

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 1 of 10

Using Graphics Processor Units to Accelerate OneSAF:
A Case Study in Technology Transition

Marlo Verdesca,

Jaeson Munro, Michael Hoffman

Maria Bauer

Dinesh Manocha
Science Applications International

Corporation
RDECOM University of North Carolina

at Chapel Hill
Orlando, FL Orlando, FL Chapel Hill, NC

Marlo.K.Verdesca@saic.com,
Jaeson.Munro@saic.com,

Michael.R.Hoffman@saic.com

Maria.Bauer@us.army.mil

dm@cs.unc.edu

ABSTRACT

On-going research aims to accelerate the runtime processing speed of the One Semi-Automated Forces (OneSAF)
Computer Generated Forces (CGF) simulation by converting and migrating some of the core algorithms from the
host Central Processing Unit (CPU) to an on-board auxiliary Graphics Processor Unit (GPU). In this research the
GPU chip is regarded as a surrogate stream processor and appropriate algorithms are designed to map to the GPU
architecture. Processing speed gains are realized both through computational capabilities of the GPU as well as
through offloading of the host CPU. Technology transfer of this research into the OneSAF user baseline is a key
requirement of this research.

The OneSAF development program focuses on the same issues of scalability and runtime performance that will be
directly affected by use of GPUs. As program architects are marshalling conventional approaches for resolving these
challenges, the introduction of GPU-based solutions is being realized. This paper examines the challenges, planned
approaches and benchmarked results for using GPUs to accelerate OneSAF simulation.

ABOUT THE AUTHORS

Marlo Verdesca is program manager for the OneSAF Objective System (OOS) GPU research project. She has led development efforts
for OneSAF Testbed Baseline (OTB) and its predecessors, Modular Semi-Automated Forces (ModSAF). Marlo is a software engineer at
Science Applications International Corporation (SAIC) and holds a Bachelor of Science in Management Information Systems at the
University of Central Florida.

Jaeson Munro is lead developer for the OOS GPU research project. He has worked on development on the Environment Runtime
Component (ERC) for OOS, which included leading the development of the Ultra-High Resolution Building Editor for OOS. Jaeson is a
software engineer at SAIC and holds a Bachelor of Science in Computer Science at the University of Central Florida.

Michael Hoffman is a developer for the OOS GPU research project. Michael is a junior software engineer at SAIC and holds a
Bachelor of Science in Computer Science at the University of Central Florida.

Maria Bauer (US Army RDECOM-STTC) is the Principal Investigator for the Defense Advanced Research Projects Agency (DARPA)
sponsored GPU research project and the Computer Generated Forces Scalability Advanced Technology Office (ATO). Experience
includes fifteen years of software engineering and five years of program management working with Department of Defense (DOD)
military acquisition systems and simulation technology in Army programs. She holds a BSEE from the University of Miami, a MS in
Engineering Management from the University of Central Florida and a PhD in Industrial Engineering.

Dinesh Manocha is currently a professor of computer science at the University of North Carolina at Chapel Hill. He received his
B.Tech. degree in computer science and engineering from the Indian Institute of Technology, Delhi in 1987; M.S. and Ph.D. in
computer science at the University of California at Berkeley in 1990 and 1992, respectively. He is currently leading a large research
group on use of GPUs for simulation, database computations and geometric algorithms.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 2 of 10

Using Graphics Processor Units to Accelerate OneSAF:
A Case Study in Technology Transition

Marlo Verdesca,

Jaeson Munro, Michael Hoffman

Maria Bauer

Dinesh Manocha

Science Applications International
Corporation

RDECOM University of North Carolina
at Chapel Hill

Orlando, FL Orlando, FL Chapel Hill, NC
Marlo.K.Verdesca@saic.com,

Jaeson.Munro@saic.com
Michael.R.Hoffman@saic.com

Maria.Bauer@us.army.mil

dm@cs.unc.edu

INTRODUCTION

Recent advancements in Graphics Processing Unit
(GPU) technology have spurred an interest within
gaming environments and personal computing systems.
Compared to the Central Processing Unit (CPU), GPU
performance has been increasing at a much faster rate.
But, offloading extensive CPU based algorithms onto
the GPU within the One Semi-Automated Forces
(OneSAF) simulation is fairly new and experimental.

OneSAF is a composable simulation that is capable of
modeling a range of entities from individual
combatants (IC) to platforms. It allows operators,
through Graphical User Interfaces (GUI), to compose
entities, units, sophisticated behaviors and scenarios at
various levels of fidelity. OneSAF provides the
capability to effectively and accurately represent
warfare, communications, combat support and combat
service support, currently focused on land warfare.
(OneSAF, 2005)

During a large scale simulation training exercise it is
possible to have multiple OneSAF machines networked
together simulating thousands of entities on a single
battlespace. Within the exercise, entities are constantly
performing complex and expensive line of sight (LOS)
queries consuming significant amounts of process time.
OneSAF studies have indicated that more than 55% of
available CPU usage is allocated to three key functions:
terrain placement, collision detection and LOS
computations, leaving just 45% for cognitive models
and other functions. As training environments create
military-realistic exercises, more and more entities need
to be simulated and as number of entities increase, so
do the number of LOS queries, thus creating an O(N2)
problem (Salomon et al, 2004).

Route planning has similar computational issues within
OneSAF. As entities plan routes from a starting point
to destination point, the expensive A-Star (A*) routing
algorithm evaluates possible route segments based on
their cost. A cost is assessed on specified criteria such
as terrain feature intersections, trafficability, and
shortest distance. A lower cost indicates a more
favorable route (Condon, 2002). However, as OneSAF
matures and higher fidelity IC models traverse through
complex urban environments that contain Ultra High
Resolution Buildings (UHRB), this can lead to runtime
impacts on the system.

New GPU-based LOS and route planning algorithms
have been created to take advantage of the GPU
technology. The new technology has been able to
offload some of this process time from the CPU and
allow OneSAF to raise entity count, use higher fidelity
models and behaviors, or intensify terrains to use
complex urban environments that handle UHRBs.

The goal of this research project is to accelerate overall
system performance by focusing on major process
restrictions within OneSAF, such as LOS and route
planning algorithms; while taking advantage of
commercial off the shelf (COTS) hardware such as
GPUs. This paper will examine the current OneSAF
LOS and route planning algorithms and the newly
created GPU-based algorithms. It will discuss the
benchmarked findings that were performed while
looking at future efforts to make the GPU technology
an integral part of OneSAF.

GPU TECHNOLOGY

In recent months, video game enthusiasts around the
world were privy to details about the latest upcoming
consoles such as Sony’s Playstation 3 and Microsoft’s

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 3 of 10

Xbox 360. Both systems utilize high performance
GPUs and CPUs. Graphics processing units have
become an essential part of every game console or PC
system today. Currently, the GPU is mainly utilized for
rasterization of 3D primitives, which are often
strenuous on the CPU. However, as more complex
computations are evaluated on the graphics hardware, a
significant increase in computer performance can be
achieved by developing GPU-based algorithms. With
the development of programmable GPUs came new
languages and compilers, both of which permit
potentially new applications to be executed.
Furthermore, as hardware performance continues to
increase, GPUs have the potential to alleviate already
overwhelmed CPUs by performing common tasks, such
as scientific computations, simulation and visibility
problems, thereby allowing the CPU to be used for
other tasks.

Processing Speed Gains

With the barrier between the CPU and GPU
diminishing, a co-dependency is emerging between the
two, and the processing speed gains are becoming
apparent. Any sort of computation on a collection of
data, such as a military simulation, where elements are
continuously interacting with each other and their
environment, can be extremely efficient on a GPU.
Scientific computations such as linear algebra, Fast
Fourier Transform, and partial differential equations
can also benefit greatly from graphics hardware
computations. Any and all computations that take
advantage of the parallelism and pipelining on the GPU
will see a significant increase in CPU resource
availability. For example, the high-computational
output of the GPU enables parallel sorts and searches to
occur 4-5x faster1 than the Pentium 4 CPU, while other
estimates on highly complex simulations show that the
GPU can be from 10-100x faster (Stam, 2003).

CPU / GPU Comparison

GPU research indicates that graphics hardware is
affordable and offered within virtually every computer
system available today. However, an even more
important issue is the comparison in performance
results. Figure 1 illustrates how graphics hardware has
been evolving faster than the CPU, at least doubling
every six months, a rate faster than Moore’s law.

1 http://gamma.cs.unc.edu/GPUSORT

Figure 1: GPU / CPU Growth Rate

This trend is expected to continue for the next five
years and has contributed to the operating conditions
mentioned in the table below (Manocha et al, 2004).
Table 1 examines both memory bandwidth and
computational performance between the CPU and
GPU.

Table 1: Example of CPU / GPU Comparison
 CPU GPU
Memory
Bandwidth

6.4 GB/s
main

35.2 GB/s *

Peak
Computational
Performance

6 GFLOPS ** 48 GFLOPS

* Comparable to the CPU L2 cache bandwidth
** 3.2 GHz Pentium 4 SSE Theoretical
*** GeForce FX 6800: Equivalent to a 24 GHz Pentium 4

Memory bandwidth affects the performance of the
algorithm as it fetches new data from the memory and
having a higher memory bandwidth results in faster
performance. The relatively slow memory bandwidth
within the CPU-memory interface is the classic Von
Neumann bottleneck. The Computational performance
shows that the peak performance of GPUs can be
higher than CPUs for certain applications (Manocha et
al, 2005).

While memory bandwidth and computational
performance are obviously larger on a GPU, it does
have its drawbacks. For example, program architects
must consider how their application will be supported
in future GPU research and implementations. There
are no set standards that can be followed when
designing advanced graphics related algorithms, which
can leave a lack of certainty that the research will be
accepted by a technologically knowledgeable audience.
The goal is to maintain compatibility with not only the
ever-changing technology but also in understanding the
compatibility between CPU and GPU.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 4 of 10

GPU and Beyond

The current state of developing GPU-based algorithms
is an active area of research. Over the last few years
GPU related research initiatives have exploded onto
technical conferences and universities across the world.
Topics like high-precision computations, utilizing the
full capabilities of parallelism and high memory
bandwidth of GPUs, and trying to speed up the data
port between the GPU and CPU, are all becoming
synonymous with the simulation and graphics
communities (Manocha et al, 2005). In addition to
those research areas, new performance modifications,
including improved precision, programmability,
rasterization performance, occlusion queries and the
overall architecture of the GPU, will give GPUs an
enormous push in the near future. PCs with multiple
GPUs or networked GPU clusters will expand the
potential of these enhancements.

To further the gap between what a single CPU can
handle and how offloading computations onto an
onboard graphics related hardware unit can unleash
CPU resources, AGEIA Technologies Incorporated
introduced the Physics Processing Unit (PPU). The
PPU was developed to maintain fluid dynamics,
universal collision detection, rigid-body dynamics, and
smart particle systems to name a few. It is meant to be
a physics accelerator chip and is an initial push into
hardware-accelerated physics (Cross, 2005). Together
the GPU and PPU will push the limits of performance
related issues and the capabilities of simulations as
known today.

By exploiting the computational abilities of GPUs,
simulations such as OneSAF are able to increase
complexity while maintaining real-time performance.

LINE OF SIGHT

As thousands of entities are simulated within OneSAF
training exercises, complicated LOS algorithms are
constantly being performed with resultant slowdowns in
runtime performance. One goal of the GPU project is
to integrate a GPU/CPU algorithm to effectively
accelerate the overall system speedup of OneSAF while
simulating 5,000 + entities.

OneSAF LOS

For terrain surface queries, the geometric line of sight
algorithm traverses terrain triangles along a line of sight
segment. At each triangle, this algorithm checks for
intersections with the LOS segment. For each triangle

where line of sight remains unblocked, the algorithm
continues to the next triangle. This traversal stops
when either the end of the segment has been reached, or
LOS is blocked and the intersecting triangle is returned
(See Figure 2).

Figure 2: LOS (solid indicates visible; dashed,
blocked)

The get_first_triangle method finds the first triangle
that a segment traverses. The get_next_triangle
method finds the triangle that shares a given segment
with a given triangle. These get_first_triangle and
get_next_triangle routines are the fundamental steps
in retrieving and traversing the triangles during a LOS
query. At each iteration, a bounds check is performed
against the elevation of the triangle. If the segment is
within the bounds at this triangle location, then a full
ray-triangle intersection test is performed (Polygon
Traversal, 2005). The full ray-triangle pseudo-code is
listed as reference in Figure 3.

not_done = true
los_exists = true

get_first_triangle(segment, triangle)

while (los_exists and not_done)
if (areal_feature or linear_feature) then raise_triangle_vertices
if (elevations of triangle vertices < elevations of segment endpoints)

// bounds check for efficient pruning
los_exists = true

else
los_exists = not intersects(ray, triangle)

while (triangle_point_feature_list not empty and los_exists)
los_exists = not intersects (ray, point_feature_bounding_volume)

not_done = get_next_triangle(segment, triangle)

return los_exists

Figure 3: Full Ray-Triangle Pseudo-Code

Clearly, the best case for performance here would be a
segment that is intersected by the first triangle that it
traverses, because it needs to only check one triangle.
Conversely, a segment that is never intersected is the
worst case for performance.

GPU LOS

The University of North Carolina (UNC) provided a
hybrid GPU/CPU algorithm which performs
conservative culling in the GPU portion of the
algorithm. LOS queries whose segments are definitely
unblocked are quickly culled away by the GPU, thereby
reducing the number of segments that must be tested by
traversing the terrain triangles while performing this

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 5 of 10

intersection check with the CPU. As stated before,
queries with unblocked line of sight are most expensive
for the CPU. This actually becomes the best
performance case for the hybrid algorithm, as these
calls are likely to be returned after the culling step
(Salomon et al, 2004).

The algorithm works by first rendering the terrain from
above orthographically. This initial rendering must be
performed only once for a static terrain. Then, for each
query a line segment is rendered between the two query
points with a reversed depth test (GL_GREATER).
With the depth test reversed only pixels for which the
line is below the terrain will pass the depth test.
Therefore, a query has LOS if no pixels pass the depth
test as determined by an occlusion query (GL_ARB
occlusion_query) (Salomon et al, 2004).

Several optimizations have been made to the hybrid
ray-casting algorithm. While performing exact tests,
rays are traversed through a 2D grid representation of
the terrain. The maximum height of the terrain for each
cell is stored in the grid, so that a ray-triangle
intersection check only becomes necessary for cells in
which the ray is below the maximum height. The
algorithm also incorporates a mailboxing system, which
avoids testing a ray against the same triangle multiple
times when it intersects multiple grid cells. When
working with a large number of queries, the GPU and
CPU can be performing LOS computations
simultaneously. While culling one batch of queries with
the GPU, the CPU is processing the non-culled queries
from the previous batch (See Figure 4) (Salomon et al,
2004).

Figure 4: Batch 1 Produces Culled and Non-Culled

Queries

LOS Results

The OneSAF LOS scenario that is shown in Figure 5
demonstrates real-time GPU-based algorithms being
performed within OneSAF. This figure illustrates
separate engagement areas consisting of 4 medium-
resolution rotary winged aircrafts (RWA) performing
complex LOS queries on approximately 5,000 low-
resolution tanks on the OneSAF plan view display
(PVD).

Figure 5: LOS Scenario with 5,000 Entities
(Build 24 of Block D)

As the RWAs are flying toward enemy tanks the
GPU/CPU hybrid algorithm is being used to perform
LOS queries. The GPU ratios [appearing on the Tool
Bar of the PVD] represent simulation time / real time,
while real time is constant and simulation time is based
on the computational performance of OneSAF. The
GPU ‘OFF’ button represents the ratio in which
original OneSAF LOS calls are being performed. The
GPU ‘ON’ represents the ratio in which the GPU/CPU
hybrid algorithm is being performed. With respect to
the magnitude of these values, higher numbers
represent the scenario executing at a quicker rate.

After executing the scenario approximately 30+ times,
the GPU ratios were compared and conclude that using
the GPU algorithms within OneSAF produced an
average overall system performance increase of 20x
(See Figure 6).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 6 of 10

Figure 6: LOS Benchmark Data

The LOS calls alone improved from an average of 1000
microseconds without the GPU functionality to 12
microseconds with the GPU, a 100-200x improvement.
The improved performance relative to our current proof
of concept scenarios presented in November 2004 and
May of 2005 are shown in Table 2. This improvement
demonstrates that the GPU-based algorithms have the
potential to steadily improve performance as the terrain
becomes more complex and the amount of entities is
increased.

Table 2: History of Performance Increase
Date Number

of Entities
Terrain Overall System

Performance
Increase

Nov
‘04

400 Low
Resolution
M1A1 tanks

JRTC 2x

May
‘05

2934 Low
Resolution
M1A1 tanks

66 Medium
Resolution
AH-64
RWAs

JRTC 10x

Aug
‘05

4996 Low
Resolution
M1A1 tanks

4 Medium
Resolution
AH-64
RWAs

Ft. Hood 20x

ROUTE PLANNING

There are three basic types of routes within OneSAF:
Direct, Networked and Cross Country. Direct routes
follow waypoints exactly as entered by the operator and
are faster than any other route type since a cost function

is never called. Networked routes follow linear
features such as rivers and roads and cross country
routes utilize a grid of routing cells that form an
implicit network for the A* algorithm to search
(Condon, 2002). As units and entities route plan and
traverse over dense urban terrains they execute the
expensive A* algorithm which performs multiple
feature checking. This computationally intensive
algorithm has been shown to consume a great deal of
OneSAF processing time.

Future terrain environments expected for OneSAF will
contain large areas and high building densities. This
can cause route planning to be a challenge. Overall
system performance will be impacted, and entity-level
route planning will deal with increased amounts of
intersection checking against buildings and their
interiors. The second goal of the GPU project is to
integrate a GPU-based algorithm to effectively
accelerate both feature intersection checking and
overall system speedup of OneSAF.

OneSAF Route Planning

To determine a route of least cost, the Environmental
Runtime Component (ERC) first creates a network of
route nodes. An A* algorithm is implemented to
traverse through the nodes, and determine a cost for
each segment visited, which ultimately finds the route
of least cost from the starting point to the end point.

The cost of a particular segment is computed by a cost
function that has been selected by the user. These cost
functions need to know which terrain features are
intersecting a segment. Checking a segment for
intersecting terrain features is the performance
bottleneck for most route planning scenarios. This
process is broken down into two routines: "Feature
Read," which retrieves a list of features in the
surrounding area of a node, and "Feature Analysis,"
which determines which of these features intersects a
given segment associated with the node (See Figure 7).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 7 of 10

Figure 7: Operations Performed by A* within

OneSAF

The ‘Find Feature Intersection” box highlighted above,
represents the portion of the routing algorithms that
were replaced with GPU computations.

Feature Read
Each node in a route network has a slice associated
with it. A slice is any specified area between minimum
and maximum latitude, and a minimum and maximum
longitude. No bounds are given to the elevation of a
slice. The bounds of this slice are determined by
expanding the node coordinate by the specified grid
spacing in the positive and negative lat/long directions.
The same node slice is used to evaluate all possible
route segments leaving from this node (See Figure 8).

Figure 8: Size of a Node Slice Relative to Grid
Spacing

Grid spacing is passed into routing calls by the user.
The features that are considered to be within the slice
of a node are determined during the "Feature Read"
portion of the routing. This process involves first
determining which "pages" overlap the node. A page is
a fraction of a geotile. A Geotile is defined as a region
1 degree by 1 degree - approximately 10,000 square
kilometers, and in our current case, our page is 1/400 of

one geotile. Pages are defined at compile time, and
their boundaries are static. A 2-D containment check
on all the features in the overlapped pages is performed
to determine which features are near this node. A
feature is included if it passes the containment check
for the node slice.

Feature Analysis
For a potential route segment, features are classified by
traversing the list of features in the node slice and
finding all features in the list that actually intersect the
segment. This intersection checking is the "Feature
Analysis" portion of the routing.

During intersection checking, each feature is classified
as 'circle,' 'linear,' or 'areal.' For a circle, both
endpoints of the segment are checked to determine if
the circle contains them. If the circle contains neither,
an intersection occurs if the line creates a chord in the
circle. For a linear feature, a segment intersection
check is performed with the center lines of the line
segments that make up this feature. For an areal
feature, it is first determined if the polygon for this
feature contains the first point of the segment If it
does not, then the segment intersection check is
performed for every edge that defines the polygon for
this feature.

GPU Route Planning

As stated earlier, the performance bottleneck in ERC
route planning lies within the process of checking
potential route segments for intersections with terrain
features. GPU-based algorithms were developed not to
replace the route planning routines as a whole, but
rather to only replace the routines that check segments
for intersections.

The GPU-based algorithms are given a list of features
and a segment to check for intersections. Similarly to
the way in which the GPU-CPU hybrid works for LOS,
the GPU uses conservative culling to eliminate many of
the features in this list, leaving a much smaller list of
features to check with the CPU. Figure 9 displays how
the GPU-culling proceeds in three phases: (Lin et al,
2005)

• The number of segments is reduced by culling
them against the full feature set.

• The number of features is reduced by culling
them against the reduced number of segments

• The reduced feature set is culled against each
individual segment in the reduced segment set.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 8 of 10

Figure 9: Comparison between OneSAF and GPU

Route Planning

The figure also presents the difference between
OneSAF and GPU-based route planning flow.

The new algorithms for feature intersection checking
were also able to check multiple segments in parallel.
Through some modifications to the existing A*
algorithm in ERC, the GPU-CPU hybrid routine was
run on all segments stemming from a single node at
once.

Route Planning Results

The OneSAF route planning scenario that is shown in
Figure 10 demonstrates real-time the GPU-based
algorithms being used within OneSAF. The figure
illustrates a medium resolution M1A1 tank platoon and
multiple IC’s tactically traveling through the dense
urban environment of Ft. Hood, Texas. The units must
first perform necessary complex and time intensive
route planning algorithms to determine their route.

Figure 10: Route Planning Scenario with Urban
Environment Zoom (Build 24 of Block D)

The GPU time [appearing on the Tool Bar of the PVD]
represents the cumulative time in seconds it takes for
both units to calculate their routes. With respect to the
magnitude of this value, lower numbers represent the
route being calculated at a quicker rate.

After executing the scenario approximately 10+ times,
the GPU time was compared and it was concluded that
using the GPU algorithms within OneSAF produced a
feature intersection checking improvement of 30x
which produced an overall system increase of 10x.
Feature intersection checking alone improved from an
average of 68,000 milliseconds without GPU
functionality to 2,200 milliseconds with the GPU; a 30x
improvement. The cumulative route planning time for
the scenario went from 45 seconds without GPU
functionality to 4.5 seconds with the GPU; a 10x
improvement (See Figure 11).

Figure 11: Route Planning Benchmark Data

Although there was only a slight overall system
improvement with the GPU functionality, more
improvements could be made. As terrains become
more complex and ICs route through UHRBs, these

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 9 of 10

numbers could show a significant increase. The GPU-
based route planning work is only the first step.
Continuing research will look into new algorithms to
compute a new route in dynamic environments where
buildings can be destroyed.

FUTURE WORK

The GPU project has proven itself to be a successful
experiment for the OneSAF program. Preliminary LOS
and route planning results have shown overall system
improvements up to 20x; however, as on-going
development within OneSAF continues and exacting
requirements come into play, GPU research must
continuously advance to address database complexities.

Feature Dense Terrain Databases

For both the LOS and route planning demos, the terrain
used was relatively flat with low feature density (Ft.
Hood, Texas). As more complex terrains, such as the
Caspian Sea region, become available to OOS, routing
will become an even greater problem for the current
CPU based algorithms. Improvements that result from
implementation of the GPU-based intersection checks
will become even more significant.
Paging Terrain Data

ERC makes use of a paging system for handling data
from the terrain database. A database is split up into
pages, and one page remains in memory at a given
time. Such a system is necessary due to the fact that
current OOS databases contain far too much data to be
held in memory, and future OOS databases will only be
larger. The GPU-based algorithms that were integrated
into OOS did not use such a paging system, and
initially caused the system to run out of memory. The
workaround for this problem was to trim the database
down, until it was small enough that all necessary data
for the GPU could be held in memory. GPU-based
algorithms will need to be compatible with a paging
system.

Other Uses

There are still other ways in which GPU power can be
exploited for simulation performance gains in the near
future. For example the idea of using multiple GPUs
could provide an even greater advantage over the
implementation of a single GPU. Better overall
performance is expected by doing more of these GPU-
based computations in parallel. Also expected, is the
demand and the capability for entity counts to grow in
the near future. Being an O(N2) problem, LOS

becomes more of a strain on the simulation as entity
counts become higher, and speeding up the LOS calls
ultimately becomes more important.

CONCLUSION

Complex computational algorithms such as LOS and
route planning challenge the capabilities of simulations
such as OneSAF. As increased dense urban
environments are introduced and high fidelity models
incorporated, these expensive algorithms will be costly
when additional entities are added to large exercises.

The GPU technology has proven that it is possible to
use COTS hardware to make significant progress in
order to accelerate runtime processing speed within
OneSAF. By using GPU-based algorithms, increases to
the overall OneSAF simulation speedup have been
witnessed; LOS by 20x and route planning by a
preliminary 10x. Our ability to utilize the GPU
technology was essential in making this project
successful.

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Butler from SAIC
for the initial abstract development and submittal. The
GPU-based LOS algorithms were developed by Brian
Salomon and Naga Govindaraju and the route planning
algorithms were designed by David Knott, Ming Lin
and Russ Gayle at the University of North Carolina at
Chapel Hill. Michael Macedonia at PEO STRI, Angel
Rodriguez at RDECOM-STTC and Bob Graybill at
DARPA have been significant supporters of this
project.

REFERENCES

Condon, Patty. (2002). Routing Design Notes V0.1 For

the OneSAF ERC Program. Science Applications
International Corporation.

Cross, Jason. AGEIA Physics Processor at E3.

Retrieved June 6, 2005, from
http://www.extremetech.com/article2/0,1558,181792
2,00/asp?kc=ETRSS02129TX1K0

Lin, Ming, et al. (2005). GPU-Accelerated Route

Planning [Brochure], Department of Computer
Science: UNC.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2121 Page 10 of 10

Manocha, Dinesh, et al. (2005). Accelerating Computer
Generated Forces using GPUs [Presentation],
Department of Computer Science: UNC.

Manocha, Dinesh, et al. (2004). Accelerating LOS

Computations using GPUs. [Brochure], Department
of Computer Science: UNC.

OneSAF Objective System History. Retrieved June 15,

2005 from http://www.onesaf.org/public1saf.html

Polygon Traversal (LOS, Polygon RouteCrossing).

Retrieved June 14, 2005, from

https://www.onesaf.net/ERC/design_notes/poly_retri
eval_et_al.doc

Salomon, Brian, et al. (2004). Accelerating Line Of

Sight Computation Using Graphics Processing
Units. UNC, SAIC, RDECOM, PEO/STRI.

Stam, Nick, (2003). The Future of 3D Graphics.

Retrieved June 6, 2005 from
http://www.extremetch.com/article2/0,1,1558,10913
92,00.asp.

�

