
occluded nodes the cell is marked as occluded.   

 
Figure 5: The white grid cells are regions that visibility is 
computed for.  The region in red is the selected region.  The areas 
in green are the finer visible cells from the selected region. 

 
In modern military simulators the majority of 

entities are ground based. Some entities are aerial 
entities. This gives three cases: ground-to-ground, aerial 
–to-ground, and aerial-to-aerial. The aerial-to-aerial 
query is a fast query and is determined to be visible in 
most cases. The GPU culling method of [Salomon 2004] 
will cull most of these queries. We do not use RBV 
culling for aerial to aerial queries. 

In the ground-to-ground case and aerial-to-
ground case one of the entities is on the ground. We only 
store visibility data for visibility cells along the ground. 
Visibility events occur more frequently due to horizontal 
movement than vertical. Therefore our grid is much 
coarser in the vertical direction (e.g. seven in the z 
direction vs. 64 in x and y). These modifications reduce 
both the storage space and the computation time for the 
algorithm. 

 

4.2 Parallelization 
 Calculating the visibility for each region is 
extremely parallelizable. In order to generate the 
visibility lookup tables we used several computers to 
compute different portions of the uniform grid of 
regions. We manually partitioned the work among 
multiple machines. A client server architecture could 
also be used to manage the distribution of the region 
computations. All of the clients would initialize their 
own copy of the octree. Each client would then ask the 
server for the next region to be computed. The region 
would be computed and the list of visibility cells would 
be sent back to the server. The server would create the 
final table from the data sent back by the clients. 
 



4.3 OneSAF Integration 
 The OneSAF refers to a composable, next 
generation CGF that can represent a full range of 
operations, systems, and control processes from 
individual combatant and platform to battalion level, 
with a variable level of fidelity that supports all models 
and simulation (M&S) domains.  LOS calculations can 
account for 40% of simulation time ([Salomon 2004]).  
Using the lookup tables mentioned in section 4.1, our 
Region Based Visibility LOS implementation was 
integrated into OneSAF.  These tables were computed 
for one area of the world.  Section 5 explains the run-
time of our algorithm.  This run-time was turned into a 
library and integrated into OneSAF.   

5. Run-Time 
The run-time section of the algorithm consists of 
calculating LOS between all entities in the simulation. 
Figure 6 shows the run-time program flow. Queries are 
culled first by the RBV lookup tables. Next they are 
culled by [Salomon 2004]. If both of these culls pass, 
then the ray-cast computation is performed.   

Ground-to-ground entities require two table 
lookups. First entity A and entity B are looked up in the 
uniform grid of regions. Then entity B is looked up in the 
visibility cells for the region entity A is in, and entity A is 
looked up in the visibility cells for the region entity B is 
in. If either of the lookups return blocked then the LOS 
query is culled. Both of these lookups are O(1). 

 

 
Figure 6: After we determine the region for Entity A and Entity B we 
can determine their respective regions with the visibility table. If 
there is possible visibility we can employ the visibility culling done in 
Salomon’s LOS algorithm. Any LOS calls that are not culled by both 
techniques will default to an exact test on the CPU. 

 
 For calculations between aerial units and 
ground units we use one table lookup. The ground unit is 
looked up in the visibility cells of the region containing 
the aerial unit.   
 

6. Results  
 Our implementation involves an extensive 
preprocess that produces tables that can be used at 
runtime to cull LOS queries.  We implemented two 
version of this algorithm.  The first version was 2D.  We 
implemented it on a synthetic data set.  Figure 7 shows 
the data set.  On this data set our query time went from 5 
microseconds to 1 microsecond when the RBV based 
culling method was turned on. 

 
Figure 7:  This simulated urban environment was a test simulation 
for region based visibility as a method for culling line of sight 
queries.  The green squares are visible entities.  The red squares are 
not visible entities.   
 
 The scenario that was integrated into OneSAF 
is now explained.  This scenario is an 8 by 8 kilometer 
region of terrain. This region includes a highly occluded 
urban region surrounded by a hilly countryside. The 
urban environment consisted mostly of one and two 
story buildings.  
 In order to test this algorithm, entities were 
randomly distributed across the scenario. Entities moved 
in a random walk. LOS queries were computed between 
all pairs of entities. We timed all of the LOS queries with 
RBV culling on and again with RBV culling off. 
Without culling the average time of a query is 6.2 
microseconds. With culling, the average time drops to 
2.7 microseconds. In this scenario an average of 70% of 
queries were culled. 

Results will vary based on the distribution of 
the entities. If entities are close together they are less 
likely to be culled than when they are more spread out. 
Also, the nature of the environment affects the 
performance of our algorithm. Greater culling can be 
achieved in densely occluded environments. 
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