

ACCELERATING ROUTE PLANNING AND COLLISION DETECTION FOR

COMPUTER GENERATED FORCES USING GPUS

David Tuft, Russell Gayle, Brian Salomon, Naga Govindaraju, Ming Lin, and Dinesh
Manocha

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599

Maria Bauer and Angel Rodriguez

US Army RDECOM Simulation and Training Technology Center
Orlando, FL 32826

Michael Macedonia

DTO
Fort Meade, MD 20755

ABSTRACT

We present algorithms to accelerate route
planning and collision detection for computer
generated forces. Our algorithms exploit the
parallel computing capability of Graphics
Processing Units (GPUs) along with their
ability to perform geometric culling. We
combine the GPU accelerated computations
with exact intersection tests on the CPU. Our
approach supports dynamic terrains and
multiple feature intersections in parallel. Our
technique has been integrated into OneSAF
block D build 24. Our route planning
technique is a 30x – 50x speedup and has
demonstrated an overall speedup of 10x. Our
collision detection code is a 5x – 10x speedup
over existing collision detection techniques.

1 INTRODUCTION

Computer Generated Forces (CGFs) are
computer systems that emulate the battlefield
entities and units whose tactical behaviors and
decisions are either made in part by human
operators (Semi-Automated Forces) or
automated decision algorithms (Automated
Forces). A number of products have been
developed to support army applications in

three modeling and simulation domains:
Training, Exercise, Military Operations
(TEMO); Advanced Concepts and
Requirements (ACR); and Research,
Development and Acquisition (RDA). Over
the last few years, major efforts have been
directed towards Semi-Automated Forces
(OneSAF and JLCCTC) operational
requirements. For example, the OneSAF refers
to a composable, next generation CGF that
can represent a full range of operations,
systems, and control processes from
individual combatant and platform to battalion
level, with a variable level of fidelity that

River

Lake

Generated Route

Start point

End point

Features: lakes, rivers,

trees, buildings, etc.

Figure 1: Route generated avoids obstacles Segments

between grids are tested against features to cull

segment set.

supports all models and simulation (M&S)
domains. A key component of OneSAF is the
ability to add new equipment, units, behaviors,
physical models and synthetic environment
representations. In this paper, we focus on
some of the behavior and terrain
representations with respect to OneSAF, as
well as use of simulation and planning-based
technologies to effect the realistic movement
of vehicles through the synthetic battle-space.

Route Planning and Collision Detection:
Terrain reasoning services can consume a
significant portion of computing resources in
Modeling and Simulation (M&S) applications.
In the OneSAF Objective System (OOS),
much of the available CPU is allocated to the
dynamics agent some of this sub-allocated to
collision detection and to route planning. This
limits the amount of CPU resource given to
cognitive models. Collision detection, route
planning, and LOS computations can be major

bottlenecks in computer generated force
systems dealing with a high number of
entities. This constraint severely limits the
entity count sustainable by the simulation
system. However, current CPU algorithms
can be relatively slow and may not be able to
perform their computations in this time frame.

GPU-based Computations:
We exploit the capabilities of GPUs to
accelerate intersections tests. Modern GPUs
have built in special purpose hardware
designed for calculating visibility. Salomon et
al. used this hardware to cull Line of Sight
(LOS) rays [Salomon et al. 2004]. This
technique checks LOS rays with the same
hardware that has been used to cull LOS rays
for intersections.
 Our work accelerates route planning
and collision detection by testing segments of
routes and entities against a buffer of features.
This process is able to quickly condense the

Figure 2: Scenario in OneSAF. This scenario demonstrates the path segments that have been determined for a

given route. The route planned for the tank is displayed in red. This scenario shows a 15x improvement with our

GPU based technique enabled.

set of non blocked routes or non colliding
entities. Once this set has been reduced, we
can determine final collision detection and
non-blocked routes with traditional CPU
based approaches.

2 GRAPHICS PROCESSORS

Fast graphics hardware including 3D
rasterization, texturing, and dedicated vertex
and pixel processing has become as ubiquitous
as floating-point hardware. It is nearly
impossible to buy a PC without dedicated 3D
rasterization and texturing hardware. Moore's
Law, the highly parallel nature of graphics
rendering algorithms, and the computation
demands for simulating visual reality have
converged to drive the development of faster

and more capable graphics hardware. The
ubiquity and performance of this hardware
leads us to consider the extent to which this
hardware can be harnessed to solve scientific,
simulation and visibility problems beyond the
conventional domain of image synthesis for
the sake of pretty animation.

GPUs have been progressing at a rate
faster than Moore’s Law. The same growth
rate is expected to continue for the next 3-5
years, giving us the capability to perform
GFlops of computation on a $350 COTS
GPU. This makes the GPU an excellent
candidate for performing scientific, geometric
and compute-intensive algorithms.

Furthermore, GPUs have greatly
increased capabilities. The current GPUs are
optimized for rasterization of 3D geometric

43.2 Giga-

Comparisons /

Second

Fragment

Processor

Fragment

Processor …

Vertex

Processor

Vertex

Processor

…

ROP

Unit

ROP

Unit
ROP

Unit

ROP

Unit

Video Memory

40 Giga Bytes / Second Write

L2 Texture Cache

24 Fragment Processors

2 Shader Units Each

6 Vertex Processors

Fragment

Processor

Fragment

Processor

Figure 3: In this abstraction of a GPU-pipeline, the Vertex Processors transform triangles which are then rasterized

into fragments. Fragments are then shaded and fed into the ROP units. The ROP unites perform fixed function updates

to the depth stencil and color buffers. Our algorithms use the vertex and fragment processors to render the objects, and

the ROP unites for the visibility tests.

primitives. They also have efficient image
processing capabilities. Moreover, the vertex
and fragment processors provide the
application programmer a great deal of
flexibility and power. Because of these
capabilities, an incredible array of new
algorithms and real-time implementations of
previous algorithms have been made possible.
Furthermore, as graphics hardware becomes
more programmable, the barrier between the
CPU and the GPU is being redefined. The new
languages and compilers for programming the
GPUs make it much easier to use them for a
variety of applications. Finally, the underlying
precision of the GPUs is increasing as well.
Current GPUs can support 32-bit floating
point frame-buffers.

Figure 3 shows some of the key
features of a modern GPU pipeline. At the top
of the figure are the Vertex Shaders. These
MIMD processing units operate on the data
associated with each vertex. After the Vertex
shaders, the data is broken up into fragments
by the rasterization hardware. The fragment
processors operate on all the data associated
with a fragment. These processors output to
the fixed function Raster Operators (ROPs).
The ROPs perform fixed function operations

between the output fragments and the various
buffers (e.g. depth, stencil, and color).

There are several features of current
GPUs that are necessary for feature
intersection technique. These features include:
the depth buffer, depth buffer flags, and
occlusion query capabilities. The depth buffer
is a 2D array of scalers. Each scaler in the
depth buffer is represented by 24 bits of
memory scaled between 0 and 1. This buffer is
used in depth-buffered rendering to keep track
of the fragment nearest the viewer with a
simple comparison test. If the depth of the
pixel is less than the current one, the color and
depth value are overwritten with the incoming
fragment. Modern GPUs support expanded
depth operations. The type of comparison
operator can be set by the application (e.g.
less, greater, equal, etc). Furthermore, the
GPU can provide a count of the number of
fragments passing the depth test while
preserving the contents of the depth buffer
using write masks. Fragment counts are
established using occlusion queries that track
the number of fragments passing the depth test

Figure 5: Conservative rasterization of terrain
triangles and Route path. We ensure that each pixel

intersected by a feature or route segment generates a

fragment with a conservative depth value.

Figure 4: 15 pixels are returned for the
occlusion query corresponding to the red

triangle. The Occlusion query returns the

visibility of an object as count of pixels

rendered.

while rendering a batch of primitives.. Figure
4 is a graphics representation of a triangle that
has been resterized. An occlusion query
returns the visibility of a given primitive as a
count of pixels rasterized.

3 OVERVIEW

Feature intersection is the algorithmic
process of determining if the primitives
making up a feature geometrically intersect
with the primitives that represent a route
segment or entity. A key component of our
approach is a new feature intersection test that
is used both for route planning as well as
collision detection.
 Our feature intersection algorithm leverages
off of the previously mentioned commodity
graphics hardware features. Our algorithm
works by testing objects against features.

Each feature analysis task can be
generalized to determine the exact set of
features that a single object intersects. Our
GPU-accelerated algorithm performs a quick
and conservative culling of objects and terrain
features to accelerate the computations step
produces a near minimal set of objects and
features which require CPU-based exact
intersection tests.

Culling is performed using the GPU’s
occlusion query capability. These queries are
used to determine whether two objects are
overlapping when rendered from a particular
viewpoint. Overlaps between objects and
features are determined simply by rendering
the objects in succession.

The terrain features being tested for

intersection can be very complex. This may
result in small details of the features being
smaller than one pixel after rendering. Due to
this inaccuracy, an image-based technique
may miss intersections. In order to ensure that
all potential intersections are found, we
conservatively expand the size of the objects
as in [Govindaraju et al 2004].

4 COLLISION DETECTION

The problem of collision detection can be
reduced to that of feature intersection. In this
case, each entity must be tested against all
features to determine collision. The collision
detection information can be used by
simulators to add collision avoidance and
entity damage simulations. Collision
detection must happen every time entities
move to be accurate. This problem is
complicated because entities and features can
be complex objects and there may be many
dynamic entities.

Calculating collision detection for
every entity in a simulation can be an
expensive task. To get around this high cost,
most collision detection algorithms perform
bounding sphere intersections or use

Input 1

2 3

Entity 1

Entity 2
Entity 3

Entity 4

Entity 5

Entity 4

Entity 5

Entity 5

Entity 4

Entity 5

Figure 7: Our technique proceeds in three phases:
First, entities are checked against the set of all

features. Second, all features are checked against

remaining entities. Third, the potentially colliding

features are checked against their prospective entities.

Object

Level

Pruning

(GPU)

Sub-object

Level

Pruning

(GPU)

Exact

Collision

Detection

(CPU)

PCS PCS

Figure 6: System Architecture: The overall
pipeline of the collision detection algorithm for

large environments.

hierarchies. Sphere intersections are not as
reliable as true collision detection.
Hierarchies require memory overhead and are
not well suited to dynamic features. Our
method is built on Cullide [Govindaraju et al
2003] and calculates accurate collision
detections for high res entities and features.
 Collision detection is necessary to add
realism and realistic entity behavior to a
scenario. In such a case entities must be
tested each frame against features to create
realistic movement. Collision detection allows
OneSAF to create realistic entity movement.
It also allows for realistic entity interactions
such as vehicle damage.

Our GPU based collision detection
algorithm is a culling approach. This approach
relies on hardware visibility tests to cull
features and entities from a potentially
colliding set.

Collision detection proceeds in three phases:

• An entity is checked against a feature
buffer to see if that entity can be culled

• Features are then checked against each
entity that cannot be culled

• The resulting features and entities are
then checked on the CPU for collision

Our algorithm works as a 2 part culling

technique followed by an exact CPU test. In
part 1 the entities are tested against a buffer
containing all features. This step is very fast

and
conservatively culls most colliding entities
that are not in near proximity to features.
Next, for each entity a set of potentially
colliding features is created. The GPU
compares features against individual entities.
This reduces the number of potentially
colliding features per entity. This small subset
is then very rapidly tested on the CPU to
determine if a collision has occurred.

5 ROUTE PLANNING

The topic of route planning has received
considerable attention largely due to the high
computational complexity associated with it.
Good solutions to route planning have
applications in many areas, including
autonomous navigation or planning among

Feature Buffer

(static)

Results

Cull feature set against

Single segment (GPU)

Exact feature/segment

Tests (CPU)

Cull feature set against

segment set (GPU)

Cull segment set against

feature set (GPU)

Terrain Features

And Route Segments

Segments

Features

Render Features

(Once)

Full

Feature set

Reduced segments

Reduced features

and segments

Figure 9: We use three forms of GPU culling before
performing exact intersection
tests between features and segments.

Terrain

Features

& Footprints

Feature Buffer

(static)

Cull Entity Set

Against Feature

Set (GPU)

Cull Feature Set

Against Entity Set

(GPU)

Exact

Footprint/Segment

Tests (CPU)

Results

Feature/ Footprint

Pairs

Reduce Footprints

Reduce Features

Render

Features

(Once)

Figure 8: We use two forms of GPU culling to limit the

number of entities and features per entity that must be

checked.

collaborating agents [Kennet et al. 1999,
Varadhan et al. 2005].

In a CGF application, quick and
accurate route planning is critical for accurate
and effective unit movement. However, a
planning task for a single unit or group can be
very expensive. When large numbers of units
require route planning, the task becomes too
daunting to be performed in a reasonable
amount of time. In the OneSAF system, the
bottleneck (taking over 50% of CPU time) is
feature analysis computation. In order to
improve the performance of planning in the
OneSAF system, we need to improve this task.
 Our route planning method performs
conservative culls similar to our collision
detection technique. This technique proceeds
in three phases:

• The number of segments is reduced by
culling them against the full feature set

• The number of features is reduced by
culling them against the reduced set of
segments

• The reduced feature set is culled
against each individual segment in the
reduced segment set

Figure 9 shows an outline of the steps
taken. First, all features are rendered into a
buffer. We then test individual route segments
against the buffer. Next, the features are
culled against a buffer of segments. Finally,
individual segments are checked against the
buffer.

Integration into OneSAF:

Route planning is broken up into feature read
and feature analysis. In Feature read, geotiles
are broken up into nodes that can later be used
for grid based A* path finding. The A*
algorithm requires segments connecting paths
to be tested against features. Feature analysis
is the process of determining what route
segments intersect features. The GPU route
planning technique accelerates feature
analysis. The OneSAF feature intersection
algorithm was run on all segments stemming
from a single node at once. Verdesca et al.
describe the integration process in more detail
[Verdesca et al.]. Our techniques have been
integrated into OneSAF block D build 24.

6 RESULTS

Our system performs rapid feature

intersection checks for potential route
segments and entites. Our system is also able
to perform multiple feature intersections in
parallel. Using this method we were able to
Conservative reduction of the number of
feature intersection tests resulting in a 30-50x
speedup in feature analysis computation for
route planning. In collision detection, we
demonstrated 5-20x speedup for dynamic
collision avoidance.

7 CONCLUSIONS

We believe that exploiting the high
computational power of GPUs is essential to
increase the complexity of simulations that
can be performed in real-time for computer

input 1

32

Figure 10: Our GPU-based culling algorithm proceeds
in three phases. First, non-intersecting segments are

pruned. Second, non-intersecting features are pruned.

Third, potentially intersecting features are paired with

segments.

generated forces using systems such as
OneSAF. Our algorithm for accelerating route
planning and collision detection using the
GPU is one example.

Our algorithm is currently integrated
into OneSAF which will reduce the time of
route planning and collision detection
computation allowing more complex scenarios
to be run.

ACKNOWLEDGEMENTS

We would like to acknowledge AMSO and
DARPA/RDECOM Contract N61339-04-C-
0043. We would also like to acknowledge Eric
Root, Marlo Verdesca, and Jaeson Munroe
from SAIC for their involvement in the
integration of this technology into OneSAF.
We are also grateful to LTC John Surdu and
the OneSAF team for their support.

REFERENCES

Henderson, D. L., 1999: Modterrain: A
proposed standard for terrain representation in
entity level simulation, MS thesis, Naval
PostGraduate School.

Messina, P., et al., 1999: Synthetic Force
Express: A New Initiative in Scalable
Computing for Military Simulation.

Govindaraju, N., Redon, S., Lin, M. and
Manocha, D., 2003: CULLIDE: Interactive
collision detection in large environments using
graphics hardware. Proc. of ACM

SIGGRAPH/Eurographics Workshop on

Graphics Hardware., 25-32.

Govindaraju, N., Lin, M., and Manocha, D.,
2004: Fast and Reliable Collision Culling
using Graphics Processors, Proc. of ACM

VRST.

Verdesca, M., Munroe, J., Hoffman, M.,
Bauer, M., Manocha, D., Using Graphics

Processor Units to Accelerate OneSAF: A
Case Study in Technology Transition Proc. of
I/ITSEC 2005. Best paper from Research
Development Category.

Salomon, B. Govindaraju, N. Sud, A., Gayle,
R, Lin, M., Manocha, D, 2004, Accelerating
Line of Sight Computations Using Graphics
Processing Units, 24th Army Science
Conference Proceedings 2004.

Hoff Kenneth, Culver T., Keyser J, Lin M.
Manocha D., 2000: Interactive Motion
Planning Using Hardware-Accelerated
Computation of Generalized Voronoi
Diagrams. IEEE Conference on Robotics and
Automation 2931-2937 vol.3

Gokul Varadhan, Dinesh Manocha, "Star-
shaped Roadmaps - A Deterministic Sampling
Approach for Complete Motion Planning",
Robotics Science & Systems 2005

