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ABSTRACT 

 
We present algorithms to accelerate route 
planning and collision detection for computer 
generated forces. Our algorithms exploit the 
parallel computing capability of Graphics 
Processing Units (GPUs) along with their 
ability to perform geometric culling. We 
combine the GPU accelerated computations 
with exact intersection tests on the CPU. Our 
approach supports dynamic terrains and 
multiple feature intersections in parallel.  Our 
technique has been integrated into OneSAF 
block D build 24.  Our route planning 
technique is a 30x – 50x speedup and has 
demonstrated an overall speedup of 10x. Our 
collision detection code is a 5x – 10x speedup 
over existing collision detection techniques. 
 

1 INTRODUCTION 

 

Computer Generated Forces (CGFs) are 
computer systems that emulate the battlefield 
entities and units whose tactical behaviors and 
decisions are either made in part by human 
operators (Semi-Automated Forces) or 
automated decision algorithms (Automated 
Forces). A number of products have been 
developed to support army applications in 

three modeling and simulation domains: 
Training, Exercise, Military Operations 
(TEMO); Advanced Concepts and 
Requirements (ACR); and Research, 
Development and Acquisition (RDA).   Over 
the last few years, major efforts have been 
directed towards Semi-Automated Forces 
(OneSAF and JLCCTC) operational 
requirements. For example, the OneSAF refers 
to a composable, next generation CGF that 
can represent a full range of operations, 
systems, and control processes from 
individual combatant and platform to battalion 
level, with a variable level of fidelity that  

River

Lake

Generated Route

Start point

End point

Features: lakes, rivers, 

trees, buildings, etc.
 

Figure 1: Route generated avoids obstacles Segments 

between grids are tested against features to cull 

segment set. 



 
supports all models and simulation (M&S) 
domains. A key component of OneSAF is the 
ability to add new equipment, units, behaviors, 
physical models and synthetic environment 
representations. In this paper, we focus on 
some of the behavior and terrain 
representations with respect to OneSAF, as 
well as use of simulation and planning-based 
technologies to effect the realistic movement 
of vehicles through the synthetic battle-space.  
 
Route Planning and Collision Detection:  
Terrain reasoning services can consume a 
significant portion of computing resources in 
Modeling and Simulation (M&S) applications.  
In the OneSAF Objective System (OOS), 
much of the available CPU is allocated to the 
dynamics agent some of this sub-allocated to 
collision detection and to route planning. This 
limits the amount of CPU resource given to 
cognitive models. Collision detection, route 
planning, and LOS computations can be major 

bottlenecks in computer generated force 
systems dealing with a high number of 
entities.  This constraint severely limits the 
entity count sustainable by the simulation 
system.  However, current CPU algorithms 
can be relatively slow and may not be able to 
perform their computations in this time frame.  
 
GPU-based Computations:  
We exploit the capabilities of GPUs to 
accelerate intersections tests.  Modern GPUs 
have built in special purpose hardware 
designed for calculating visibility.  Salomon et 
al. used this hardware to cull Line of Sight 
(LOS) rays [Salomon et al. 2004].  This 
technique checks LOS rays with the same 
hardware that has been used to cull LOS rays 
for intersections.  
 Our work accelerates route planning 
and collision detection by testing segments of 
routes and entities against a buffer of features.  
This process is able to quickly condense the  

 

Figure 2: Scenario in OneSAF.  This scenario demonstrates the path segments that have been determined for a 

given route.  The route planned for the tank is displayed in red. This scenario shows a 15x improvement with our 

GPU based technique enabled. 



 
set of non blocked routes or non colliding 
entities.  Once this set has been reduced, we 
can determine final collision detection and 
non-blocked routes with traditional CPU 
based approaches. 
 

2 GRAPHICS PROCESSORS 

 

Fast graphics hardware including 3D 
rasterization, texturing, and dedicated vertex 
and pixel processing has become as ubiquitous 
as floating-point hardware. It is nearly 
impossible to buy a PC without dedicated 3D 
rasterization and texturing hardware. Moore's 
Law, the highly parallel nature of graphics 
rendering algorithms, and the computation 
demands for simulating visual reality have 
converged to drive the development of faster 

and more capable graphics hardware. The 
ubiquity and performance of this hardware 
leads us to consider the extent to which this 
hardware can be harnessed to solve scientific, 
simulation and visibility problems beyond the 
conventional domain of image synthesis for 
the sake of pretty animation.  

GPUs have been progressing at a rate 
faster than Moore’s Law. The same growth 
rate is expected to continue for the next 3-5 
years, giving us the capability to perform 
GFlops of computation on a $350 COTS 
GPU. This makes the GPU an excellent 
candidate for performing scientific, geometric 
and compute-intensive algorithms.  

Furthermore, GPUs have greatly 
increased capabilities. The current GPUs are 
optimized for rasterization of 3D geometric 
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primitives. They also have efficient image 
processing capabilities. Moreover, the vertex 
and fragment processors provide the 
application programmer a great deal of 
flexibility and power. Because of these 
capabilities, an incredible array of new 
algorithms and real-time implementations of 
previous algorithms have been made possible. 
Furthermore, as graphics hardware becomes 
more programmable, the barrier between the 
CPU and the GPU is being redefined. The new 
languages and compilers for programming the 
GPUs make it much easier to use them for a 
variety of applications. Finally, the underlying 
precision of the GPUs is increasing as well. 
Current GPUs can support 32-bit floating 
point frame-buffers.  

Figure 3 shows some of the key 
features of a modern GPU pipeline. At the top 
of the figure are the Vertex Shaders. These 
MIMD processing units operate on the data 
associated with each vertex. After the Vertex 
shaders, the data is broken up into fragments 
by the rasterization hardware. The fragment 
processors operate on all the data associated 
with a fragment. These processors output to 
the fixed function Raster Operators (ROPs). 
The ROPs perform fixed function operations 

between the output fragments and the various 
buffers (e.g. depth, stencil, and color). 

There are several features of current 
GPUs that are necessary for feature 
intersection technique. These features include: 
the depth buffer, depth buffer flags, and 
occlusion query capabilities. The depth buffer 
is a 2D array of scalers. Each scaler in the 
depth buffer is represented by 24 bits of 
memory scaled between 0 and 1. This buffer is 
used in depth-buffered rendering to keep track 
of the fragment nearest the viewer with a 
simple comparison test. If the depth of the 
pixel is less than the current one, the color and 
depth value are overwritten with the incoming 
fragment. Modern GPUs support expanded 
depth operations. The type of comparison 
operator can be set by the application (e.g. 
less, greater, equal, etc). Furthermore, the 
GPU can provide a count of the number of 
fragments passing the depth test while 
preserving the contents of the depth buffer 
using write masks. Fragment counts are 
established using occlusion queries that track 
the number of fragments passing the depth test 

 

Figure 5: Conservative rasterization of terrain 
triangles and Route path. We ensure that each pixel 

intersected by a feature or route segment generates a 

fragment with a conservative depth value. 

 

 

Figure 4: 15 pixels are returned for the 
occlusion query corresponding to the red 

triangle. The Occlusion query returns the 

visibility of an object as count of pixels 

rendered. 



while rendering a batch of primitives.. Figure 
4 is a graphics representation of a triangle that 
has been resterized.  An occlusion query 
returns the visibility of a given primitive as a 
count of pixels rasterized. 

 

3 OVERVIEW 

 

Feature intersection is the algorithmic 
process of determining if the primitives 
making up a feature geometrically intersect 
with the primitives that represent a route 
segment or entity. A key component of our 
approach is a new feature intersection test that 
is used both for route planning as well as 
collision detection.  
 Our feature intersection algorithm leverages 
off of the previously mentioned commodity 
graphics hardware features.  Our algorithm 
works by testing objects against   features.   

Each feature analysis task can be 
generalized to determine the exact set of 
features that a single object intersects. Our 
GPU-accelerated algorithm performs a quick 
and conservative culling of objects and terrain 
features to accelerate the computations step 
produces a near minimal set of objects and 
features which require CPU-based exact 
intersection tests. 

Culling is performed using the GPU’s 
occlusion query capability. These queries are 
used to determine whether two objects are 
overlapping when rendered from a particular 
viewpoint. Overlaps between objects and 
features are determined simply by rendering 
the objects in succession. 

The terrain features being tested for 

intersection can be very complex. This may 
result in small details of the features being 
smaller than one pixel after rendering. Due to 
this inaccuracy, an image-based technique 
may miss intersections. In order to ensure that 
all potential intersections are found, we 
conservatively expand the size of the objects 
as in [Govindaraju et al 2004]. 
 

4 COLLISION DETECTION 

 

The problem of collision detection can be 
reduced to that of feature intersection.  In this 
case, each entity must be tested against all 
features to determine collision.  The collision 
detection information can be used by 
simulators to add collision avoidance and 
entity damage simulations.  Collision 
detection must happen every time entities 
move to be accurate.  This problem is 
complicated because entities and features can 
be complex objects and there may be many 
dynamic entities. 

Calculating collision detection for 
every entity in a simulation can be an 
expensive task.  To get around this high cost, 
most collision detection algorithms perform 
bounding sphere intersections or use 
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Figure 7: Our technique proceeds in three phases: 
First, entities are checked against the set of all 

features. Second, all features are checked against 

remaining entities. Third, the potentially colliding 

features are checked against their prospective entities.  
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Figure 6: System Architecture: The overall 
pipeline of the collision detection algorithm for 

large environments. 



hierarchies.  Sphere intersections are not as 
reliable as true collision detection.  
Hierarchies require memory overhead and are 
not well suited to dynamic features.  Our 
method is built on Cullide [Govindaraju et al 
2003] and calculates accurate collision 
detections for high res entities and features.
 Collision detection is necessary to add 
realism and realistic entity behavior to a 
scenario.  In such a case entities must be 
tested each frame against features to create 
realistic movement. Collision detection allows 
OneSAF to create realistic entity movement.  
It also allows for realistic entity interactions 
such as vehicle damage.  

Our GPU based collision detection 
algorithm is a culling approach. This approach 
relies on hardware visibility tests to cull 
features and entities from a potentially 
colliding set. 
 
Collision detection proceeds in three phases: 
 

• An entity is checked against a feature 
buffer to see if that entity can be culled 

• Features are then checked against each 
entity that cannot be culled 

• The resulting features and entities are 
then checked on the CPU for collision 

 
Our algorithm works as a 2 part culling 

technique followed by an exact CPU test. In 
part 1 the entities are tested against a buffer 
containing all features. This step is very fast 

and 
conservatively culls most colliding entities 
that are not in near proximity to features. 
Next, for each entity a set of potentially 
colliding features is created. The GPU 
compares features against individual entities. 
This reduces the number of potentially 
colliding features per entity. This small subset 
is then very rapidly tested on the CPU to 
determine if a collision has occurred. 

 

5 ROUTE PLANNING 

 
The topic of route planning has received 
considerable attention largely due to the high 
computational complexity associated with it. 
Good solutions to route planning have 
applications in many areas, including 
autonomous navigation or planning among 
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collaborating agents [Kennet et al. 1999, 
Varadhan et al. 2005]. 

In a CGF application, quick and 
accurate route planning is critical for accurate 
and effective unit movement.  However, a 
planning task for a single unit or group can be 
very expensive. When large numbers of units 
require route planning, the task becomes too 
daunting to be performed in a reasonable 
amount of time. In the OneSAF system, the 
bottleneck (taking over 50% of CPU time) is 
feature analysis computation. In order to 
improve the performance of planning in the 
OneSAF system, we need to improve this task.  
 Our route planning method performs 
conservative culls similar to our collision 
detection technique.  This technique proceeds 
in three phases: 
 

• The number of segments is reduced by 
culling them against the full feature set 

• The number of features is reduced by 
culling them against the reduced set of 
segments 

• The reduced feature set is culled 
against each individual segment in the 
reduced segment set 

 

Figure 9 shows an outline of the steps 
taken. First, all features are rendered into a 
buffer. We then test individual route segments 
against the buffer.  Next, the features are 
culled against a buffer of segments.  Finally, 
individual segments are checked against the 
buffer. 

 

Integration into OneSAF: 

Route planning is broken up into feature read 
and feature analysis.  In Feature read, geotiles 
are broken up into nodes that can later be used 
for grid based A* path finding. The A* 
algorithm requires segments connecting paths 
to be tested against features.  Feature analysis 
is the process of determining what route 
segments intersect features.  The GPU route 
planning technique accelerates feature 
analysis.  The OneSAF feature intersection 
algorithm was run on all segments stemming 
from a single node at once. Verdesca et al. 
describe the integration process in more detail 
[Verdesca et al.]. Our techniques have been 
integrated into OneSAF block D build 24.   
 

 

6 RESULTS 

  
Our system performs rapid feature 

intersection checks for potential route 
segments and entites.  Our system is also able 
to perform multiple feature intersections in 
parallel.  Using this method we were able to 
Conservative reduction of the number of 
feature intersection tests resulting in a 30-50x 
speedup in feature analysis computation for 
route planning.  In collision detection, we 
demonstrated 5-20x speedup for dynamic 
collision avoidance. 

 

7 CONCLUSIONS 

 

We believe that exploiting the high 
computational power of GPUs is essential to 
increase the complexity of simulations that 
can be performed in real-time for computer 
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Figure 10: Our GPU-based culling algorithm proceeds 
in three phases. First, non-intersecting segments are 

pruned. Second, non-intersecting features are pruned. 

Third, potentially intersecting features are paired with 

segments. 



generated forces using systems such as 
OneSAF. Our algorithm for accelerating route 
planning and collision detection using the 
GPU is one example.  

Our algorithm is currently integrated 
into OneSAF which will reduce the time of 
route planning and collision detection 
computation allowing more complex scenarios 
to be run.  
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