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ABSTRACT 
 
On-going research aims to accelerate the runtime processing speed of the One Semi-Automated Forces (OneSAF) 
Computer Generated Forces (CGF) simulation by converting and migrating some of the core algorithms from the 
host Central Processing Unit (CPU) to an on-board auxiliary Graphics Processor Unit (GPU).  In this research the 
GPU chip is regarded as a surrogate stream processor and appropriate algorithms are designed to map to the GPU 
architecture.  Processing speed gains are realized both through computational capabilities of the GPU as well as 
through offloading of the host CPU.  Technology transfer of this research into the OneSAF user baseline is a key 
requirement of this research.   
 
The OneSAF development program focuses on the same issues of scalability and runtime performance that will be 
directly affected by use of GPUs.  As program architects are marshalling conventional approaches for resolving these 
challenges, the introduction of GPU-based solutions is being realized.  This paper examines the challenges, planned 
approaches and benchmarked results for using GPUs to accelerate OneSAF simulation. 
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INTRODUCTION 
 
Recent advancements in Graphics Processing Unit 
(GPU) technology have spurred an interest within 
gaming environments and personal computing systems.   
Compared to the Central Processing Unit (CPU), GPU 
performance has been increasing at a much faster rate.  
But, offloading extensive CPU based algorithms onto 
the GPU within the One Semi-Automated Forces 
(OneSAF) simulation is fairly new and experimental.   
 
OneSAF is a composable simulation that is capable of 
modeling a range of entities from individual 
combatants (IC) to platforms.  It allows operators, 
through Graphical User Interfaces (GUI), to compose 
entities, units, sophisticated behaviors and scenarios at 
various levels of fidelity.  OneSAF provides the 
capability to effectively and accurately represent 
warfare, communications, combat support and combat 
service support, currently focused on land warfare.  
(OneSAF, 2005) 
 
During a large scale simulation training exercise it is 
possible to have multiple OneSAF machines networked 
together simulating thousands of entities on a single 
battlespace.  Within the exercise, entities are constantly 
performing complex and expensive line of sight (LOS) 
queries consuming significant amounts of process time.  
OneSAF studies have indicated that more than 55% of 
available CPU usage is allocated to three key functions: 
terrain placement, collision detection and LOS 
computations, leaving just 45% for cognitive models 
and other functions. As training environments create 
military-realistic exercises, more and more entities need 
to be simulated and as number of entities increase, so 
do the number of LOS queries, thus creating an O(N2) 
problem (Salomon et al, 2004). 
 

Route planning has similar computational issues within 
OneSAF.  As entities plan routes from a starting point 
to destination point, the expensive A-Star (A*) routing 
algorithm evaluates possible route segments based on 
their cost.  A cost is assessed on specified criteria such 
as terrain feature intersections, trafficability, and 
shortest distance.  A lower cost indicates a more 
favorable route (Condon, 2002).  However, as OneSAF 
matures and higher fidelity IC models traverse through 
complex urban environments that contain Ultra High 
Resolution Buildings (UHRB), this can lead to runtime 
impacts on the system. 
 
New GPU-based LOS and route planning algorithms 
have been created to take advantage of the GPU 
technology.  The new technology has been able to 
offload some of this process time from the CPU and 
allow OneSAF to raise entity count, use higher fidelity 
models and behaviors, or intensify terrains to use 
complex urban environments that handle UHRBs.   
 
The goal of this research project is to accelerate overall 
system performance by focusing on major process 
restrictions within OneSAF, such as LOS and route 
planning algorithms; while taking advantage of 
commercial off the shelf (COTS) hardware such as 
GPUs.  This paper will examine the current OneSAF 
LOS and route planning algorithms and the newly 
created GPU-based algorithms.  It will discuss the 
benchmarked findings that were performed while 
looking at future efforts to make the GPU technology 
an integral part of OneSAF.   
 

 
GPU TECHNOLOGY 

 
In recent months, video game enthusiasts around the 
world were privy to details about the latest upcoming 
consoles such as Sony’s Playstation 3 and Microsoft’s 
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Xbox 360.  Both systems utilize high performance 
GPUs and CPUs.  Graphics processing units have 
become an essential part of every game console or PC 
system today.  Currently, the GPU is mainly utilized for 
rasterization of 3D primitives, which are often 
strenuous on the CPU.  However, as more complex 
computations are evaluated on the graphics hardware, a 
significant increase in computer performance can be 
achieved by developing GPU-based algorithms.  With 
the development of programmable GPUs came new 
languages and compilers, both of which permit 
potentially new applications to be executed.  
Furthermore, as hardware performance continues to 
increase, GPUs have the potential to alleviate already 
overwhelmed CPUs by performing common tasks, such 
as scientific computations, simulation and visibility 
problems, thereby allowing the CPU to be used for 
other tasks. 
 
Processing Speed Gains 
 
With the barrier between the CPU and GPU 
diminishing, a co-dependency is emerging between the 
two, and the processing speed gains are becoming 
apparent.  Any sort of computation on a collection of 
data, such as a military simulation, where elements are 
continuously interacting with each other and their 
environment, can be extremely efficient on a GPU.   
Scientific computations such as linear algebra, Fast 
Fourier Transform, and partial differential equations 
can also benefit greatly from graphics hardware 
computations.  Any and all computations that take 
advantage of the parallelism and pipelining on the GPU 
will see a significant increase in CPU resource 
availability.  For example, the high-computational 
output of the GPU enables parallel sorts and searches to 
occur 4-5x faster1 than the Pentium 4 CPU, while other 
estimates on highly complex simulations show that the 
GPU can be from 10-100x faster (Stam, 2003).  
 
CPU / GPU Comparison  
 
GPU research indicates that graphics hardware is 
affordable and offered within virtually every computer 
system available today.  However, an even more 
important issue is the comparison in performance 
results. Figure 1 illustrates how graphics hardware has 
been evolving faster than the CPU, at least doubling 
every six months, a rate faster than Moore’s law.  

                                                           
1 http://gamma.cs.unc.edu/GPUSORT 

 
 

Figure 1: GPU / CPU Growth Rate 
 
This trend is expected to continue for the next five 
years and has contributed to the operating conditions 
mentioned in the table below (Manocha et al, 2004).  
Table 1 examines both memory bandwidth and 
computational performance between the CPU and 
GPU.  
 

Table 1: Example of CPU / GPU Comparison 
 CPU GPU 
Memory 
Bandwidth 

6.4 GB/s  
main 

35.2 GB/s * 

Peak 
Computational 
Performance 

6 GFLOPS ** 48 GFLOPS 
*** 

* Comparable to the CPU L2 cache bandwidth 
** 3.2 GHz Pentium 4 SSE Theoretical 
*** GeForce FX 6800: Equivalent to a 24 GHz Pentium 4 
 
Memory bandwidth affects the performance of the 
algorithm as it fetches new data from the memory and 
having a higher memory bandwidth results in faster 
performance.  The relatively slow memory bandwidth 
within the CPU-memory interface is the classic Von 
Neumann bottleneck.  The Computational performance 
shows that the peak performance of GPUs can be 
higher than CPUs for certain applications (Manocha et 
al, 2005).   
 
While memory bandwidth and computational 
performance are obviously larger on a GPU, it does 
have its drawbacks. For example, program architects 
must consider how their application will be supported 
in future GPU research and implementations.  There 
are no set standards that can be followed when 
designing advanced graphics related algorithms, which 
can leave a lack of certainty that the research will be 
accepted by a technologically knowledgeable audience.  
The goal is to maintain compatibility with not only the 
ever-changing technology but also in understanding the 
compatibility between CPU and GPU. 
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GPU and Beyond 
 
The current state of developing GPU-based algorithms 
is an active area of research.  Over the last few years 
GPU related research initiatives have exploded onto 
technical conferences and universities across the world.   
Topics like high-precision computations, utilizing the 
full capabilities of parallelism and high memory 
bandwidth of GPUs, and trying to speed up the data 
port between the GPU and CPU, are all becoming 
synonymous with the simulation and graphics 
communities (Manocha et al, 2005). In addition to 
those research areas, new performance modifications, 
including improved precision, programmability, 
rasterization performance, occlusion queries and the 
overall architecture of the GPU, will give GPUs an 
enormous push in the near future.  PCs with multiple 
GPUs or networked GPU clusters will expand the 
potential of these enhancements.  
 
To further the gap between what a single CPU can 
handle and how offloading computations onto an 
onboard graphics related hardware unit can unleash 
CPU resources, AGEIA Technologies Incorporated 
introduced the Physics Processing Unit (PPU).  The 
PPU was developed to maintain fluid dynamics, 
universal collision detection, rigid-body dynamics, and 
smart particle systems to name a few.  It is meant to be 
a physics accelerator chip and is an initial push into 
hardware-accelerated physics (Cross, 2005).  Together 
the GPU and PPU will push the limits of performance 
related issues and the capabilities of simulations as 
known today. 
 
By exploiting the computational abilities of GPUs, 
simulations such as OneSAF are able to increase 
complexity while maintaining real-time performance. 
 
 

LINE OF SIGHT 
 
As thousands of entities are simulated within OneSAF 
training exercises, complicated LOS algorithms are 
constantly being performed with resultant slowdowns in 
runtime performance.  One goal of the GPU project is 
to integrate a GPU/CPU algorithm to effectively 
accelerate the overall system speedup of OneSAF while 
simulating 5,000 + entities.   
 
OneSAF LOS  
 
For terrain surface queries, the geometric line of sight 
algorithm traverses terrain triangles along a line of sight 
segment.  At each triangle, this algorithm checks for 
intersections with the LOS segment.  For each triangle 

where line of sight remains unblocked, the algorithm 
continues to the next triangle.  This traversal stops 
when either the end of the segment has been reached, or 
LOS is blocked and the intersecting triangle is returned 
(See Figure 2). 

 
 

Figure 2: LOS (solid indicates visible; dashed, 
blocked) 

 
The get_first_triangle method finds the first triangle 
that a segment traverses.  The get_next_triangle 
method finds the triangle that shares a given segment 
with a given triangle.  These get_first_triangle and 
get_next_triangle routines are the fundamental steps 
in retrieving and traversing the triangles during a LOS 
query.  At each iteration, a bounds check is performed 
against the elevation of the triangle.  If the segment is 
within the bounds at this triangle location, then a full 
ray-triangle intersection test is performed (Polygon 
Traversal, 2005).  The full ray-triangle pseudo-code is 
listed as reference in Figure 3. 
 
not_done = true
los_exists = true

get_first_triangle(segment, triangle)

while (los_exists and not_done)
if (areal_feature or linear_feature) then raise_triangle_vertices
if (elevations of triangle vertices < elevations of segment endpoints)

// bounds check for efficient pruning
los_exists = true

else
los_exists = not intersects(ray, triangle)

while (triangle_point_feature_list not empty and los_exists)
los_exists = not intersects (ray, point_feature_bounding_volume)

not_done = get_next_triangle(segment, triangle)

return los_exists  
 

Figure 3: Full Ray-Triangle Pseudo-Code 
 
Clearly, the best case for performance here would be a 
segment that is intersected by the first triangle that it 
traverses, because it needs to only check one triangle.  
Conversely, a segment that is never intersected is the 
worst case for performance. 
 
GPU LOS 
 
The University of North Carolina (UNC) provided a 
hybrid GPU/CPU algorithm which performs 
conservative culling in the GPU portion of the 
algorithm. LOS queries whose segments are definitely 
unblocked are quickly culled away by the GPU, thereby 
reducing the number of segments that must be tested by 
traversing the terrain triangles while performing this 
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intersection check with the CPU. As stated before, 
queries with unblocked line of sight are most expensive 
for the CPU.  This actually becomes the best 
performance case for the hybrid algorithm, as these 
calls are likely to be returned after the culling step 
(Salomon et al, 2004). 
 
The algorithm works by first rendering the terrain from 
above orthographically. This initial rendering must be 
performed only once for a static terrain. Then, for each 
query a line segment is rendered between the two query 
points with a reversed depth test (GL_GREATER). 
With the depth test reversed only pixels for which the 
line is below the terrain will pass the depth test. 
Therefore, a query has LOS if no pixels pass the depth 
test as determined by an occlusion query (GL_ARB 
occlusion_query) (Salomon et al, 2004). 
 
Several optimizations have been made to the hybrid 
ray-casting algorithm. While performing exact tests, 
rays are traversed through a 2D grid representation of 
the terrain. The maximum height of the terrain for each 
cell is stored in the grid, so that a ray-triangle 
intersection check only becomes necessary for cells in 
which the ray is below the maximum height. The 
algorithm also incorporates a mailboxing system, which 
avoids testing a ray against the same triangle multiple 
times when it intersects multiple grid cells. When 
working with a large number of queries, the GPU and 
CPU can be performing LOS computations 
simultaneously. While culling one batch of queries with 
the GPU, the CPU is processing the non-culled queries 
from the previous batch (See Figure 4) (Salomon et al, 
2004). 
 

 
Figure 4: Batch 1 Produces Culled and Non-Culled 

Queries 
 

LOS Results 
 
The OneSAF LOS scenario that is shown in Figure 5 
demonstrates real-time GPU-based algorithms being 
performed within OneSAF.  This figure illustrates 
separate engagement areas consisting of 4 medium-
resolution rotary winged aircrafts (RWA) performing 
complex LOS queries on approximately 5,000 low-
resolution tanks on the OneSAF plan view display 
(PVD).   
 

 
 

Figure 5: LOS Scenario with 5,000 Entities  
(Build 24 of Block D) 

 
As the RWAs are flying toward enemy tanks the 
GPU/CPU hybrid algorithm is being used to perform 
LOS queries.  The GPU ratios [appearing on the Tool 
Bar of the PVD] represent simulation time / real time, 
while real time is constant and simulation time is based 
on the computational performance of OneSAF.  The 
GPU ‘OFF’ button represents the ratio in which 
original OneSAF LOS calls are being performed.  The 
GPU ‘ON’ represents the ratio in which the GPU/CPU 
hybrid algorithm is being performed.  With respect to 
the magnitude of these values, higher numbers 
represent the scenario executing at a quicker rate.   
 
After executing the scenario approximately 30+ times, 
the GPU ratios were compared and conclude that using 
the GPU algorithms within OneSAF produced an 
average overall system performance increase of 20x 
(See Figure 6). 
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Figure 6: LOS Benchmark Data 
 
The LOS calls alone improved from an average of 1000 
microseconds without the GPU functionality to 12 
microseconds with the GPU, a 100-200x improvement.   
The improved performance relative to our current proof 
of concept scenarios presented in November 2004 and 
May of 2005 are shown in Table 2.  This improvement 
demonstrates that the GPU-based algorithms have the 
potential to steadily improve performance as the terrain 
becomes more complex and the amount of entities is 
increased.  
 
Table 2: History of Performance Increase 
Date Number 

of Entities 
Terrain Overall System 

Performance 
Increase 

 
Nov 
‘04 

400 Low 
Resolution 
M1A1 tanks 
 

JRTC 2x 
 

 
 

May 
‘05 

2934 Low 
Resolution 
M1A1 tanks 
 
66 Medium 
Resolution 
AH-64 
RWAs 

JRTC 10x 

 
 

Aug 
‘05 

4996 Low 
Resolution 
M1A1 tanks 
 
4 Medium 
Resolution 
AH-64 
RWAs 

Ft. Hood 20x 

 
 

ROUTE PLANNING 
 
There are three basic types of routes within OneSAF:  
Direct, Networked and Cross Country.  Direct routes 
follow waypoints exactly as entered by the operator and 
are faster than any other route type since a cost function 

is never called.  Networked routes follow linear 
features such as rivers and roads and cross country 
routes utilize a grid of routing cells that form an 
implicit network for the A* algorithm to search 
(Condon, 2002).  As units and entities route plan and 
traverse over dense urban terrains they execute the 
expensive A* algorithm which performs multiple 
feature checking.  This computationally intensive 
algorithm has been shown to consume a great deal of 
OneSAF processing time.   
 
Future terrain environments expected for OneSAF will 
contain large areas and high building densities.  This 
can cause route planning to be a challenge.  Overall 
system performance will be impacted, and entity-level 
route planning will deal with increased amounts of 
intersection checking against buildings and their 
interiors.  The second goal of the GPU project is to 
integrate a GPU-based algorithm to effectively 
accelerate both feature intersection checking and 
overall system speedup of OneSAF.   
 
OneSAF Route Planning 
 
To determine a route of least cost, the Environmental 
Runtime Component (ERC) first creates a network of 
route nodes.  An A* algorithm is implemented to 
traverse through the nodes, and determine a cost for 
each segment visited, which ultimately finds the route 
of least cost from the starting point to the end point.   
 
The cost of a particular segment is computed by a cost 
function that has been selected by the user.  These cost 
functions need to know which terrain features are 
intersecting a segment.  Checking a segment for 
intersecting terrain features is the performance 
bottleneck for most route planning scenarios.  This 
process is broken down into two routines: "Feature 
Read," which retrieves a list of features in the 
surrounding area of a node, and "Feature Analysis," 
which determines which of these features intersects a 
given segment associated with the node (See Figure 7). 
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Figure 7:  Operations Performed by A* within 

OneSAF 
 
The ‘Find Feature Intersection” box highlighted above, 
represents the portion of the routing algorithms that 
were replaced with GPU computations.   
 
Feature Read 
Each node in a route network has a slice associated 
with it.  A slice is any specified area between minimum 
and maximum latitude, and a minimum and maximum 
longitude.  No bounds are given to the elevation of a 
slice.  The bounds of this slice are determined by 
expanding the node coordinate by the specified grid 
spacing in the positive and negative lat/long directions.  
The same node slice is used to evaluate all possible 
route segments leaving from this node (See Figure 8). 
 

 
 

Figure 8: Size of a Node Slice Relative to Grid 
Spacing 

 
Grid spacing is passed into routing calls by the user.  
The features that are considered to be within the slice 
of a node are determined during the "Feature Read" 
portion of the routing. This process involves first 
determining which "pages" overlap the node.  A page is 
a fraction of a geotile. A Geotile is defined as a region 
1 degree by 1 degree - approximately 10,000 square 
kilometers, and in our current case, our page is 1/400 of 

one geotile.  Pages are defined at compile time, and 
their boundaries are static.  A 2-D containment check 
on all the features in the overlapped pages is performed 
to determine which features are near this node.  A 
feature is included if it passes the containment check 
for the node slice.   
 
Feature Analysis 
For a potential route segment, features are classified by 
traversing the list of features in the node slice and 
finding all features in the list that actually intersect the 
segment.  This intersection checking is the "Feature 
Analysis" portion of the routing. 
 
During intersection checking, each feature is classified 
as 'circle,' 'linear,' or 'areal.'  For a circle, both 
endpoints of the segment are checked to determine if 
the circle contains them.  If the circle contains neither, 
an intersection occurs if the line creates a chord in the 
circle.  For a linear feature, a segment intersection 
check is performed with the center lines of the line 
segments that make up this feature.  For an areal 
feature, it is first determined if the polygon for this 
feature contains the first point of the segment   If it 
does not, then the segment intersection check is 
performed for every edge that defines the polygon for 
this feature. 
 
GPU Route Planning 
 
As stated earlier, the performance bottleneck in ERC 
route planning lies within the process of checking 
potential route segments for intersections with terrain 
features.  GPU-based algorithms were developed not to 
replace the route planning routines as a whole, but 
rather to only replace the routines that check segments 
for intersections.  
 
The GPU-based algorithms are given a list of features 
and a segment to check for intersections.  Similarly to 
the way in which the GPU-CPU hybrid works for LOS, 
the GPU uses conservative culling to eliminate many of 
the features in this list, leaving a much smaller list of 
features to check with the CPU.  Figure 9 displays how 
the GPU-culling proceeds in three phases: (Lin et al, 
2005) 

• The number of segments is reduced by culling 
them against the full feature set. 

• The number of features is reduced by culling 
them against the reduced number of segments 

• The reduced feature set is culled against each 
individual segment in the reduced segment set. 
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Figure 9: Comparison between OneSAF and GPU 

Route Planning 
 
The figure also presents the difference between 
OneSAF and GPU-based route planning flow.   
 
The new algorithms for feature intersection checking 
were also able to check multiple segments in parallel.  
Through some modifications to the existing A* 
algorithm in ERC, the GPU-CPU hybrid routine was 
run on all segments stemming from a single node at 
once.   

 
Route Planning Results 
 
The OneSAF route planning scenario that is shown in 
Figure 10 demonstrates real-time the GPU-based 
algorithms being used within OneSAF.  The figure 
illustrates a medium resolution M1A1 tank platoon and 
multiple IC’s tactically traveling through the dense 
urban environment of Ft. Hood, Texas.  The units must 
first perform necessary complex and time intensive 
route planning algorithms to determine their route.   
 
 

 
 
 

 
 

Figure 10: Route Planning Scenario with Urban 
Environment Zoom (Build 24 of Block D) 

 
The GPU time [appearing on the Tool Bar of the PVD] 
represents the cumulative time in seconds it takes for 
both units to calculate their routes.  With respect to the 
magnitude of this value, lower numbers represent the 
route being calculated at a quicker rate.   
 
After executing the scenario approximately 10+ times, 
the GPU time was compared and it was concluded that 
using the GPU algorithms within OneSAF produced a 
feature intersection checking improvement of 30x 
which produced an overall system increase of 10x.  
Feature intersection checking alone improved from an 
average of 68,000 milliseconds without GPU 
functionality to 2,200 milliseconds with the GPU; a 30x 
improvement.  The cumulative route planning time for 
the scenario went from 45 seconds without GPU 
functionality to 4.5 seconds with the GPU; a 10x 
improvement (See Figure 11). 
 

 
 

Figure 11: Route Planning Benchmark Data 
 

Although there was only a slight overall system 
improvement with the GPU functionality, more 
improvements could be made.  As terrains become 
more complex and ICs route through UHRBs, these 
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numbers could show a significant increase.  The GPU-
based route planning work is only the first step.  
Continuing research will look into new algorithms to 
compute a new route in dynamic environments where 
buildings can be destroyed. 
 
 

FUTURE WORK 
 
The GPU project has proven itself to be a successful 
experiment for the OneSAF program.  Preliminary LOS 
and route planning results have shown overall system 
improvements up to 20x; however, as on-going 
development within OneSAF continues and exacting 
requirements come into play, GPU research must 
continuously advance to address database complexities. 
 
Feature Dense Terrain Databases 
 
For both the LOS and route planning demos, the terrain 
used was relatively flat with low feature density (Ft. 
Hood, Texas).  As more complex terrains, such as the 
Caspian Sea region, become available to OOS, routing 
will become an even greater problem for the current 
CPU based algorithms.  Improvements that result from 
implementation of the GPU-based intersection checks 
will become even more significant. 
Paging Terrain Data 
 
ERC makes use of a paging system for handling data 
from the terrain database.  A database is split up into 
pages, and one page remains in memory at a given 
time.  Such a system is necessary due to the fact that 
current OOS databases contain far too much data to be 
held in memory, and future OOS databases will only be 
larger.  The GPU-based algorithms that were integrated 
into OOS did not use such a paging system, and 
initially caused the system to run out of memory.  The 
workaround for this problem was to trim the database 
down, until it was small enough that all necessary data 
for the GPU could be held in memory.  GPU-based 
algorithms will need to be compatible with a paging 
system. 
 
Other Uses 
 
There are still other ways in which GPU power can be 
exploited for simulation performance gains in the near 
future.  For example the idea of using multiple GPUs 
could provide an even greater advantage over the 
implementation of a single GPU.  Better overall 
performance is expected by doing more of these GPU-
based computations in parallel.  Also expected, is the 
demand and the capability for entity counts to grow in 
the near future.  Being an O(N2) problem, LOS 

becomes more of a strain on the simulation as entity 
counts become higher, and speeding up the LOS calls 
ultimately becomes more important.  
 
 

CONCLUSION 
 
Complex computational algorithms such as LOS and 
route planning challenge the capabilities of simulations 
such as OneSAF.  As increased dense urban 
environments are introduced and high fidelity models 
incorporated, these expensive algorithms will be costly 
when additional entities are added to large exercises.   
 
The GPU technology has proven that it is possible to 
use COTS hardware to make significant progress in 
order to accelerate runtime processing speed within 
OneSAF.  By using GPU-based algorithms, increases to 
the overall OneSAF simulation speedup have been 
witnessed; LOS by 20x and route planning by a 
preliminary 10x.  Our ability to utilize the GPU 
technology was essential in making this project 
successful.   
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