
Logarithmic Perspective Shadow Maps

D. BRANDON LLOYD1,2, NAGA K. GOVINDARAJU2, CORY QUAMMEN1,

STEVEN E. MOLNAR3, and DINESH MANOCHA1

1 University of North Carolina at Chapel Hill
2 Microsoft Corporation
3 NVIDIA Corporation

We present a novel shadow map parameterization to reduce perspective aliasing artifacts for both

point and directional light sources. We derive the aliasing error equations for both types of light
sources in general position. Using these equations we compute tight bounds on the aliasing error.

From these bounds we derive our shadow map parameterization, which is a simple combination

of a perspective projection with a logarithmic transformation. We formulate several types of
logarithmic perspective shadow maps (LogPSMs) by replacing the parameterization of existing

algorithms with our own. We perform an extensive error analysis for both LogPSMs and existing

algorithms. This analysis is a major contribution of this paper and is useful for gaining insight
into existing techniques. We show that compared with competing algorithms, LogPSMs can

produce significantly less aliasing error. Equivalently, for the same error as competing algorithms,

LogPSMs can produce significant savings in both storage and bandwidth. We demonstrate the
benefit of LogPSMs for several models of varying complexity.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics

and Realism—Color, shading, shadowing, and texture

General Terms: Algorithms, Theory

Additional Key Words and Phrases: shadow maps, antialiasing

1. INTRODUCTION

The shadow map algorithm [Williams 1978] is a popular approach for hard shadow computation in interactive
applications. It uses a depth buffer rendered from the viewpoint of the light to compute shadows in an
image. Shadow maps are relatively easy to implement, deliver good performance on commodity GPUs, and
can handle complex, dynamic scenes. Other alternatives for hard shadows, such as shadow volumes or ray
tracing, can produce high-quality shadows, but may exhibit poor performance on complex models or dynamic
scenes.

A major disadvantage of shadow maps is that they are prone to aliasing artifacts which give rise to
jagged shadow edges. Aliasing error can be classified as perspective or projection aliasing [Stamminger and
Drettakis 2002]. Perspective aliasing on a surface depends on its position of a surface relative to the light and
eye, and projection aliasing depends on the surface orientation. Possible solutions to overcome both kinds
of aliasing include very high resolution shadow maps, adaptive shadow maps that support local variation
in shadow map resolution, or irregularly sampled shadow maps. However, these techniques have major
disadvantages; they can have high memory bandwidth and storage costs, they can be difficult to implement
efficiently within the current graphics pipeline, and/or they can require substantial changes to the current
rasterization architectures.

Among the fastest shadow mapping solutions are those that reduce perspective aliasing by reparameterizing
the shadow map to allocate more samples to the undersampled regions of a scene. Several warping algorithms,
such as perspective shadow maps (PSMs) [Stamminger and Drettakis 2002] and their variants [Wimmer et al.
2004; Martin and Tan 2004], have been proposed to alter a shadow map’s sample distribution. However,

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008, Pages 1–39.

2 · Lloyd et al.

1

PSM cube map LogPSM PSM cube map error LogPSM error

Fig. 1: Night-time scene of robots in a hangar with a point light. We compare our algorithm (LogPSM) to Kozlov’s
improved perspective shadow map (PSM) algorithm [Kozlov 2004]. Both algorithms use cube maps whose faces have a
combined resolution of about 1024× 1024. The images have a resolution of 512× 512. (Left) Compared to a standard
cube map, the PSM cube map greatly reduces aliasing artifacts near the viewer, but some aliasing is still visible. The
shadows are severely stretched on the back wall. LogPSMs provide higher quality both near the viewer and in the
distance. The shadow map grid has been superimposed to aid visualization (grid lines every 20 texels). (Right) An
error visualization for both algorithms. We use an error metric, m, that is essentially the area of a shadow map
texel projected into the image. Green represents no aliasing (m = 1) and dark red (m > 11) represents high aliasing.
LogPSMs provide significantly lower maximum error and the error is more evenly distributed.

the parameterization used by these algorithms can produce a poor approximation to the optimal sample
distribution. Therefore existing warping algorithms can still require high shadow map resolution to reduce
aliasing. Recent work suggests that a logarithmic parameterization is closer to optimal [Wimmer et al. 2004;
Lloyd et al. 2006; Zhang et al. 2006]. Other algorithms produce a discrete approximation of a logarithmic
parameterization by partitioning the view frustum along the view vector and using a separate shadow map
for each sub-frustum [Tadamura et al. 1999; Zhang et al. 2006; Engel 2007]. To reduce the error to acceptable
levels, however, these algorithms can require a large number of partitions, which hurts performance.

Main Results

In this paper, we present logarithmic perspective shadow maps (LogPSMs). LogPSMs are extensions of
existing perspective warping algorithms which use a small number of partitions in combination with our
improved warping function to achieve significantly less error than competing algorithms. Some of the novel
aspects of our work include:

(1) Error analysis for general configurations. We compute aliasing error for point and directional lights
in general configurations. The error analysis performed in previous work has typically been restricted to
directional lights in a few special configurations [Stamminger and Drettakis 2002; Wimmer et al. 2004;
Zhang et al. 2006]. The methods used in this analysis can be used for evaluating future algorithms, as
well as for gaining insight into existing ones.

(2) LogPSM parameterization. Based on the error analysis, we derive a new shadow map parameter-
ization with tight bounds on the perspective aliasing error. We show that the error is O(log(f/n))
where f/n is the ratio of the far to near plane distances of the view frustum. In contrast, the error of
existing warping algorithms is O(f/n). The parameterization is a simple combination of a logarithmic
transformation with a perspective projection.

(3) LogPSM algorithms. Our algorithms are the first to use a continuous logarithmic parameterization
and can produce high quality shadows with less shadow map resolution than that required by similar
algorithms.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 3

We also discuss an improvement to the LiSPSM algorithm, as well as various implementation details
of LogPSMs that are also useful for other shadow map algorithms. We perform a detailed comparison
of LogPSMs with other algorithms using several different techniques. We demonstrate significant error
reductions on several models of varying complexity.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 presents our
derivation of the aliasing error equations. In Section 4 we use these equations to derive tight bounds on
the error. In Section 5 we derive the LogPSM parameterization. Section 6 describes the various LogPSM
algorithms. We present our results and comparisons with other algorithms in Section 7 and then conclude
with some ideas for future work.

2. PREVIOUS WORK

In this section we briefly review the approaches currently used to handle shadow map aliasing. The ap-
proaches can be classified as sample redistribution techniques, improved reconstruction techniques, and
hybrid approaches. Besides shadow mapping, other algorithms for hard shadow generation include ray trac-
ing and shadow volume algorithms. However, these approaches are currently unable to handle complex
dynamic environments at high resolution and high frame rates.

2.1 Sample redistribution techniques

Focussing the shadow map on just the visible portion of the scene [Brabec et al. 2002] or increasing the
resolution reduces aliasing error by uniformly increasing the shadow map sampling density. Further error
reductions can be obtained by redistributing the samples nonuniformly, placing more samples where the
aliasing error is highest. We classify sample redistribution techniques into several categories: warping,
partitioning, combinations of warping and partitioning, and irregular sampling.

Warping. Warping techniques use a nonuniform parameterization of the shadow map to redistribute
the samples. The use of warping to handle aliasing was introduced with perspective shadow maps (PSMs)
[Stamminger and Drettakis 2002]. A PSM is created by rendering the scene in the post-perspective space
of the camera. Light-space perspective shadow maps (LiSPSMs) [Wimmer et al. 2004] are a generalization
of PSMs which avoid some of the problems of rendering in post-perspective space. Trapezoidal shadow
maps (TSMs) [Martin and Tan 2004] are similar to LiSPSMs, except that the parameter for the perspective
projection is computed with a heuristic. Chong and Gortler [2007] propose an optimization framework for
computing a perspective projection that minimizes aliasing in the image.

Partitioning. Partitioning techniques use multiple shadow maps to provide local control over the sample
distribution. Plural sunlight buffers [Tadamura et al. 1999] and cascaded shadow maps [Engel 2007] use
a simple partitioning approach that splits the frustum along the view vector at intervals that increase
geometrically with distance from the eye. Parallel-split shadow maps [Zhang et al. 2006] also partition along
the view vector, but use a combination of geometric and uniform distances to compute the split locations.
Adaptive shadow maps [Fernando et al. 2001] and resolution matched shadow maps [Lefohn et al. 2007]
represent the shadow map as a quadtree of fixed resolution tiles. While the quadtree-based approaches can
deliver high quality, they can also require a large number of render passes. Tiled shadow maps [Arvo 2004]
partition a single, fixed-resolution shadow map into tiles of different sizes guided by an error measurement
heuristic. Forsyth [2006] proposes a partitioning technique that uses a greedy clustering of objects into
multiple shadow frusta.

Warping + partitioning. Warping can be combined with multiple shadow map partitions. Chong [2003]
presents an algorithm for 2D flatland which performs perspective warping combined with partitioning. Chong
and Gortler [2004] use a general projective transform to establish a one-to-one correspondence between pixels
in the image and the texels in the shadow map, but only for a single plane within the scene. They use a

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

4 · Lloyd et al.

small number of shadow maps to cover a few prominent, planar surfaces, which can be considered a form
of partitioning. Kozlov [2004] uses a cube map to render the shadow map in the post-perspective space of
the camera. Queried virtual shadow maps [Giegl and Wimmer 2007b] and fitted virtual shadow maps [Giegl
and Wimmer 2007a] combine LiSPSMs with an adaptive partitioning scheme. Lloyd et al. [2006] analyze
various combinations of warping and partitioning and suggest that a combination of LiSPSMs with cascaded
shadow maps gives the lowest error.

Irregular sampling. Instead of inferring sample locations from a regular grid using a parameterization,
irregular shadow maps [Johnson et al. 2004; Aila and Laine 2004] sample explicitly at the locations from
which the shadow map is queried during image rendering. The results are equivalent to ray tracing. Because
GPUs are heavily optimized for rasterization and coherent access to samples stored on a regular grid,
irregular shadow maps can be difficult to implement efficiently on current graphics architectures. Several
implementations exists [Arvo 2007; Sintorn et al. 2008], but their performance is significantly less than that of
the simpler warping techniques. A hardware architecture for implementing irregular shadow maps has been
proposed [Johnson et al. 2005], but requires significant modifications of current GPUs in order to support
efficient data scattering. The recently proposed Larrabee architecture has better support for irregular data
structures [Seiler et al. 2008]. Irregular shadow maps have been implemented on the architecture, but it is
still unclear how well they perform relative to regular rasterization because no absolute performance numbers
have been released.

2.2 Filtering techniques

Two sampling processes are involved in shadow mapping – the initial sampling of the scene used to render
the shadow map, and the sampling of the shadow map that occurs when rendering the image. None of the
aforementioned techniques directly address aliasing that occurs while rendering the shadow map. Aliasing
during image rendering can occur in the distance away from the viewer where the shadow map is under-
sampled. Filtering techniques, such as mip-mapping or summed area tables, are typically used to handle
these kinds of artifacts. The jagged shadow edges addressed by this paper arise from the use of nearest-
neighbor sampling when reconstructing the visibility “signal” from the sampled scene representation stored
in the shadow map. A more accurate reconstruction filter (e.g. bilinear interpolation) replaces the jagged
edges with a blurred edged. On one hand this can sometimes be desirable because it resembles soft-shadow
penumbra, although it is not physically correct. On the other hand, the blur can be excessive, in which
case a higher initial sampling frequency is required. When the frequency is high enough, nearest-neighbor
sampling can be used without introducing jagged edges. The higher sampling frequency can be obtained by
increasing the shadow map resolution or by sample redistribution. Filtering and sample redistribution are
orthogonal and can often be used together.

Standard filtering techniques, such as interpolation and mip-mapping, cannot be applied directly to a
depth-based shadow map. Percentage closer filtering (PCF) [Reeves et al. 1987] first computes visibility at
sample locations and then applies a filter to the results. Several algorithms use either a statistical represen-
tation of depth [Donnelly and Lauritzen 2006; Lauritzen and McCool 2008; Salvi 2008] or a representation of
the visibility function [Annen et al. 2007; Annen et al. 2008] to which standard texture filtering techniques
can be applied. Scherzer et al. [2007] reuse the shadowing information from previous frames to provide both
temporal smoothing and more accurate reconstruction of hard shadow edges.

2.3 Hybrid approaches

Hybrid techniques combine image-based shadow maps with object-space methods. Silhouette shadow maps
[Sen et al. 2003] reconstruct a more accurate shadow edge by augmenting the shadow map with extra
geometric information about the location of the silhouette edges of shadow casters. The shadow volume
algorithm [Crow 1977] is a popular object-space method that does not suffer from aliasing artifacts, but can
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 5

require very high fill rate to maintain performance. Shadow maps have been combined with shadow volumes
to address the fill rate problems. McCool [2001] constructs a shadow volume from edges in a shadow map,
yielding a simplified shadow volume. Chan and Durand [2004] use a shadow map to limit shadow volume
rendering to only the regions that are near shadow boundaries.

3. SHADOW MAP ALIASING ERROR

In this section we describe how to quantify aliasing error and derive the equations for the error in a 2D
scene. To our knowledge, ours is the first analysis that quantifies perspective aliasing error for point lights in
general position. The analysis also extends to directional lights. The analysis in previous work is typically
performed for a directional light for a few specific configurations [Stamminger and Drettakis 2002; Wimmer
et al. 2004; Lloyd et al. 2006]. A notable exception [Zhang et al. 2006] computes perspective aliasing error
for directional lights over a range of angles, but only along a single line through the view frustum. After
deriving the equations for 2D, we extend our analysis to 3D.

3.1 Quantifying aliasing error

The aliasing error that results in jagged shadow edges is caused when the sampling frequency used to render
the shadow map from the viewpoint of the light is lower than the frequency at which the shadow map is
sampled when rendering the image from the viewpoint of the eye. Ideally, the eye sample locations should
coincide exactly with the light sample locations, as with ray tracing or the irregular z-buffer, in which case
the sampling frequency match implicitly. For our derivations we choose to work with the spacing between
samples because it is more intuitive geometrically than frequency. Figure 2 shows how the spacing between
a pair of eye and light samples changes as they are traced through through a simple 2D scene. Aliasing
error occurs when the light sample spacing is greater than the eye sample spacing. If we define j ∈ [0, 1] and
t ∈ [0, 1] as normalized image and shadow map coordinates, then aliasing error can be quantified as:

m =
rj
rt

dj
dt
, (1)

where rj and rt are the image and shadow map resolutions.1 Aliasing occurs when m > 1.

3.2 Deriving aliasing error

To derive dj/dt in Equation 1, we first compute j as a function of t from Figure 2 by tracing a sample from
the shadow map to its corresponding location in the image. We begin by introducing some notation. A
point p and a vector ~v are expressed as a column vectors in affine coordinates with the last entry equal to 1
for a point and 0 for a vector. Simpler formulas might be obtained by using full homogeneous coordinates,
but we are interested in an intuitive definition of aliasing in terms of distances and angles, which are easier
to compute with affine coordinates. v̂ is a normalized vector. A plane (or line in 2D) π is a row vector
(n̂>,−D), where D is the distance to the plane (line) from the origin along the normal n̂. πp gives the
signed distance of p from the plane and πv̂ = n̂ · v̂ = cosα, where α is the angle between n̂ and v̂. Please
refer to Table I for the meaning of specific symbols used in this section.

The inverse of the shadow map parameterization F is a function G that maps a point t in the shadow map
to the normalized light plane coordinate v ∈ [0, 1]. The point pl on the light image plane πl corresponding
to v is given by:

pl = pl0 + vWlŷl, (2)

1We choose j and t as coordinates due to the fact that we are essentially looking at the side view of a 3D frustum. We will also

use the coordinates i and s later when we look at the equations for 3D.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

6 · Lloyd et al.

1

eye

light

w0l

light image
plane

shadow map

eye image
plane

G

F

w0e

(∆v)l

(∆v)e

1

p

pe

1

1

0

0 ne de

θ

φe ψe
ψl

πe

π

1

F

G

shadow map

πl

φl

pl
nl

dl

v : 0

t : 0

j : 0

pl0

pe0

ẑe

ŷe

n̂

b̂

ẑl

ŷl

v̂l

v̂e
E

L

e

l

Fig. 2: Computing aliasing error. (Left) Spacing between locations corresponding to a pair of samples from the
light (shadow map texels) and the eye (image pixels). Aliasing error can be quantified as the ratio of the spacing
between the light and eye sample locations. (Right) The sample spacing is related to the derivatives of the function
j(t) that maps a point t ∈ [0, 1] in the shadow map to pl on the light’s image plane πl, projects pl through the light
to p on a planar surface π in the scene, and projects p through the eye to a point pe on the eye’s image plane πe.

F,G shadow map parameterization and its inverse
(i, j)> eye image plane coordinates
(s, t)> shadow map coordinates
(u, v)> light image plane coordinates

ri × rj image resolution
rs × rt shadow map resolution
x̂l, ŷl, ẑl light space coordinate axes
x̂e, ŷe, ẑe eye space coordinate axes

n̂ surface normal

b̂ vector along the surface

πl,πe light and eye image planes
π a planar surface in the scene

pl0,pe0 origins of coordinate systems on the light and

eye image planes
pl,pe points on the light and eye image planes

p point on a surface
l, e light and eye positions

L,E rays from the light and eye

v̂l, v̂l direction of rays from light and eye
θ half of the frustum field of view

φl, φe angle between image plane normals and rays

of light and eye
ψl, ψe angle between surface normal and light and

eye rays
βl, βe angle between surface normal and light and

eye image planes
dl, de distance along ẑl and ẑe from light and eye

to a point in the scene

nl, ne distance from light and eye to respective im-

age plane
Wl,We widths of the light and eye image planes

wl, we widths of light and eye beams
w′l, w

′
e widths of light and eye beams projected on a

surface

w⊥ẑe
e width of an eye beam measured perpendicu-

lar to ẑe

(∆v)l, (∆v)e sample spacing in v on light image plane

δl, δe spacing distribution function for the light and
eye

δ̃e perspective factor of δe

Table I: Some symbols used in this section

where Wl is the width of the portion of πl covered by the shadow map. Projecting pl onto a planar surface
π along the ray L through the light position l yields:

p = pl −
πpl

π(pl − l)
(pl − l). (3)

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 7

This point is then projected onto the eye image plane πe along the ray E through the eye position e:

pe = p− πep
πe(e− p)

(e− p). (4)

The eye image plane is parameterized with an equation similar to Equation 2 except that j is used instead
of v. The j coordinate can be computed from pe as:

j =
ŷe · (pe − pe0)

We
=

ŷ>e (pe − pe0)
We

. (5)

ŷe is transposed to convert the dot product into multiplication by a row vector.
To compute dj/dt we use the chain rule:

dj
dt

=
∂j

∂pe

∂pe
∂p

∂p
∂pl

∂pl
∂v

dv
dt

(6)

∂j

∂pe
=

ŷ>e
We

(7)

∂pe
∂p

= I +
πep

πe(e− p)
I− πee

(πe(e− p))2
((e− p)πe) (8)

∂p
∂pl

= I− πpl
π(pl − l)

I +
πl

(π(pl − l))2
((pl − l)π) (9)

∂pl
∂v

= Wlŷl (10)

dv
dt

=
dG
dt
. (11)

The notation ∂p
∂q is shorthand for the Jacobian matrix:

∂p
∂q

=




∂p0
∂q0
· · · ∂p0

∂qn

...
. . .

...
∂pn

∂q0
· · · ∂pn

∂qn




More details on vector partial derivatives can be found in a vector calculus text [Hubbard and Hubbard
2001].

The expression for dj/dt is quite complex. In 2D, it can be reduced to a simpler form through judicious
substitutions. We first multiply together Equations 9–11:

∂p
∂t

=
∂p
∂pl

∂pl
∂v

∂v

∂t

= Wl
dG
dt

(
ŷl −

πpl
π(pl − l)

ŷl +
(πl)(πŷl)

(π(pl − l))2
(pl − l)

)

= Wl
dG
dt

(
π(pl − l)− πpl

π(pl − l)
ŷl +

(πl)(πŷl)
(π(pl − l))2

(pl − l)
)

= Wl
dG
dt

πl
π(pl − l)

(
πŷl

π(pl − l)
(pl − l)− ŷl

)
. (12)

The πl and π(pl − l) terms are proportional to dl and −nl, respectively, so their ratio can be replaced
with −dl/nl. Superimposing the light and surface coordinate systems, we see that we can substitute πŷl =

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

8 · Lloyd et al.

− sinβl, where βl is the angle between ẑl and n̂. We substitute ||pl− l||v̂l into the remaining (pl− l) terms,
where −v̂l is the direction from the light. We then replace the resulting πv̂l term with − cosψl:

∂p
∂t

= Wl
dG
dt

dl
nl

(
ŷl −

sinβl
cosψl

v̂l

)
. (13)

We then expand ŷl an v̂l in terms of the surface coordinate axes (b̂, n̂):

ŷl = cosβlb̂− sinβln̂ (14)

v̂l = − sinψlb̂− cosψln̂. (15)

Substituting these equations into Equation 13 and utilizing the fact that ψl − βl = φl yields:

dp
dt

= Wl
dG
dt

dl
nl

(cosψl cosβl + sinψl sinβl)
cosψl

b̂

= Wl
dG
dt

dl
nl

cos(ψl − βl)
cosψl

b̂

= Wl
dG
dt

dl
nl

cosφl
cosψl

b̂. (16)

Now we multiply together Equations 7, 8, and 16 and substitute πee = ne, πe(e− p) = de, and (e− p) =
||e− p||v̂e:

dj
dt

=
dG
dt

Wl

We

ne
nl

dl
de

cosφl
cosψl

(
ŷ>e b̂− (ŷ>e v̂e)(πeb̂)

πev̂e

)
. (17)

Substituting ŷ>e b̂ = cosβe, ŷ>e v̂e = sinφe, πeb̂ = − sinβe, and πev̂e = cosφe, and utilizing the fact that
βe − φe = ψe yields the simplified version of dj/dt:

dj
dt

=
dG
dt

Wl

We

ne
nl

dl
de

cosφl
cosψl

(cosφe cosβe + sinφe sinβe)
cosφe

=
dG
dt

Wl

We

ne
nl

dl
de

cosφl
cosψl

cos(βe − φe)
cosφe

=
dG
dt

Wl

We

ne
nl

dl
de

cosφl
cosψl

cosψe
cosφe

. (18)

Plugging dj/dt into Equation 1 yields the final expression for aliasing error:

m =
rj
rt

dG
dt

Wl

We

ne
nl

dl
de

cosφl
cosφe

cosψe
cosψl

. (19)

3.2.1 Geometric derivation. Some basic intuition for the terms in Equation 19 can be obtained by con-
sidering an equivalent but less rigorous derivation of m from the relative sample spacing on a surface in the
scene (see Figure 2). A beam from the light through a region on the light image plane corresponding to
a single shadow map texel projects onto the surface with width w′l. A beam from the eye through a pixel
also projects onto the surface with width w′e. The aliasing error on the surface is given by the ratio of the
projected beam widths:

m =
w′l
w′e
. (20)

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 9

1

w
0
e

ψe

φe

w
e

ψe

φe

eye
beam

surfacev̂e

n̂

beam widths

ẑe

w
⊥
ẑ
e

e

βe

Fig. 3: Computing the projected eye beam width on a surface. we is the actual width of the beam, w′e is the
width of the projection onto the surface, and w⊥ẑe is the width of beam measured perpendicular to ẑe.

By the properties of similar triangles, the width of a pixel on πe at a distance of ne from the eye becomes
w⊥ẑe
e at a distance of de where the beam intersects the surface:

w⊥ẑe
e =

We

rj

de
ne

(21)

For a narrow beam, we can assume that the sides of the beam are essentially parallel. From Figure 3 we
see that multiplying w⊥ẑe

e by cosφe gives the actual width of the beam we and dividing by cosψe gives the
width of its projection w′e:

we = w⊥ẑe
e cosφe (22)

w′e =
we

cosψe
=
We

rj

de
ne

cosφe
cosψe

. (23)

Similarly, a shadow map texel maps to a segment of width (Wl/rt)(dG/dt) on the light image plane producing
a projected light beam width on the surface of:

w′l =
Wl

rt

dG
dt

dl
nl

cosφl
cosψl

. (24)

Plugging Equations 23 and 24 into Equation 20 yields Equation 19.

3.2.2 Directional lights. As a point light at l moves away towards infinity it converges to a directional
light l̂. Equation 3 converges to:

p = pl −
πpl
πl̂

l̂. (25)

Equation 9 becomes:

∂p
∂pl

= I− 1

πl̂
l̂π. (26)

In Equation 19, the nl/dl term converges to 1 and the cosφl term becomes constant.

The formulation for aliasing error in Equation 19 is similar to those used for aliasing error in previous
work [Stamminger and Drettakis 2002; Wimmer et al. 2004; Zhang et al. 2006]. However, our formulation is
more general because it is valid for both point and directional lights and it takes into account the variation
of eye and light beam widths as a function of φe and φl, respectively.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

10 · Lloyd et al.

3.3 Factoring aliasing error

We will now consider the significance of the various factors of Equation 19. Because the locations of eye
samples on the light image plane are fixed by the viewing parameters, scene geometry, and light position,
the only way we can control aliasing error is by modifying the light sample locations. It is helpful to look
at the aliasing error in terms of the relative spacing of the light and eye samples in v on the light’s image
plane, (∆v)l and (∆v)e (see Figure 2), because (∆v)l encapsulates the two factors that affect the light
sample locations, the parameterization and the shadow map resolution, while (∆v)e encapsulates all the
other terms.2 The sample spacing can be split into two parts – the spacing distribution functions δl and δe,
which control the variation in spacing, and the resolution, which controls the overall scale:

m =
(∆v)l
(∆v)e

=
1
rt

dv
dt

1
rj

dv
dj

=
δl

rt

δe

rj

=
rj
rt

δl
δe
. (27)

δl and δe which are simply the derivatives dv/dt and dv/dj, respectively. They are related to Equation 19
as follows:

m =
rj
rt

(
dG
dt

)

︸ ︷︷ ︸
δl

(
1/δ̃e︷ ︸︸ ︷(

Wl

We

ne
nl

dl
de

cosφl
cosφe

)
cosψe
cosψl

)

︸ ︷︷ ︸
1/δe

. (28)

Following Stamminger and Drettakis [2002], δe can be further factored into two components – a perspective
factor, δ̃e, and a projection factor, cosψl/ cosψe. The perspective factor consists of terms related to the light
and eye. It is independent of the scene and is bounded over all points inside the view frustum. The projection
factor, on the other hand, depends on the orientation of the surfaces in the scene, and can potentially cause
the aliasing error to become unbounded. In order to obtain a simple parameterization amenable to real-time
rendering without incurring the cost of a complex, scene-dependent analysis, many algorithms ignore the
projective factor and address only perspective aliasing error, which we denote as m̃:

m̃ =
rj
rt

δl

δ̃e
=
we
wl
. (29)

m̃ can be thought of as measuring the ratio of the widths of the light and eye beam at a point. Alternatively,
m̃ can be thought of as the aliasing error on a surface with a normal that is aligned with the vector half-way
between the eye and light directions v̂e and v̂l. For such a surface the projection factor is 1. Although any
method that ignores the projection factor cannot fully remove aliasing error, removing perspective aliasing
can significantly improve the overall image quality, while still maintaining good performance

3.4 Aliasing error in 3D

So far we have only analyzed aliasing error in 2D. In 3D we parameterize the eye’s image plane, the light’s
image plane, and the shadow map using the 2D coordinates i = (i, j)>, u = (u, v)>, and s = (s, t)>,
respectively. Each coordinate is in the range [0, 1]. Equation 2 becomes:

pl = pl0 + uWlxx̂l + vWlyŷl. (30)

2For a point light, the orientation of the light image plane also affects the distribution of light samples in the scene. We make

a distinction between the light image plane and the near plane of the light frustum used to render the shadow map. The near
plane is typically chosen based on other considerations, such as properly enclosing the scene geometry in the light frustum. For

convenience, we choose a canonical light image plane for our computations that is independent of the actual near plane.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 11

Equations 3 and 4 remain the same. We replace We in Equation 5 with the direction-specific Wey. An
additional equation is needed to compute i:

i =
x̂>e (pe − pe0)

Wex
. (31)

The light image plane parameterization is now a 2D function u = G(s). With these changes the projection
of a shadow map texel in the image is now described by a 2× 2 aliasing matrix Ma:

Ma =


ri 0

0 rj


 ∂i
∂s




1
rs

0

0 1
rt


 (32)

∂i
∂s

=



∂i
∂s

∂i
∂t

∂j
∂s

∂j
∂t


 =

∂i
∂pe

∂pe
∂p

∂p
∂pl

∂pl
∂u

∂u
∂s

(33)

∂i
∂pe

=




x̂>e
Wex

ŷ>e
Wey


 (34)

∂pl
∂u

=
[
Wlxx̂l Wlyŷl

]
(35)

∂u
∂s

=
∂G
∂s

. (36)

To obtain a scalar measure of aliasing error, it is necessary to define a metric h that is a function of the
elements of Ma. Some possibilities for h include a matrix norm, such as a p-norm or the Frobenius norm,
or the determinant, which approximates the area of the projected shadow map texel in the image.

In 3D the spacing distribution functions δl and δe are 2× 2 Jacobian matrices:

δl =
∂G
∂s

=
(
∂F
∂u

)−1

(37)

δe =
(
∂i
∂u

)−1

. (38)

The factorization of δe into perspective and projective factors is not as straightforward as in 2D. Several
possibilities exist. Based on the intuition of the 2D perspective error, one approach is to compute the
differential cross sections Xe and Xl of the light and eye beam at a point and define perspective aliasing
error as the ratio m̃ = h(Xl)/h(Xe). Another possibility is to take m̃ = h(Ma) where the normal of the
planar surface used to compute Ma is aligned with the vector half-way between v̂e and v̂l. But unlike the
2D case, these two approaches are not guaranteed to be equivalent.

4. COMPUTING A PARAMETERIZATION WITH TIGHT BOUNDS ON PERSPECTIVE ALIASING ERROR

In the last section, we defined the aliasing metric m. In parts of the scene where m > 1, aliasing occurs.
Where m < 1, the shadow map is oversampled. Ideally we would like to ensure that m = 1 everywhere in
the scene, thus eliminating aliasing while minimizing the resolution of the shadow map. From Equation 27
we see that if we choose a shadow map parameterization that generates a spacing distribution function δl on
the light image plane that is proportional to δe, then the error becomes uniform throughout the frustum. We
can then scale the overall magnitude of the error to 1 by choosing the resolution rt = ρerj , where ρe is the
constant of proportionality of δl to δe. In a general scene, however, multiple surface points may be associated

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

12 · Lloyd et al.

1

end faces

side
faces

(a) (b)

exit faces

entry
face

p(µ0)

p(µ1)

p(µ)

v̂l

L(v)

l

e

l

Fig. 4: Face partitioning. (a) The minimum perspective factor δ̃e along any light ray L through the view frustum
can be tightly bounded by a function B whose minimum value occurs either at the faces where L enters or exits the
frustum. Which set of faces depends on the position of the light and is the same for all light rays. We choose δb as
the function B along the appropriate faces. (b) Because δb is different on each face, we use a separate the shadow
map to cover the regions corresponding to each of the appropriate view frustum faces. For this light position, we use
a shadow map for each exit face.

with the same location on the light image plane. Therefore, δe may not be a single-valued function. If instead
we choose δl(v) ∼ min(δe(v)) we can still guarantee that no aliasing is visible, but some portions of the scene
may be oversampled (i.e. m ≤ 1). Unfortunately, min(δe(v)) may be very complex and difficult to compute.
For this reason, we seek a simpler, scene-independent approximation.

In this section compute a spacing distribution function δb that is a tight lower bound on the perspective
factor of δe:

δb(v) ∈
[

1
C

min(δ̃e(v)),min(δ̃e(v))
]
, (39)

where C > 1 is a small constant. Choosing δl ∼ δb and rt = ρbrj , where ρb is the constant of proportionality,
ensures that m̃ ≤ 1, canceling out the perspective aliasing error in the scene. The δb function we derive
changes at the boundaries of the view frustum faces, leading naturally to a partitioning of the shadow map
into regions corresponding to the faces. We describe how to compute a shadow map parameterization Fb
from δb in both 2D and 3D. The resulting parameterizations are still too complicated for practical use, but
they do provide a good baseline for evaluating the simpler parameterizations in the next section.

4.1 Computing δb

The points in the view frustum along a ray L(v) passing through the location corresponding to v on the light
image plane can be parameterized as shown in Figure 4a:

p(µ) = l + µv̂l(v). (40)

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 13

We want to find minµ(δ̃e(µ)) on the interval µ ∈ [µ0, µ1] inside the view frustum. From Equation 28 we
derive δ̃e(µ):

δ̃e(µ) = c
de(µ)
dl(µ)

cosφe(µ) (41)

c =
We

Wl

nl
ne

1
cosφl

de(µ) = −ẑe · (p(µ)− e) = −µ(ẑe · v̂l)− ẑe · (l− e) (42)
dl(µ) = −ẑl · (p(µ)− l) = −µ(ẑl · v̂l) (43)

cosφe(µ) =
de(µ)

||p(µ)− e||
.

To simplify the analysis, we assume a symmetric view frustum and bound δ̃e(µ) from below by replacing the
cosφe term with its smallest possible value, cos θ:

B(µ) = c
de(µ)
dl(µ)

cos θ ≤ δ̃e(µ). (44)

δ̃e can be at most 1/ cos θ times larger than B, i.e. when cosφe = 1. For typical fields of view, B is a fairly
tight lower bound. For example, with θ = 30◦, 1/ cos θ is only about 1.15.

We take the derivative of B(µ) to determine where it reaches its minimum value:

dB
dµ

= (c cos θ)
ẑe · (l− e)(ẑl · v̂l)

(µ(ẑl · v̂l))2 . (45)

The first term and the denominator of the second term are strictly positive, and the (ẑl · v̂l) term in the
numerator is strictly negative. Therefore, the sign of dB/dµ depends only on ẑe · (l− e). Since ẑe · (l− e) is
constant for all µ, the location µBmin of Bmin = minµ(B(µ)) must be at one of the boundaries of the interval:

µBmin = argmin
µ∈[µ0,µ1]

(B(µ)) =

{
µ0 ẑe · (l− e) > 0,
µ1 ẑe · (l− e) < 0.

(46)

When ẑe · (l − e) = 0, B is constant over the entire interval. (For directional lights, the (l − e) term is
replaced by the light vector l̂). Equation 46 shows that Bmin occurs on the faces where L(v) either enters
or exits the view frustum, depending on the position of the light relative to the eye. Because there is no
dependence on the ray itself, the face selection criterion applies to all rays passing through the view frustum.
B ≤ δ̃e implies that if Bmin = δ̃e, as is the case when µBmin is on a side face (because cosφe = cos θ on side
faces), then Bmin = δ̃e,min. Thus the only time that Bmin 6= δ̃e,min is when µBmin is on an end face, in which
case Bmin is still a tight lower bound. Therefore Bmin is a suitable approximation for δ̃e,min. We use this
approximation for δb:

δb = B(µBmin)

=
We

Wl

nl
ne

de
dl

cos θ
cosφl

. (47)

de and dl are the values for points along the appropriate faces chosen according to Equation 46. As the light
and eye move around, µBmin transitions from entry to exit faces or vice versa. When the transitions occur,
Bmin is the same on both sets of faces. Thus the transitions do not cause temporal discontinuities in δb.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

14 · Lloyd et al.

4.2 Computing a parameterization in 2D

Now that we have derived δb, we need to compute the parameterization F that generates δl ∼ δb. First we
need to rewrite δl in terms of F using Equation 28:

δl =
dG
dt

=
(

dF
dv

)−1

. (48)

Now we can set δl = ρbδb and solve for F , which we rename to Fb to emphasize that it was derived from δb:
(

dFb
dv

)−1

= ρbδb(v)

dF
dv

=
1

ρbδb(v)
(49)

Fb(v) =
1
ρb

∫ v

0

1
δb(ν)

dν. (50)

We solve for the constant of proportionality ρb by normalizing Fb to the range [0, 1] on v ∈ [0, 1]:

ρb =
∫ 1

0

1
δb(v)

dv. (51)

The same process can be used to find the parameterization corresponding to any arbitrary δ(v), so long as
δ(v) > 0 over the domain of integration.

4.3 Computing a parameterization in 3D

One approach to computing a parameterization in 3D is to simply follow the same process that we used for
2D. We start from a δb(u, v) that is a 2 × 2 matrix describing the sample spacing distribution on the light
image plane, invert δb, and integrate to get Fb(u, v). However, this approach has several complications.
First, it is not clear how to compute a δb that is a tight lower bound on δ̃e. The main problem is that δb
now contains information about orientation, whereas in 2D it was simply a scalar. Second, even if we come
up with an invertible δb, there is no guarantee that we can integrate it to obtain Fb. The rows of ∂Fb/∂u are
the gradients ∂s/∂u and ∂t/∂u of the multivariable functions s(u, v) and t(u, v). Thus the mixed partials
of the row entries must be equivalent, i.e.:

∂2s

∂u∂v
=

∂2s

∂v∂u
and

∂2t

∂u∂v
=

∂2t

∂v∂u
. (52)

Because ∂Fb/∂u = (δb)
−1, if ∂(δb)−1

00 /∂v 6= ∂(δb)−1
01 /∂u and ∂(δb)−1

10 /∂v 6= ∂(δb)−1
11 /∂u does not hold, then

(δb)
−1 is not the gradient of a function Fb. Finally, even if δ−1

b is integrable, it is not guaranteed to be
one-to-one over the entire domain covered by the shadow map.

Our approach is to treat the parameterizations s and t as essentially two instances of the simpler 2D
problem. We compute scalar functions δb,s and δb,t derived from Equation 47 for each face and integrate
their multiplicative inverses w.r.t. u and v, respectively, to obtain s and t. We choose a coordinate system
on each face as shown in Figure 5. For the Wl term, we use the width of the parameterized region in the
appropriate direction and for cosφl we use cosφlx and cosφly, the angles between ẑl and the projection
of v̂l into the xlzl and ylzl planes, respectively. To obtain scalars for We and cos θ we assume that the
fields of view are the same in both directions. If they are not, we can always choose a conservative bound
We = min(Wex,Wey) and θ = min(θx, θy). To simplify the parameterization we also choose the light image
plane to coincide with the face, thus eliminating the dl/nl term. We will now discuss how we compute δb,s
and δb,t for each type of face and then derive the corresponding parameterizations.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 15

1

0
ŷ

1v : 0

y0 y(v) y1

ẑ

ne

fe

v

u
φly

φey

ẑ

ŷ

x̂

e

l

l z
ly

1

0

θ
ne

ŷ

ẑ

−ẑe

y0 y(v) y1

v

u

ẑ

ŷ

x̂

φly

l

lz

ly
e

Fig. 5: Frustum face coordinate systems. For each row, a side view appears on the left and a view from above
the face appears on the right. (Top row) End face. The far face is shown here. The coordinate axes are aligned with
the eye space coordinate axes with the origin at the center of the face. (Bottom row) Side face. The y-axis is aligned
with the center line of the face, and the z-axis is aligned with the face normal. The origin is at the eye.

4.3.1 End faces. We will first look at δend
b,t . On the near face de = ne and on the far face de = fe. The

width of the v domain in y is the same as the width of the face Wly = (Wede)/ne, so we can parameterize
positions on the face as:

y(v) = (y1 − y0)v + y0

y0 = −We

2
de
ne
, y1 =

We

2
de
ne
.

cosφly in terms of v is:

cosφly(v) =
lz√

(y(v)− ly)2 + l2z
. (53)

Plugging these equations into Equation 47 we get:

δend
b,t (v) =

cos θ
cosφly(v)

. (54)

δend
b,s is the same as δend

b,t except that quantities in y and v are exchanged for the corresponding quantities in
x and u.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

16 · Lloyd et al.

4.3.2 Side faces. The end points of the side face are related to ne and fe:

y0 =
ne

cos θ
, y1 =

fe
cos θ

.

On a side face, de is constant in x but increases with y. By similar triangles, the de/ne term in δb can be
expressed as:

de
ne

=
y

y0
. (55)

A side face does not cover the entire (u, v) domain. The extents of the face in x as a function of y are:

x0(y) = −We

2
y

y0
, x1(y) =

We

2
y

y0
. (56)

The width of the domain in x is the width of the face at y1, Wlx = (x1(y1)− x0(y1)). The width in y, Wly,
is (y1 − y0). We parameterize positions on the face as:

x(u) = (x1(y1)− x0(y1))u+ x0(y1)
y(v) = (y1 − y0)v + y0

Putting all these equations together yields:

δside
b,s (u, v) =

y(v)
y1

cos θ
cosφlx(u)

. (57)

δside
b,t (v) =

We

(y1 − y0)
y(v)
y0

cos θ
cosφly(v)

. (58)

Note that because δside
b,s is a function of both u and v, Fside

b (u) is not, strictly speaking, just two 1D param-
eterizations, one for s and one for t. Therefore it must satisfy the more stringent conditions outlined at the
beginning of this section. Fside

b must be integrable and one-to-one. It is trivial to show that if we obtain
F side
b,s (u, v) by integrating 1/δside

b,s w.r.t. u and 1/δside
b,t w.r.t. v, then the mixed partials of both the s and t

components of Fside
b (u) are equal. Fside

b is also invertible, and thus one-to-one. Because 1/δside
b,t (v) is strictly

positive in valid configurations, Fb,t(v) is monotonic and invertible, so we can obtain v from t using (Fb,t)−1.
1/δside

b,s (u, v) is also strictly positive, so we can plug v(t) into Fb,s(u, v) and invert to find u.

4.3.3 Parameterizations. If we let ζb be the indefinite integral of 1/δb, then the parameterizations Fb and
normalizing constants ρb for the three varieties of δb can be computed as follows:

F end
b,t (v) =

1
ρ end
b,t

ζend
b,t

∣∣∣
v

0
ρ end
b,t = ζend

b,t

∣∣∣
1

0
(59)

F side
b,s (u, v) =

1
ρ side
b,s (v)

ζside
b,s

∣∣∣
u

u0(v)
ρ side
b,s (v) = ζside

b,s

∣∣∣
u1(v)

u0(v)
(60)

F side
b,t (v) =

1
ρ side
b,t

ζside
b,t

∣∣∣
v

0
ρ side
b,t = ζside

b,t

∣∣∣
1

0
(61)

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 17

ζend
b,t (v) = Cend

b,t lz sinh−1

(
y(v)− ly

lz

)
+ C (62)

ζside
b,s (u, v) = Cside

b,s

lz
y(v)

sinh−1

(
x(u)− lx

lz

)
+ C (63)

ζside
b,t (v) = −Cside

b,t

lz√
l2y + l2z

log


 2
y(v)


 ly(ly − y(v)) + l2z

lz
√
l2y + l2z

+
1

cosφly(v)




+ C

(64)

Cend
b,t =

1
(y1 − y0) cos θ

=
ne

Wede cos θ

Cside
b,s =

1
(x1(y1)− x0(y1)) cos θ

=
ne

Wefe cos θ

Cside
b,t =

y0

Wecos θ
=

ne
Wecos2θ

Note that for F side
b,s we integrate over u ∈ [u0(v), u1(v)], corresponding to the part of the domain covered by

the face. u0(v) and u1(v) are found by solving x(u) = x0(y(v)) and x(u) = x1(y(v)) for u:

u0(v) =
y1 − y(v)

2y1
, u1(v) =

y1 + y(v)
2y1

. (65)

Unfortunately, the parameterizations derived from δb are too complex for practical use. In the next section,
we will examine approximations to δb that have simpler parameterizations. (The Appendix includes further
analysis of the parameterizations derived from δb).

5. DERIVING THE LOGPSM PARAMETERIZATION

We have now derived tight bounds δb on the perspective factor and the parameterizations based on δb that
can cancel out the perspective aliasing in the scene. In this section, we seek spacing distribution functions
that produce error that is nearly as low as that produced by δl ∼ δb, but that have simpler parameterizations.
We first discuss the global error metrics that we use to compare different parameterizations. We then analyze
several parameterizations to identify those with error on the same order as the parameterizations for δend

b,t ,
δside
b,s , and δside

b,t . We use these simpler parameterizations to formulate our LogPSM parameterization.

5.1 Global error measures

To compare the error of different parameterizations we would like a metric for the error over the entire view
frustum. If we replace δ̃e in Equation 29 with δb, we obtain a metric M̃ that is a tight upper bound on the
perspective error m̃ over all points that map to a point v on the light image plane:

M̃(v) =
rj
rt

δl(v)
δb(v)

. (66)

For a given δl(v), the resolution required to guarantee that there is no perspective aliasing in the view
frustum, i.e. maxv(M̃) = 1, is rt = Rtrj , where Rt is given by:

Rt = max
v

(
δl(v)
δb(v)

)
(67)

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

18 · Lloyd et al.

m aliasing error
m̃ perspective aliasing error

M̃ tight upper bound on maximum m̃ along a line L through the light

R critical resolution factor. Related to maximum M̃ over the view frustum
S storage factor. Equal to Rs ×Rt

R maximum R over all light positions

S maximum S over all light positions

Table II: Summary of error metrics

We call Rt the critical resolution factor. Rt is the smallest when δl ∼ δb, in which case Rt = ρb. Rt can
also be thought of as a measure of the maximum error that results when using a shadow map with the same
resolution as the image. In 3D we combine the critical resolution factors for s and t:

S = Rs ×Rt. (68)

We call S the storage factor because it represents the total number of texels in a critical resolution shadow
map relative to the total number of pixels in the image. The use of the critical resolution and storage factor
as error measures was originally introduced by Lloyd et al. [2006]. Note that δside

b,s is a function of u and v,
so R side

s is defined as:

R side
s = max

(u,v)∈F

(
δl(u, v)
δside
b (u, v)

)
, (69)

where F is the set of points covered by the face. It is also useful to define measures of maximum perspective
error over all possible light positions Ω:

R = max
Ω

R (70)

S = max
Ω

S. (71)

R and S can be evaluated simply by computing R and S for a light at infinity directly above the face. With
the light in this position, the cosφl factor of δb is 1 over the entire face and R and S reach their maximum
values. Table II summarizes the error metrics we use.

We analyze various algorithms in terms of maximum error. The justification for this is that it is difficult
to know a priori where shadows may appear on in the view, especially for interactive applications where
the user has control over the view. The maximum error metric provides guaranteed bounds on perspective
aliasing over the entire view frustum. But the maximum error may be overly conservative. Other error
metrics may be more appropriate for different applications or for algorithms that use more information
about scene geometry.

5.2 Maximum error of various parameterizations

Table III summarizes the error of four different parameterizations on end faces and in both directions on a
side face (the values for the table are derived in the Appendix). The first is the error bound parameterization
Fb derived in the last section. The next three are approximations for δb:

—Uniform. The simplest parameterization is the uniform parameterization:
[
s
t

]
= Fun(u, v) =

[
u
v

]
. (72)

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 19

Parameterization R end
s R side

s R side
t S side

Error bound (Fb) O(1) O(1) O
(
log
(

fe
ne

))
O
(
log
(

fe
ne

))

Uniform (Fun) O(1) O
(

fe
ne

)
O
(

fe
ne

)
O

((
fe
ne

)2
)

Perspective (Fp) − O(1) O
(√

fe
ne

)
O
(

fe
ne

)

Logarithmic (Fl) − − O
(
log
(

fe
ne

))
−

LogPSM (Flp) − O(1) O
(
log
(

fe
ne

))
O
(
log
(

fe
ne

))

Table III: Maximum error. This table shows measures of the maximum error over all light directions R and S
for our error bound parameterization Fb and several simpler ones. The perspective and logarithmic parameterizations
have error that is on the same order as Fb,s and Fb,t for side faces. These parameterizations form the basis of the
LogPSM parameterization, which has the same maximum error bounds as Fb. Entries marked with − indicate uses
of the parameterizations that are not generally useful and thus have not been analyzed.

This parameterization is used for standard shadow maps, although a standard shadow map is fit to the
entire frustum instead of a face.

—Perspective. The next parameterization is a perspective projection along the y-axis of the side face:

[
s
t

]
= Fp(u, v) =




p0x(u) + p1(y(v) + a)
y(v) + a

p2(y(v) + a) + p3

y(v) + a




(73)

p0 =
(y1 + a)
We(y1/y0)

p1 =
1
2

p2 =
y1 + a

y1 − y0

p3 = −p2(y0 + a),

where a is a free parameter that translates the center of projection to a position of y = −a. a = 0 yields
the standard perspective projection that is used along z when rendering a perspective image from the
eye. As a → ∞, the parameterization degenerates to Fun. The perspective parameterization is used by
existing shadow map warping algorithms [Stamminger and Drettakis 2002; Wimmer et al. 2004; Martin
and Tan 2004]. The primary difference between these algorithms is the way they choose a. The parameter
used by LiSPSMs expressed in this coordinate system is a =

√
y0y1. For the values in Table III, we have

used the parameter that is optimal with respect to the error metric listed for each column.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

20 · Lloyd et al.

—Logarithmic. The last parameterization is logarithmic:

t = Flog(v) =
log
(
y(v)+a
y0+a

)

log
(
y1+a
y0+a

) . (74)

A logarithmic parameterization has been suggested as a good fit for perspective aliasing [Wimmer et al.
2004; Zhang et al. 2006; Lloyd et al. 2006], but has not yet been used in an actual algorithm. It produces
a spacing distribution that increases linearly in v and can thus match the y(v) term in δside

b,t . Equation 74
is a generalized version of a logarithmic parameterization with a free parameter a similar to that of Fp.

The values in Table III are expressed in terms of the ratio of the far to near plane distances of the view
frustum. It is this term which predominantly determines the error. There is also some dependence on the
field of view, but the typical range of values for the field of view used in interactive applications is fairly
limited. Further analysis of these parameterizations is found in the Appendix.

We are looking for approximate parameterizations that produce error that is at most on the same order
as that of Fb. From Table III we see that suitable approximations to δb can be obtained by using a uniform
parameterization for the end faces, a perspective projection for s on a side face, and a logarithmic param-
eterization for t. Our LogPSM parameterization combines a logarithmic transformation with a perspective
projection to get good bounds for both s and t on a side face.

5.3 Logarithmic + perspective parameterization

To derive our logarithmic perspective parameterization, we start with Fp (Equation 73). Fp,s is sufficient for
the s direction. We need to transform Fp,t into Flog (Equation 74). If we multiply Fp,t by −(y1−y0)/(y1 +a)
and add 1, we get (y0 + a)/(y(v) + a), which is the multiplicative inverse of the argument of the logarithm
in the numerator of Flog. We can then use the fact that negating the logarithm inverts its argument (i.e
log(c/d) = − log(d/c)) to complete the transformation. The full parameterization is given by:

[
s
t

]
= Flp(u, v) =


 Fp,s(u, v)

c0 log(c1Fp,t(u, v) + 1)


 (75)

c0 =
−1

log
(
y1+a
y0+a

)

c1 = −y1 − y0

y1 + a
.

With a = 0, this parameterization provides the same good error bounds in the s and t directions as the
perspective and logarithmic parameterizations, respectively. See the Appendix for more details.

6. LOGPSM ALGORITHMS

In this section we outline several algorithms that use the LogPSM parameterization. These algorithms are
basically extensions of LiSPSMs [Wimmer et al. 2004], cascaded shadow maps [Zhang et al. 2006; Engel
2007], and perspective-warped cube maps [Kozlov 2004]. The first algorithm uses a single shadow map to
cover the entire view frustum. The second algorithm partitions the frustum along its z-axis into smaller
sub-frusta and applies a single shadow map to each one. The third algorithm uses separate shadow maps for
partitions corresponding to the view frustum faces. The first two algorithms are best suited for directional
lights or spot lights, while the third algorithm can support both directional and omnidirectional point lights.
Each algorithm consists of several steps:
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 21

(1) Compute the parameterizations for the shadow maps corresponding to each partition. The partitions
are polyhedra defined by the entire view frustum, z-partitioned sub-frusta, or the intersection of the
view frustum with convex hull of the light and the appropriate frustum faces.

(2) Error-based allocation of texture resolution.

(3) Rendering the shadow maps.

(4) Rendering the image with multiple shadow maps.

We will discuss each of these steps in detail. We will then describe some modifications to handle shearing
artifacts that can sometimes arise with the face partitioning algorithm. Note that many of the details in this
section also apply to other shadow map algorithms.

6.1 Parameterizing partitions

The perspective portion of the LogPSM parameterization determines the shape of the light frustum used to
render the shadow map. To maximize the use of the available depth and shadow map resolution, the light
frustum should be fit as tightly as possible to the relevant portions of its corresponding partition, P . If depth
clamping is available, the near and far planes can be set to bound only the surfaces inside P that are visible
to the eye [Brabec et al. 2002]. This will cause the depth of occluders between the light and the near plane
of its frustum to be clamped to 0. However, this is sufficient to produce correct shadowing because depth
information is only needed to prevent false self-shadowing on visible occluders. (Actually, the near plane
should be backed off slightly towards the light so as to avoid self-shadowing artifacts near the edge of the
view frustum). If depth clamping is not available, the light frustum must be expanded to include all potential
occluders. This can be done by by taking the convex hull of P and the light position l. When the light itself
lies inside the view frustum, surfaces between the light and the near plane of the light frustum will not be
shadowed correctly. Therefore, the near plane should be chosen close enough to minimize the unshadowed
region, but far enough away to preserve depth resolution. Unclamped floating point depth buffers, such as
those supported by the recent NV depth buffer float extension, could eliminate the unshadowed region.

6.1.1 Entire view frustum. We build on the LiSPSM algorithm [Wimmer et al. 2004] to apply the LogPSM
parameterization to a single shadow map covering the entire view frustum. As the angle γ between the light
and view directions approaches 0◦ or 180◦, LiSPSMs degenerate to a uniform parameterization in order
to avoid excessive error. The uniform parameterization is produced when the near plane distance of the
perspective parameterization n′ diverges to ∞. To accomplish this, the LiSPSM algorithm modulates the
optimal n′ parameter for γ = 90◦ with 1/ sin γ. Given that for an overhead directional light n′ = ne+a/ cos θ
and that a for LiSPSMs is

√
y0y1, we have:

n′ =
ne +

√
nefe

sin γ
.

A LogPSM could use the same strategy, using the optimal parameter a = 0:

n′ =
ne

sin γ
.

Unfortunately, for some values of γ this can result in error that is worse than the error of standard shadow
maps. Essentially, the problem is that sin γ does not go to 0 fast enough for γ ∈ [0◦, θ] and γ ∈ [180◦, 180◦−θ].
LiSPSMs have the same problem, but the problem is worse for LogPSMs because n′ has farther to go to
get to ∞. Instead, we use a different falloff function. We first parameterize n′ by η using the equation from
Lloyd [2007] (see Equation 117 in the Appendix). Then we use the following function to compute η for

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

22 · Lloyd et al.

LogPSMs:

η =





0 γ < γa

−1 + (ηb + 1) γ−γa

γb−γa
γa < γ < γb

ηb + (ηc − ηb) sin
(
γ−γb

γc−γb
90◦
)

γb < γ < γc

ηc γ < γc

(76)

γa =
θ

2
, γb = θ, γc = θ + 0.3(90◦ − θ)

ηb = −0.2, ηc = 1.

η ∈ [−1, 1] corresponds to n′ =∞ at η = −1, n′ = ne +
√
nefe at η = 0, and n′ = ne at η = 1. The shaping

function for η in Equation 76 rises smoothly from −1 to ηb over the interval [γa, γb] and then continues
to rise until it smoothly transitions to ηc at γ = γc. Like the LiSPSM algorithm, this function provides a
continuous transition to ∞, but with more control than the simple sin γ function. Note that this shaping
function can also be used to improve the LiSPSM algorithm by using γa = θ/3 and ηc = 0. A more complete
analysis of this function and our choice of parameters is found in the Appendix.

The perspective portion of the LogPSM parameterization is encoded in a matrix Ms that is used during
shadow map rendering. This matrix is computed the same as it is with LiSPSMs, but using our modified
n′. Note that the light space z-axis used in the LiSPSM algorithm corresponds to our y-axis.

6.1.2 z-partitioning. The basic idea of z-partitioning schemes is to subdivide the view frustum along its
z-axis so that tighter fitting shadow maps may be applied to each sub-frustum. The main difference between
the various z-partitioning algorithms is where subdivisions are made. The maximum error over all partitions
is minimized when the split points are chosen such that the far to near plane distance ratio of each partition
is the same:

ni = ne

(
fe
ne

)(i−1)/k

(77)

fi = ni+1 = ne

(
fe
ne

)i/k
(78)

fi
ni

=
(
fe
ne

)1/k

. (79)

where k is the number of partitions and i ∈ {1, 2, ..., k}. We use this partitioning scheme in this paper. The
scheme can be viewed as a discrete approximation of Flog (Equation 74). This can be seen by splitting the
t domain of the shadow map into k uniform partitions and mapping these through Glog, the inverse of Flog,
with a = 0:

y = Glog(t) = y0

(
y1

y0

)t
. (80)

Substituting ne for y0 and fe for y1 yields the split points of this partitioning scheme. Zhang et al. [2006]
use a combination of this scheme with a uniform partitioning. When the same resolution is used for each
partition, this algorithm favors regions further from the viewer (see Lloyd [2007] for more details). Once the
z-partitions have been computed, applying the LogPSM parameterization to each partition proceeds just as
in the single shadow map case.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 23

1

ne0−∞ ∞fe

′l

l e

′e
−∞ 1 ∞−1

−∞ ∞1−1

le

′′l ′′e

Fig. 6: Post-perspective parameterization of frustum faces. (Top) With the light l behind the eye e we
parameterize the entry face. The red points along the line contain potential occluders and must be included in the
shadow map. (Middle) In post-perspective space the frustum becomes a unit cube, the eye goes to −∞ and the light
wraps around ∞. The entry face is now an exit face. (Bottom) After applying the light’s perspective transform, l′′ is
at −∞ and the projection becomes orthographic. The inverted depth ordering can be corrected by leaving the light at
−∞ and scaling by −1 along the view direction.

6.1.3 Face partitioning. Face partitioning is motivated by the analysis in Section 5, which showed that δb
changes at the boundaries of the frustum faces. We use a uniform parameterization for the end faces of the
view frustum and the LogPSM parameterization for the side faces. The uniform and the perspective portions
of the parameterizations can be handled using the PSM cube map algorithm of Kozlov [2004]. The main idea
is to parameterize the faces of the view frustum in the post-perspective space of the camera. First, the light
l is transformed to l′ by the camera matrix Mc. Under this transformation, the view frustum is mapped to
the unit cube. Second, a separate projection matrix for the light Ml is fit to each exit face of the unit cube
with each light frustum’s near plane oriented parallel to the face. Ml is a simple orthographic projection if
l′ is a directional light (homogeneous coordinate l′w is 0) or an off-centered perspective projection if l′ is a
point light. If l′w is negative, the depth order relative to the light becomes inverted. To restore the proper
depth order, the row of Ml corresponding to the z-axis should be scaled by −1 (see Figure 6). The inversion
occurs whenever the face selection criterion in Equation 46 selects the entry faces (i.e. ẑe · (l − e) > 0).
Thus parameterizing exit faces in post-perspective space always selects the same faces as Equation 46. The
face partition polyhedra can be computed by taking the convex hulls of the light and exit faces of the unit
cube in post-perspective space, intersecting them with the unit cube, and transforming them back to world
space. The final matrix used to render each shadow map is obtained by concatenating the camera and light
projection matrices, Ms = MlMc.

6.2 Error-based allocation of texture resolution

We compute the shadows in the image in a single pass, storing all the shadow maps together in memory.
We use a fixed texture resolution budget that must be distributed somehow among the shadow maps. The
simplest approach is to allocate a fixed amount of resolution in each direction for each shadow map. One
problem with this strategy is that as the light position varies relative to the eye, the maximum error can
vary dramatically between partitions and shadow map directions (see Figure 9a). To keep the overall error
as low as possible, we distribute the error evenly between the different partitions and between the s and t
directions by adjusting the resolution as described by Lloyd et al. [2006]. The idea is to first compute Rs,
Rt, and S for each partition. Each partition Pi then receives a fraction σi = Si/Σ

k
j=1Sj of the total texel

budget T . The texel allocation for a partition is then divided between the s and t directions in the shadow
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

24 · Lloyd et al.

Fig. 7: Standard and logarithmic perspective shadow maps. These shadow maps were rendered from overhead
in the town scene. The viewpoint is at the bottom of the shadow map looking along the road (up in the shadow map).
A uniform grid is superimposed on the shadow maps to highlight the warping from the LogPSM parameterization that
causes areas near the viewer to occupy more of the shadow map. Note that straight lines become curved

map in proportion to Rs and Rt:

rs =

√
(1− α)
α

Rs
Rt
σT , rt =

√
α

(1− α)
Rt
Rs

σT . (81)

The parameter α ∈ [0, 1] gives the user control over how much the resolution allocation is biased towards the
t direction. At α = 0.5 there is no bias. The effect of unbiased resolution redistribution is shown in Figure
9b.

We compute Rs and Rt with Equation 67, treating each direction independently, as we did in Section 4.
For Rs we use Wl = Wlx and cosφl = cosφlx, and for Rt we use Wl = Wly and cosφl = cosφly. With a
directional light, the only term in δb that varies is de because nl/dl → 1 and cosφl is constant. (dFlp,s/du)−1

and (dFlp,t/dv)−1 are monotonic, therefore the error distribution is monotonic over each face of the view
frustum. This means that we can compute Rs and Rt by evaluating δl/δb only at the vertices of the view
frustum faces and taking the maximum. For a point light, computing the maximum of δl/δb over a face can
be more involved. As an approximation, we evaluate the error at the point on each face that is closest to the
light, in addition to the face vertices. For applications where a point light enters and exits the view frustum,
it can sometimes be better to not use resolution redistribution at all because the LogPSM parameterization
does not do a very good job at approximating δb when the light is very close to a face. The Appendix discuss
a variation on the LogPSM parameterization that may address this problem. Resolution redistribution is
highly recommended for directional lights, however.

Current GPU drivers are not necessarily optimized to handle the scenario of a texture changing resolution
with each frame. For the experimental results presented in this paper, we allocated the shadow maps in a
single fixed-sized texture atlas large enough to accommodate the changing shadow map dimensions.

6.3 Rendering the shadow maps

Each shadow map is rendered in a separate pass. In order to maximize rendering performance for each pass,
objects should only be rendered into the shadow maps in which they actually lie. We call this partition
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 25

void logRasterize(

varying float2 stPos,

varying float3 edgeEq0,

varying float3 edgeEq1,

varying float3 edgeEq2,

varying float3 depthEq,

uniform float d[3],

out float depth : DEPTH)

{

// invert logarithmic transform

float3 p(stPos, 1);

p.y = d[0]*exp(d[1]*p.y)+d[2];

// test against triangle edges

if(dot(p, edgeEq0) < 0 ||

dot(p, edgeEq1) < 0 ||

dot(p, edgeEq2) < 0)

discard;

// compute depth

depth = dot(p, depthEq);

}

Fig. 8: Fragment shader for simulating logarithmic rasterization.

culling. Partition culling can be accomplished by testing an object against the planes through the light
and the partition silhouette edges using straightforward extensions of the existing view frustum culling
techniques typically employed in graphics applications. For simple scenes, partition culling is of only small
benefit and may not be worth the extra overhead, but for geometrically complex scenes this can be an
important optimization. GPUs that support DirectX 10 features can render to multiple render targets in
a single pass, but if the vertex data already resides on the GPU, this does little to reduce the overhead of
multipass rendering. So partition culling can still be an important optimization here as well.

6.3.1 Logarithmic rasterization. The LogPSM parameterization requires logarithmic rasterization. Log-
arithmic rasterization causes planar primitives to become curved (see Figure 7). Current GPUs only support
projective transformations. The logarithmic transformation could be approximated by computing it only for
vertices using a vertex program, but when the fe/ne ratio is high, this would require a fine tessellation of
the scene to avoid error. The tessellation could be performed adaptively, but this adds complexity to the
algorithm. We currently simulate logarithmic rasterization by performing brute-force rasterization in a frag-
ment program. We first render the scene using Ms with the viewport set to the range [0, 0]× [1, 1] and read
back the clipped triangles using the OpenGL feedback mechanism. This gives us the triangles transformed
by Fp(u, v). We compute the edge equations and depth interpolation equation for each triangle. We then
transform the t coordinates using Flp and render the axis-aligned bounding quad of the resulting triangle
vertices. Using the fragment program in Figure 8, we invert Flp,t in order to undo the logarithmic warping,
compare against the linear triangle edge equations, and discard fragments that fall outside the triangle. The
equation for the inverse of Flp,t(v) is given by:

v = d0e
d1t + d2 (82)

d0 =
1

c1(y1 − y0)
, d1 =

1
c0
, d2 = − c1y0 + 1

c1(y1 − y0)
.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

26 · Lloyd et al.

With our unoptimized simulator we observe frame rates of 2–3 fps on a PC with a GeForce 7800GT graphics
card and a 2 GHz processor. Most of that time is spent in computing the bounding quads. GPUs that support
geometry shaders can probably be used to create the bounding quads for the warped triangles much more
efficiently, but we have not implemented this yet. Even with a geometry shader, however, our simulation
of logarithmic rasterization would be considerably slower than linear shadow map rasterization. GPUs have
a number of optimizations, such as z-culling and higher rasterization rates for depth-only rendering, which
are disabled when a fragment program outputs depth information. To test the difference in speed between
standard rasterization and our brute-force method, we rendered a series of screen-sized quads at different
depths. With decreasing depths, z-culling provides no benefit, and our brute force rasterization is only 6 times
slower than standard linear rasterization. With increasing depths, however, z-culling discards fragments for
all but the first quad, and our brute force rasterization is 24 times slower.

Hardware support for logarithmic rasterization can be implemented through incremental enhancements
to current hardware [Lloyd et al. 2007]. The LogPSM parameterization is especially practical for hardware
implementation because the standard graphics pipeline can be used for the perspective portion of the pa-
rameterization. Only the rasterizer needs to be modified to handle the logarithmic part. For the same error
as other algorithms, LogPSMs can require less memory bandwidth and storage. This is important because
shadow map rendering is often bandwidth limited, and high resolution shadow maps increase contention for
limited GPU memory resources.

Hardware support would allow LogPSMs to be rendered at speeds comparable to other algorithms that
are currently used for real-time shadow generation. For example, the frame rates for the three algorithms
shown in Figure 12 that use standard rasterization are 87, 72, and 74 frames per second (from left to right).

The proposed Larrabee architecture [Seiler et al. 2008] performs rasterization completely in software. It
should be relatively easy to modify an existing Larrabee rasterizer to support logarithmic rasterization. In
particular, the table-based technique described by Lloyd et al. should work well with the binning approach
used on Larrabee. This technique avoids the expensive computation of exponentials for each pixel by using
a small precomputed table.

6.4 Rendering the image

We render the image using all the shadow maps in a single pass. The LogPSM algorithm used on the entire
frustum is the simplest because it uses only one shadow map. We compute texture coordinates for the
perspective part of the parameterization at the vertices using the transformation MnMsp, where Mn maps
the [−1,−1] × [1, 1] range of Ms to [0, 0] × [1, 1] and p is the world position. We linearly interpolate these
texture coordinates over the triangle. In the fragment program we perform the perspective divide on the
texture coordinates and apply the logarithmic transformation in Equation 75 to the y coordinate to get the
final texture coordinates for the shadow map lookup.
z-partitioning introduces additional shadow maps. In the fragment program we must determine in which

partition the fragment lies. This can be done efficiently with a conditional and a dot product [Engel 2007]:

float4 zGreater = (n1_4 < eyePos.z);
float partitionIndex = dot(zGreater, 1.0f);

The constant n1 4 contains the near plane distances of the first four z-partitions (n1, n2, n3, n4). This
method is easily extended to handle more partitions. If a sufficient number of interpolators are available, we
can interpolate a set of texture coordinates for each shadow map and use the partition index to select the
appropriate set. Otherwise we use the index to select the appropriate element from an array containing the
matrices Ms for each partition and perform the matrix multiplication on the world position in the fragment
program. Once we have the right set of texture coordinates, the computation proceeds just as in the single
shadow map case.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 27

11111

() (b) () (d) () (f)(a) (b) (c) (d) (e) (f)(a) (b) (c) (d) (e) (f)(a) (b) (c) (d) (e) (f)() () () () () ()

Fig. 9: The effects of resolution redistribution and shear handling. The top row shows the texel grid of the
shadow map projected onto a plane oriented perpendicular to the view direction that is near the viewer. The bottom
row uses a plane at the far end of the view frustum. (a) The same resolution is used in s and t for all partitions. The
error is distributed unequally. (b) Resolution is distributed according to maximum error resulting in a more uniform
parameterization. (c) Coordinate frame adjustment alleviates excessive shearing in the upper corners of the left and
right face partitions, but does nothing for the bottom one. (d) Splitting the bottom face and adjusting the coordinate
frame alleviates shearing. (e) Limiting the field of view of the parameterization applied to the bottom face results in
high error. Redistributing the resolution according to error leaves little resolution for the other partitions. (f) Using
a limited field of view for the parameterization but allocation resolution as if the original field of view were used leads
to high error close to viewer but acceptable results further away.

For face partitioning we compute the partition index using a small cube map. In each face of the cube
map we store the index of the partition corresponding to that face. We perform the cube map lookup using
the method described by Kozlov [2004]. We do not store the shadow maps directly in a cube map because
cube maps do not currently support non-square textures of differing resolution or the necessary logarithmic
transformation. We also store a flag in the cube map indicating whether the face is a side face or an end
face so we know whether or not to apply the logarithmic transformation.

6.5 Handling shear

The PSM cube map algorithm that we extend for our face partitioning algorithm uses a parameterization that
is affixed to the face. For some light positions, the cross-section of the light beams become overly sheared,
which can lead to disturbing artifacts (see Figure 10). With any shadow map algorithm some shearing can
occur on surfaces that are nearly parallel to the light. However, this shearing is usually less noticeable because
diffuse shading reduces the intensity difference between shadowed and unshadowed parts of these surfaces.
Warping algorithms fit a rectangular shadow map to the trapezoidal view frustum, which can introduce
some shearing on surfaces that are directly facing the light. This shearing is even more pronounced with
face partitioning because the trapezoidal faces, as seen from the light, can become extremely sheared and
flattened for some light positions. In addition, the shearing in one partition may not be consistent with
that of adjacent partitions, and is therefore more noticeable. Because our error metrics do not take this
shearing into account, redistributing the resolution according to error may actually make this shearing more
noticeable. One possibility for incorporating shear into the metrics is to simply weight the error computed
at the face vertices (shear is usually worst at the vertices) by a measure of the shear. But this will only
change the distribution of resolution between faces. It does not change the parameterization itself.

One way to mitigate shearing is to unbind the parameterization from the face. Consider the view of a side
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

28 · Lloyd et al.

1

Fig. 10: Handling shear artifacts. (Top-left) Shear artifacts resulting from face partitioning indicated by arrows.
We use a low-resolution shadow map to make them easier to see. Regions are colored according to the face partition
to which they belong. (Top-right) Shear artifacts removed by coordinate frame adjustment. (Bottom) View frustum
as seen from the light in cases in which shearing occurs. To handle the first case, we realign the projection axis with
the bisector of the side edges of the face and make the other axis orthogonal in the light view. For the second case,
we first split the face along the bisector into two sub-faces and then apply the coordinate frame adjustment to each of
the sub-faces. The corrected faces are shown below the images.

1

τ0

Fig. 11: τ-Limiting. (Left) a face partition with excessive shearing caused by a large angle τ between the edges of
the trapezoidal region to which to parameterization is applied (black). (Right) Limiting τ to some constant τ0 reduces
the shearing at the expensive of error at the narrow end of the face partition.

face from a directional light. The shearing of the light beam cross-sections can be minimized by fitting the
parameterization to the symmetric trapezoid that bounds the face in the light’s view. We align the midline
of the trapezoid with the bisector of the two side edges of the face (see Figure 10). The resulting projection is
no longer a tight fit, but greatly reduces the shear artifacts. However, when the angle between the two edges
is high, this coordinate frame adjustment may provide little improvement (see the bottom face in Figure 9c).
Therefore we first split the face along its bisector and then apply the coordinate frame adjustment to each
half. We split a face when the angle between the side edges τ exceeds a specified threshold τ0. To avoid a
sudden “pop” when a face is split, we specify another threshold τ1 > τ0 and “ease in” to the new coordinate
frame over the interval [τ0, τ1]. Choosing τ0 > 90◦ ensures that no face will be split more than once and that
no more than two faces will be split at the same time.

The image rendering pass needs to be modified slightly to handle split faces. In the cube map we store
the indices of the shadow maps for both halves of the face. The first and second index are identical for
unsplit faces. We compute the equations of the splitting planes containing the light and split lines and pass
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 29

these to the fragment program. We determine which face a fragment belongs to as before, but then test
the fragment’s world position against the face’s splitting plane to determine which index to use. We adopt
the convention that the first index corresponds to the negative side of the plane. For faces without a split,
it does not matter which side is selected. Once the appropriate index has been computed, the calculations
proceed in the same way as before.

Another possibility for handling shear is to simply place a limit τ0 on the angle between the sides of the
trapezoid used to parameterize the face (see Figure 11). This approach does not require additional shadow
maps. However, it leads to large errors on the parts of the face close to the near plane. Naive resolution
redistribution allocates most of the resolution to the problem face. The maximum error on the face is
equalized with the other faces, but the error over the entire view frustum goes up (Figure 9e). We could
also use the resolution that would have been allocated to the face had we not changed the parameterization.
For surfaces near the view the error may be extremely high at the narrow end of the face partition, but
acceptable for surfaces farther away (Figure 9f). Depending on the application, this may not be a problem,
especially since the high error situations occur for face partitions that cover a very small part of the view
frustum. A compromise might be to use a resolution for the face that is some blend of the two extremes.

For both of these approaches we find it easier to work in light space rather than the post-perspective
space of the camera. We can compute the partitions in post-perspective space and transform them back
into light space. Then we parameterize the partitions on a light image plane that is perpendicular to the
light direction. For a point light there is no single light direction. Due to this and other complications we
currently only handle shear for directional lights.

7. RESULTS AND ANALYSIS

In this section, we present empirical results for LogPSMs obtained using our simulator for logarithmic
rasterization. We also perform several comparisons between different shadow map algorithms. We use the
following abbreviations to classify the different algorithms:

—P: Perspective warping. Unless indicated otherwise, we use the LiSPSM warping parameter with our new
shaping function for the falloff.

—Po: Perspective warping with original 1/ sin γ falloff.

—LogP: Logarithmic + perspective warping.

—ZPk: z-partitioning using k partitions.

—FP: Face partitioning.

—FPc: Face partitioning with coordinate frame adjustment.

—FPcs: Face partitioning with coordinate frame adjustment and face splitting.

Partitioning schemes can be combined with warping, e.g. ZP5+P stands for z-partitioning with 5 partitions
and perspective warping, and FPc+LogP is face partitioning with coordinate frame adjustment and the
logarithmic+perspective warping. When ZPk appears without P or LogP, a uniform parameterization is
used.

Showing the quality of one shadow map algorithm relative to another from images alone is often difficult.
The regions of maximum error can differ between algorithms. To see the error, surfaces must pass through
these regions. Moreover, shadow edges must also be present in these regions. We project grid lines from
the shadow map onto the scene to more easily visualize the projection of shadow map texels themselves.
In addition, we generate color coded images using an aliasing error metric. Figure 12 shows several of the
possible metrics. (The color mapping used for the comparison images is shown in Figure 13). One possibility

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

30 · Lloyd et al.

-a
re

a
A

lia
si

ng
 e

rr
or

g

er
ro

r -
di

ag
on

al
s

A
lia

si
n

si
ng

 e
rr

or

Standard FPcs+P ZP5+P FPcs+LogPPe
rs

pe
ct

iv
e

al
ia

s

>118.53.51111
3.58.511<

ec
tiv

e
al

ia
si

ng
 e

rr
or

Pr
oj

e

Fig. 12: Comparison of various algorithms using different error metrics. The viewer is positioned below a
tree in a town scene. In the top row, grid lines for every 5 texels are projected onto the scene. In subsequent rows,
aliasing error is shown in terms of projected shadow map texel area in pixels, maximum extent of texel diagonals,
and perspective aliasing error. FPcs+P is a combination of face partitioning and perspective warping. ZP5+P uses 5
z-partitions combined with perspective warping. FPcs+LogP is a combination of face partitioning with a logarithmic
perspective warping. Both face partitioning algorithms use only 3 shadow maps for this view. Pixels are black at
partition boundaries where derivatives are not well-defined. Both the image and total shadow map resolutions are
512 × 512. For this view, the storage factor (a measure of maximum over the whole view frustum) is 1.6 × 106,
1.8 × 103, 69, and 13 for the Standard, FPcs+P, ZP5+P, and FPcs+LogP algorithms, respectively. The LogPSM
produces the lowest overall error and has the most uniform distribution. (f/n = 1000, θ = 30◦).

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 31

>118.53.51111
3.58.511<

ec
tiv

e
al

ia
si

ng
 e

rr
or

Pr
oj

e

Fig. 13: Projection error and color mapping for error comparison images. The image on the left shows
a measure of the projection term of the aliasing error for the images in Figure 12. The LogPSM almost completely
cancels out the perspective error.

1

Standard FPcs+P ZP5+P FPcs+LogP

Fig. 14: Perspective error along faces of view frustum. This is a third-person view of the view frustum used
in Figure 12. The range of the color mapping has been scaled for this figure (green = 1, red = 32)

is to use the area of the projected texels in the image:

ma = det
([
ri 0
0 rj

]
∂i
∂s

[1
rs

0
0 1

rt

])
=
∣∣ds dt

∣∣ (83)

ds =
(
ri
rs

∂i

∂s
,
rj
rs

∂j

∂s

)>
, dt =

(
ri
rt

∂i

∂t
,
rj
rt

∂j

∂t

)>
. (84)

ds and dt are the change in screen space coordinates for a texel sized step in s and t in the shadow map. The
availability of screen space derivatives in fragment programs make this metric easy to evaluate. The metric
takes into account the error in both directions, but has the drawback that it does not capture shearing of
the projected texels. Another possibility is to measure the maximum extent of a texel in the image using
maximum of the diagonals:

md = max (||ds + dt||, ||ds− dt||) . (85)

This metric also takes both directions into consideration, and to some extent it captures shearing. Unless
stated otherwise, we use this metric for the rest of the comparison images in this section. It is also possible
to visualize the components of aliasing error. Figure 12 shows max(m̃s, m̃t), the maximum of the perspective
aliasing error in both directions. This is the error that a global shadow map reparameterization seeks to
reduce. Figure 14 shows the same measure of perspective aliasing error along the entry faces of the view

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

32 · Lloyd et al.

1

ZP5+P FPc+LogPZP5+PFPc+LogP

ZP5+P FPcs+LogPZP5+PFPcs+LogP

Fig. 15: Comparison in a power plant model. The light is placed almost directly in front of the viewer. This is
the dueling frustum case that is difficult for single shadow map algorithms to handle. Both FP and ZP algorithms can
handle this situation well, though FPcs+LogP produces less error than ZP5+P. A face split is visible in the error image
for FPcs+LogP. The image resolution is 512× 512 and the total shadow map resolution is 1024× 1024. (f/n = 1000,
θ = 30◦)

1

P LogPPLogP

f=500, res =1024

Fig. 16: Comparison with single shadow map in a power plant model. Here we compare the P and LogP
parameterizations. The image resolution is 512× 512 and the shadow map resolution is 1024× 1024. Grid lines are
shown for every 10 texels. (f/n = 500, θ = 30◦)

frustum. These are the faces selected for this light position by Equation 46 to compute δb for the error
bound. Figure 13 shows the projection error that depends on surface orientation relative to the light and
eye. We calculate the projection error as cosψe/ cosψl. Note that we do not show the storage factor S
directly because it is a measure of error over the entire view frustum.

Figure 12 shows a comparison between various shadow map algorithms. The aliasing is extremely high
near the viewer for the standard shadow map, but improves with distance from the viewer. The FPc+P
algorithm is comparable to Kozlov’s perspective warped cubemap algorithm [2004] except that the LiSPSM
parameter is used for warping instead of the PSM parameter. This gives a more uniform error distribution.
FPcs+LogP has lower error than FPcs+P due to the better parameterization. ZP5+P is similar to cascaded
shadow maps [Engel 2007], but adds warping for further error reductions. ZP5+P always renders 5 shadow
maps while FPcs+LogP can render anywhere from 1 to 7 shadow maps. For this view, FPcs+LogP renders
only 3. FPcs+LogP has the most uniform distribution of error.

Figure 15 shows a dueling frustum situation which is especially difficult for single shadow map algorithms
to handle. Here FPc+LogP produces less error than ZP5+P. The portion of the image around the light
direction is oversampled for surfaces far from the viewer.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 33

Algorithm Min Max Max/Min Mean Std.Dev.
Standard 8.65×105 2.00×106 2.31 1.32×106 2.23×105
W 865 1.38×108 1.59×105 1.47×106 6.28×106
FP+W 865 2.00×103 2.31 1.49×103 233
FP+W* 865 3.57×103 4.12 1.91×103 616
ZP5 51.4 158 3.08 94.1 21.7
ZP5W 12.9 219 17.0 55.2 36.2
ZP16 10.1 66.3 6.58 32.5 13.0
ZP16W 6.55 81.8 12.5 33.6 17.1
LogPSM 5.98 14.8 2.48 10.9 1.88
LogPSM* 5.98 30.1 5.03 14.4 5.12

Algorithm Min Max Max/Min Mean Rel. mean
Standard 8.65×105 2.00×106 2.31 1.32×106 1.21×105
P* 865 3.65×106 4.22×103 2.53×105 2.32×104
P 865 1.99×106 2.30×103 1.80×105 1.64×104
Log 5.98 1.99×106 3.33×105 1.88×105 1.71×104
FP*+P 865 2000 2.31 1490 136
FP+P 865 3170 3.66 1860 170
FP+P+S 865 3630 4.19 1900 174
ZP5 51.4 158 3.07 94.1 8.60
ZP5+P 12.9 159 26.4 46.7 4.93
ZP5+Log 5.98 158 26.4 46.7 4.26
ZP7 27.4 100 3.67 56.6 5.17
ZP7+P 10.2 100 9.84 42.1 3.85
ZP7+Log 5.98 100 16.8 38.5 3.51
FP*+Log 5.98 14.8 2.47 10.9 1
FP+Log 5.98 26.3 4.4 14 1.28
FP+Log+S 5.98 31.7 5.3 14.3 1.31

Algorithm Min S Max S Max S/Min S Mean Rel. mean Mean # SMs
Standard 8.65×105 2.00×106 2.31 1.32×106 1.21×105 1
Po 865 3.65×106 4.22×103 2.53×105 2.32×104 1
P 865 2.00×106 2.30×103 1.59×105 1.45×104 1
LogP 5.98 2.00×106 3.33×105 1.85×105 1.69×104 1
FP+P 865 2000 2.31 1490 136 3.6
FPc+P 865 2980 3.45 1840 168 3.6
FPcs+P 865 3170 3.66 1880 171 3.8
ZP5 51.4 158 3.08 94.1 8.60 5
ZP5+P 12.9 159 12.3 53.7 4.91 5
ZP5+LogP 5.98 158 26.5 46.3 4.23 5
ZP7 27.4 101 3.68 56.6 5.17 7
ZP7+P 10.2 101 9.87 42.2 3.85 7
ZP7+LogP 5.98 101 16.8 38.4 3.51 7
FP+LogP 5.98 14.8 2.48 10.9 1 3.6
FPc+LogP 5.98 25.4 4.24 15.4 1.40 3.6
FPcs+LogP 5.98 27.7 4.62 15.6 1.43 3.8

Table IV: Storage factor over all light directions. Since the storage factor is greatest as the light moves
toward infinity, we used a directional light in order to obtain an upper bound on the storage factor. This table
summarizes statistics for various combinations of perspective warping (P), logarithmic+perspective warping (LogP),
face partitioning (FP), and z-partitioning (ZP). The second to last column shows the mean storage factor relative to
FP+LogP. The last column shows the mean number of shadow maps used. Over all light directions LogPSMs have the
lowest minimum storage factor. FP+LogP and its variations also have the lowest maximum, and mean storage factor.
The values in the table do not include the 1/ cos2 θ factor that arises in the storage factor. (f/n = 1000, θ = 30◦)

Figure 16 is a comparison using a single shadow map. The light is nearly in the optimal position for both
P and LogP. When the light is behind or in front of the viewer, both of these algorithms degenerate to a
standard shadow map.

Figure 1 shows FP+LogP used with point lights. We compare with Kozlov’s algorithm [Kozlov 2004]
(essentially FP+P but using the PSM parameter for the perspective warping). The LogP parameterization
also provides lower error for point lights.

Table IV shows the variation in perspective aliasing error in terms of the storage factor over all light
directions for various algorithms. Standard shadow maps have the highest error, but over all light directions
the variation in the error is fairly small. The single shadow map warping algorithms Po, P, and LogP provide
lower error for overhead views, but must degenerate to standard shadow maps when the light moves behind
or in front of the viewer. This leads to a huge variation in error that makes these algorithms more difficult
to use. The table shows that in contrast to Po, our improved shaping function for the warping parameter
keeps the maximum error of P below that of a standard shadow map. Even though LogP has a much lower
minimum error than P, it ramps off to a uniform parameterization slightly faster than P and the extremely
high error of the uniform parameterization dominates the mean. However, it can be seen from Figure 17
that LogP provides significant improvement over P for almost the entire range of γ ∈ [θ, 90◦].

Face partitioning leads to much lower variation in error over all light directions. Coordinate frame adjust-
ment and face splitting reduces shearing error not accounted for by the storage factor, which causes a slight
increase in the storage factor but an overall decrease in actual error. The FP∗+LogP algorithms have much
lower error than the FP∗+P algorithms due to the better parameterization.

As with a single shadow map, z-partitioning with a uniform parameterization has the least variation in
error over all light directions. Adding warping reduces the error for γ ∈ [θ, 90◦]. The minimum error for
ZPk+LogP, which occurs for an overhead directional light, is the same for all k. With this light position,

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

34 · Lloyd et al.

1

20 40 60 80
0

5

10

15

20

25

γ

k = 1

lo
g
2
S

20 40 60 80
0

5

10

15

20

25

γ

k = 2

20 40 60 80
0

5

10

15

20

25

γ

k = 3

20 40 60 80
0

5

10

15

20

25

γ

k = 5

lo
g
2
S

20 40 60 80
0

5

10

15

20

25

γ

k = 7

20 40 60 80
0

5

10

15

20

25

γ

k = 16

ZPk
ZPk+P
ZPk+LogP
FPcs+LogP
FPc+LogP

ZPk
ZPk+P
ZPk+LogP
FPcs+LogP
FP+LogP

Fig. 17: z-partitioning using various parameterizations. z-partitioning leads to significant error reductions but
requires many partitions to converge to the same error as a face partitioning scheme that uses a logarithmic+perspective
parameterization. (f/n = 1024, θ = 30◦)

increasing the number z-partitions has no effect on the parameterization. This is not the case for uniform
and perspective parameterizations. Figure 17 shows that for other light positions, increasing k initially
produces drastic reductions in error that then trail off. With large k, warping makes less of a difference. For
comparison, the error for FP+Log and FPcs+LogP are also shown in Figure 17. A small rise in FPcs+LogP
can be seen at γ = θ where a new face partition appears and is split. As the number of z-partitions increases,
the error begins to approach that of the FP+LogP. We have shown the error for the ZPk algorithms with
k = 5 and k = 7 because these are the maximum number of shadow maps required for the FP and FPc
algorithms (5) and for the FPcs algorithm (7). On average, however, the number of shadow maps used by
FP, and FPc is 3.6, and for FPcs the average number is only 3.8.

The statistics reported in Table IV show scene-independent, maximum perspective aliasing error over all
light directions. To get an idea of how well this correlates with the actual aliasing error in the image for a
real scene, we uniformly sampled the hemisphere of light directions above the scene and created a histogram
of the resulting error in the image for a fixed view. Figure 18 shows the cumulative distribution of the error.
The value y at a position x on the curve is the fraction of pixels with error less than x (i.e. the further the
curve is shifted left, the better). The distribution of error depends on the positions of the surfaces within
the view frustum. We see that the single shadow map algorithms tend to have higher error spread out over
a wider range. When the surfaces are far from the eye, as in the first view shown in Figure 18, warping
and partitioning of any kind may produce little benefit over standard shadow maps. In fact, the warping
algorithm P produces error that is significantly worse than a standard shadow map for this view. When
the surfaces are closer to the eye, as in the second view, FPc+LogP can produce significantly less error than
other parameterizations.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 35

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 log2 error

Std
P
LogP
ZP5
ZP5+P
FPc+LogP

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

 log2 error

Std
P
LogP
ZP5
ZP5+P
FPc+LogP

Fig. 18: Cumulative aliasing error distribution over randomly sampled light directions for several algo-
rithms. The graphs on the left were generated for the views on the right. The area of the projected texel was used
for the error metric. The actual benefit of warping and partitioning methods depends on the location and orientation
of surfaces within the view frustum.

7.1 Discussion

Having examined the detailed analysis for LogPSMs, we can now discuss the advantages of each LogPSM
algorithm (LogP, ZP+Log, and FP+LogP). Because rendering multiple shadow maps incurs a performance
cost, we want an algorithm that gives the most error reduction with the fewest number of shadow maps.

LogP. The LogP algorithm provides the greatest error reductions of any technique with the fewest shadow
maps (only 1), but only for a limited range of light positions. For high fe/ne ratios, the maximum error of
LogP is significantly lower than any other single shadow map warping scheme. For light directions nearly
perpendicular to the view direction, a ZP scheme requires a large number partitions to approach the same
levels of error. The LogP algorithm is most useful applications where the light direction does not approach
the view direction (e.g. shadows from the sun around mid-day in a driving simulator). But over all light
positions, LogP shares the same high maximum error as other single shadow map algorithms.

ZP+LogP. The high error of LogP for γ < θ can be reduced dramatically with just a few z-partitions.
As the number of z-partitions is increased, however, the relative benefit of ZP+LogP versus ZP or ZP+P
decreases. Thus ZP+LogP is best for applications that can only afford to render 2–4 shadow maps. Though

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

36 · Lloyd et al.

FP+LogP can deliver lower error using an average number of shadow maps in the same range, ZP+LogP is
much simpler to implement.

FP+LogP. Compared to other algorithms using the same number of shadow maps, FP+LogP produces the
least error over all light directions. FP+LogP has lower error than a ZP scheme using the same maximum
number of shadow of maps (5 or 7 depending on whether face splitting is used), but the error is not
dramatically lower. The advantage of LogP is somewhat more significant if we compare to a ZP scheme with
the same average number of shadow maps (3.6–3.8). The real advantage of FP+LogP over the ZP algorithms
is with omnidirectional point lights. Omnidirectional lights require multiple shadow maps to cover all light
directions, e.g. a cube map. Adding z-partitioning to each cube map face leads to an explosion in the number
of shadow maps. However, FP+LogP requires no more shadow maps for omnidirectional point lights than it
does for directional lights.

One of the primary benefits of LogPSMs is that they give a more uniform error distribution throughout the
view frustum. Other methods may actually have lower error than a LogPSM for some parts of the frustum,
but this comes at the expense of higher error elsewhere. For instance, a standard shadow map will typically
have less error than a LogPSM at the far plane, but much higher error at the near plane.

The analysis in this section provides additional supporting evidence for the conclusion of Lloyd et al. [2006]
that in the absence of logarithmic rasterization, ZPk+P is the best algorithm for achieving the low error
with just a few shadow maps. Figure 17 shows that when even with just 2 partitions, ZP2 has error over
the entire range of γ that is nearly as low as that of the minimum error of a single shadow map perspective
warping scheme (ZP1+P). When k is small, the additional complexity of adding warping (ZPk+P) is justified
by substantial error reductions over a large range of γ, but the benefit diminishes as k increases. With a
large enough k, ZPk can come fairly close to matching the error of FPcs+LogP.

One of the most important things that can be done to improve the error of all the algorithms examined
in this paper is to decrease the fe/ne ratio. This means that the near plane of the view frustum should be
pushed away from the viewer as far as possible. In order to avoid near plane clipping of scene geometry, it is
often desirable, however, to keep the near plane as close to the viewer as possible, though this approach can
be overly conservative because the regions near the viewer are often empty. One possibility for reconciling
these competing requirements is to use a conservatively small ne, but compute the optimal shadow map
parameterization/partitioning using a pseudo-near plane np, where np > ne. For example, we could compute
the partitions of ZPk+P using np instead of ne, expand partition 1 to include ne, and use a uniform
parameterization instead of a perspective one in partition 1 so as to concentrate most of the error towards
ne. This allows us to choose np using a heuristic or a cheap estimate of the closest point in the view. For the
rare cases when our np is not small enough, we still have shadow map coverage due the more conservative
ne, albeit with higher error, while maintaining low error in the rest of the frustum. (For details on using
a pseudo-near plane to optimize parameterizations see [Lloyd 2007]). In essence, np gives an otherwise
scene-independent algorithm some information about the parts of the frustum that the scene is likely to
occupy.

7.1.1 Limitations. The biggest limitation for LogPSMs is that logarithmic rasterization is not available
on current GPUs. It can be simulated with a fragment program, but it is considerably slower than linear
rasterization. Logarithmic rasterization may be implemented efficiently in hardware through incremental
modifications to existing rasterizers [Lloyd et al. 2007] or in software on an architecture such as Larrabee
[Seiler et al. 2008].

To get the most benefit out of the LogPSM parameterization over all light directions, a face partitioning
scheme must be used. While not overly-complex, face partitioning is not as simple as z-partitioning. The
number of face partitions varies with the light position, but the number of z-partitions remains constant.
Computing the face partitions themselves can require convex polyhedron intersection and clipping routines.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 37

Robust implementations of these routines are nontrivial. In addition, face partitioning can exhibit bad shear-
ing artifacts. We have presented some techniques to work around this, but they are not always completely
satisfactory, and they burden the algorithm with additional complexity.

The other limitations of LogPSMs are common to other warping techniques. Warping creates a non-
uniform distribution of depth values, which can make it more difficult to select a suitable constant bias to
remove self-shadowing artifacts. This is less of an issue for slope-scaled bias. Warping tends to increase the
instability of texture coordinate derivative calculations on surfaces nearly parallel to the light (some noise
can be seen in Figure 12). The distortion of filter kernels by the parameterization can also make spatial
filtering more complicated.

Another limitation of all the scene-independent techniques examined in this paper is that they only
handle perspective aliasing error. This simplification makes the algorithms easier to implement for real-time
applications, but because they have no knowledge of surface orientation, they cannot handle the projection
factor. Therefore they cannot guarantee that aliasing is completely removed from an image. In order to
offset any remaining perspective aliasing, the shadow map must already be several times larger than the
image. To reduce projection aliasing to acceptable levels on most surfaces, the shadow map must typically
be several times larger still, but even this may not be enough for all surfaces. Many of these samples are
wasted on parts of the scene that are not even visible to the light. Compared to an irregular shadow map
that requires no more shadow samples than the number of pixels in the image, scene-independent methods
can be quite inefficient in terms of sample usage.

7.1.2 Reducing projection aliasing. In order to handle projection aliasing, the orientation of surfaces in
the scene must be taken into account, i.e. the projection factor. In general, this requires partitioning. ZP
and FP algorithms perform partitioning, but only according to the perspective factor. Adaptive methods
partition according to both the perspective and projective factors and can thus produce much lower error.
The more finely the shadow map is partitioned, the better it can adapt to the projection factor. In the limit
each partition consists of a single pixel, resulting in the irregular shadow map algorithm.

But partitioning incurs the extra cost of both determining where to partition the shadow map and handling
the irregularity introduced by dependence on arbitrary scene geometry. For example, samples in irregular
shadow maps no longer correspond to locations on a regular grid, which means more work is required to
access them. Sample locations and connectivity have to be stored explicitly, which requires more storage
per sample and makes filtering operations more complicated. Adaptive shadow maps partition at a coarser
granularity than the irregular shadow map, which leads to higher error, but their samples can be computed
and accessed more cheaply, which makes it easier to create more samples to offset the error. We would like
to further investigate the trade-offs between performance and error with varying partition granularity, and
at what error/performance threshold it makes more sense to use an irregular shadow map instead of an
adaptive shadow map.

Combining warping with adaptive shadow maps can reduce the number of partitions required to reduce
the error in the scene. Geigl and Wimmer [2007b; 2007a] report a reduction in error by using an adaptive
algorithm on top of a global perspective parameterization. We would also like to investigate whether replacing
the perspective parameterization with a LogPSM parameterization would yield further improvements.

Conclusion

We have presented a logarithmic perspective parameterization for shadow maps and have shown how it can
be used to replace perspective or uniform parameterizations in existing algorithms. With proper hardware
support, LogPSMs would have the same good performance as the algorithms upon which they are based,
but with lower error. We have conducted an in-depth analysis of aliasing error to determine just how
much improvement LogPSMs can give over existing methods. We have shown that the error for perspective

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

38 · Lloyd et al.

warping is O(f/n), where f and n are the near and far plane distances. In contrast, the LogPSM parame-
terization has an error that is O(log(f/n)), which is close to the lower bound for global, scene-independent
parameterizations. We have also discussed various implementation details for LogPSMs and shadow maps
in general, and based on the error analysis make recommendations of which algorithms are best to use under
various circumstances. For future work we would like to investigate the use of the logarithmic perspective
parameterizations with algorithms such as adaptive shadow maps, which can handle projection aliasing.

Acknowledgements

We would like to thank Ben Cloward for the robot model, Aaron Lefohn and Taylor Holiday for the use
of the town model, as well as David Feng, Nico Galoppo, and the anonymous reviewers for their helpful
comments. This work was supported in part by an NSF Graduate Fellowship, an NVIDIA Fellowship,
ARO Contracts DAAD19-02-1-0390 and W911NF-04-1-0088, NSF awards 0400134, 0429583 and 0404088,
DARPA/RDECOM Contract N61339-04-C-0043 and the Disruptive Technology Office.

REFERENCES

Aila, T. and Laine, S. 2004. Alias-free shadow maps. In Proceedings of Eurographics Symposium on Rendering 2004.

Eurographics Association, 161–166.

Annen, T., Mertens, T., Bekaert, P., Seidel, H.-P., and Kautz, J. 2007. Convolution shadow maps. In Rendering
Techniques 2007: Eurographics Symposium on Rendering, J. Kautz and S. Pattanaik, Eds. Eurographics / ACM SIGGRAPH

Symposium Proceedings, vol. 18. Eurographics, Grenoble, France, 51–60.

Annen, T., Mertens, T., Seidel, H.-P., Flerackers, E., and Kautz, J. 2008. Exponential shadow maps. In Proceedings of
the 2008 Conference on Graphics Interface. 155–161.

Arvo, J. 2004. Tiled shadow maps. In Proceedings of Computer Graphics International 2004. IEEE Computer Society, 240–247.

Arvo, J. 2007. Alias-free shadow maps using graphics hardware. Journal of Graphics Tools 12, 1, 47–59.

Brabec, S., Annen, T., and Seidel, H.-P. 2002. Practical shadow mapping. Journal of Graphics Tools 7, 4, 9–18.

Chan, E. and Durand, F. 2004. An efficient hybrid shadow rendering algorithm. In Proceedings of the Eurographics Symposium

on Rendering. Eurographics Association, 185–195.

Chong, H. 2003. Real-Time Perspective Optimal Shadow Maps. Senior Thesis, Harvard University.

Chong, H. and Gortler, S. 2004. A lixel for every pixel. In Proceedings of the Eurographics Symposium on Rendering.

Eurographics Association, 167–172.

Chong, H. and Gortler, S. 2007. Scene optimized shadow mapping. Tech. Rep. TR-07-07, Harvard University.

Crow, F. C. 1977. Shadow algorithms for computer graphics. ACM Computer Graphics 11, 3, 242–248.

Donnelly, W. and Lauritzen, A. 2006. Variance shadow maps. In SI3D ’06: Proceedings of the 2006 symposium on Interactive
3D graphics and games. ACM Press, New York, NY, USA, 161–165.

Engel, W. 2007. Cascaded shadow maps. In ShaderX5, W. Engel, Ed. Charles River Media, 197–206.

Fernando, R., Fernandez, S., Bala, K., and Greenberg, D. 2001. Adaptive shadow maps. In Proceedings of ACM

SIGGRAPH 2001. 387–390.

Forsyth, T. 2006. Making shadow buffers robust using multiple dynamic frustums. In ShaderX4, W. Engel, Ed. Charles River
Media, 331–346.

Giegl, M. and Wimmer, M. 2007a. Fitted virtual shadow maps. In Proceedings of Graphics Interface 2007. 159–168.

Giegl, M. and Wimmer, M. 2007b. Queried virtual shadow maps. In Proceedings of ACM SIGGRAPH 2007 Symposium on

Interactive 3D Graphics and Games. ACM Press, 65–72.

Hubbard, J. H. and Hubbard, B. B. 2001. Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach
(2nd Ed.). Prentice Hall.

Johnson, G., Mark, W., and Burns, C. 2004. The irregular z-buffer and its application to shadow mapping. In The University

of Texas at Austin, Department of Computer Sciences. Technical Report TR-04-09.

Johnson, G. S., Lee, J., Burns, C. A., and Mark, W. R. 2005. The irregular z-buffer: Hardware acceleration for irregular

data structures. ACM Trans. Graph. 24, 4, 1462–1482.

Kozlov, S. 2004. Perspective shadow maps: Care and feeding. In GPU Gems, R. Fernando, Ed. Addison-Wesley, 214–244.

Lauritzen, A. and McCool, M. 2008. Layered variance shadow maps. In Proceedings of the 2008 Conference on Graphics
Interface. 139–146.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 39

Lefohn, A. E., Sengupta, S., and Owens, J. D. 2007. Resolution-matched shadow maps. ACM Transactions on Graph-
ics 26, 4, 20.

Lloyd, B., Tuft, D., Yoon, S., and Manocha, D. 2006. Warping and partitioning for low error shadow maps. In Proceedings

of the Eurographics Symposium on Rendering 2006. Eurographics Association, 215–226.

Lloyd, D. B. 2007. Logarithmic perspective shadow maps. Ph.D. thesis, University of North Carolina at Chapel Hill.

Lloyd, D. B., Govindaraju, N. K., Molnar, S., and Manocha, D. 2007. Practical logarithmic rasterization for low-error
shadow maps. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware. Eurographics

Association, 17–24.

Martin, T. and Tan, T.-S. 2004. Anti-aliasing and continuity with trapezoidal shadow maps. In Proceedings of the Eurographics
Symposium on Rendering. Eurographics Association, 153–160.

McCool, M., Wales, C., and Moule, K. 2001. Incremental and hierarchical hilbert order edge equation using polygon

rasteization. Eurographics Workshop on Graphics Hardware, 65–72.

Reeves, W., Salesin, D., and Cook, R. 1987. Rendering antialiased shadows with depth maps. In Computer Graphics (ACM

SIGGRAPH ’87 Proceedings). Vol. 21. 283–291.

Salvi, M. 2008. Rendering filtered shadows with exponential shadow maps. In ShaderX6, W. Engel, Ed. Charles River Media.

Scherzer, D., Jeschke, S., and Wimmer, M. 2007. Pixel-correct shadow maps with temporal reprojection and shadow test

confidence. In Rendering Techniques 2007 (Proceedings Eurographics Symposium on Rendering), J. Kautz and S. Pattanaik,

Eds. Eurographics, 45–50.

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin,
R., Espasa, R., Grochowski, E., Juan, T., and Hanrahan, P. 2008. Larrabee: A many-core x86 architecture for visual

computing. ACM Transactions on Graphics 27, 3, To appear.

Sen, P., Cammarano, M., and Hanrahan, P. 2003. Shadow silhouette maps. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2003) 22, 3 (July), 521–526.

Sintorn, E., Eisemann, E., and Assarsson, U. 2008. Sample based visibility for soft shadows using alias-free shadow maps.

In Proceedings of the Eurographics Symposium on Rendering 2008. To appear.

Stamminger, M. and Drettakis, G. 2002. Perspective shadow maps. In Proceedings of ACM SIGGRAPH 2002. 557–562.

Tadamura, K., Qin, X., Jiao, G., and Nakamae, E. 1999. Rendering optimal solar shadows using plural sunlight depth
buffers. In Computer Graphics International 1999. 166.

Williams, L. 1978. Casting curved shadows on curved surfaces. In Computer Graphics (SIGGRAPH ’78 Proceedings). Vol. 12.

270–274.

Wimmer, M., Scherzer, D., and Purgathofer, W. 2004. Light space perspective shadow maps. In Proceedings of the
Eurographics Symposium on Rendering. Eurographics Association, 143–152.

Zhang, F., Sun, H., Xu, L., and Lun, L. K. 2006. Parallel-split shadow maps for large-scale virtual environments. In

Proceedings of ACM International Conference on Virtual Reality Continuum and Its Applications 2006. ACM SIGGRAPH,

311–318.

Zhang, F., Xu, L., Tao, C., and Sun, H. 2006. Generalized linear perspective shadow map reparameterization. In VRCIA
’06: Proceedings of the 2006 ACM international conference on Virtual reality continuum and its applications. ACM Press,
New York, NY, USA, 339–342.

Received September 2007; revised May 2008; accepted June 2008

APPENDIX

In this appendix we analyze various shadow map parameterizations for the faces of the view frustum. We
begin with the parameterizations Fb for the three varieties of δb. We also discuss the uniform, perspective,
logarithmic, and logarithmic+perspective parameterizations described in Section 5. We then analyze the
error of parameterizations applied to the entire view frustum.

Parameterizations based on δb

We begin by looking at some graphs of the various spacing distributions functions δb that are based on the
bound for maximum perspective aliasing error. Figure 19 shows how δend

b,t on the far face changes with light
position. The cosφly term is responsible for the variation in the shape of the function. Close to the face, δend

b,t

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

40 · Lloyd et al.

resembles an absolute value function with a rounded tip. As lz → ∞, cosφly converges to a constant and
the spacing distribution function converges to uniform. Moving the light in y simply translates the function
along the v-axis.

Figure 20 shows the shape of δside
b,s for a light centered over the face. Note that δside

b,s is essentially δend
b,t

extruded along the y direction and scaled by y.
Figure 21 shows δside

b,t for the light at varying heights above the face. When the light is close to the face,
the spacing distribution function is an undulating curve with dense sampling near the light and the viewer.
Translating the light in y produces a shifted and scaled version of the function. As the light moves away
toward infinity, the spacing distribution function converges to a linear function. Once again, it is the cosφly
term close when the light is close to the face that accounts for the variation in the shape of the spacing
distribution function.

From Equation 67 we can see that if δl = ρbδb, then Rb = ρb. We note that ρ side
b,s varies with v. Therefore

we take R side
b,s = maxv(ρ side

b,s (v)). Figure 22 shows Rb for the three varieties of δb. In general, Rb is smaller
when the light is close to the plane containing the face. It also falls off as the light moves to either side of
the face. This is due to the effect of the cosφl term. Rb is related to the integral of cosφl over the face.
When the light is close to the face or off to the side, the cosφl term becomes smaller. It is largest for points
directly under the light. For an overhead directional light, cosφl = 1 everywhere. It is for this position that
Rb reaches its maximum value. Therefore, the maximum critical resolution factors, Rb, can be computed
from limlz→∞ ρb, or equivalently, by plugging cosφl = 1 into Equations 54, 57, and 58, and computing the
corresponding ρb:

R end
b,t =

1
cos θ

(86)

R side
b,s =

1
cos θ

(87)

R side
b,t =

y0 log(y1/y0)
We cos θ

=
log(fe/ne)

2 tan θ cos2 θ

=
log(fe/ne)

sin 2θ
(88)

We have substituted We = 2ne tan θ. The critical resolution factors are at most O(1) for an end face and
O(log(fe/ne)) for a side face.

0 0.5 1
0

1

2

3

4

5

δ
en

d
b,

t

v

Fig. 19: Error bound spacing distribution on an end face. This graph shows δend
b,t for the light at ly = 0 and

lz = σ(y1 − y0). From dark to light, σ = 0.1, 0.2, 0.5, 1,∞. The cos θ term has been factored out.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 41

Fig. 20: Error bound spacing distribution for s on a side face. This graph shows δsideb,s with the light centered
over the face.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

δ
si

d
e

b,
t

v
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

δ
si

d
e

b,
t

v
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

δ
si

d
e

b,
t

v

Fig. 21: Error bound spacing distribution for t on a side face. These graphs show δsideb,t for the light at
ly = κ(y1 − y0) and lz = σ(y1 − y0). From left to right, κ = −0.5, 0.5, 1. From dark to light, σ = 0.1, 0.2, 0.5, 1,∞.
The frustum parameters are θ = 45◦, ne = 1, and fe = 1000.

Uniform parameterization

A standard shadow map uses a parameterization that has a uniform spacing distribution function:

δun = 1 (89)
ρun = 1. (90)

From Equation 67 we get for an end face:

R end
un,t = max

v

(
1

δend
b,t (v)

)
= max

v

(
cosφly(v)

cos θ

)
(91)

Figure 23 shows Run on an end face and a side face for various light positions. Note that Run reaches
its maximum whenever the light position is over the face. That is because the cosφly factor reaches its
maximum for points where y(v) = ly. Comparing Figure 23 to Figure 22, we see that when the light is not
directly over the face, the shapes of the graphs are nearly identical, but on the side face the scaled differs
by several orders of magnitude. This difference arises from the y(v) term in δside

b,s and δside
b,t , which varies by

a factor of fe/ne over the face.
Run can be computed most simply by setting the cosφl term in δb to 1 and applying the equivalent of

Equation 91 for the appropriate face. R side
un has its maximum when the y(v) term of δside

b,s reaches its minimum
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

42 · Lloyd et al.

y0 y1

ly

R
en

d
b,

t

0

0.2

0.4

0.6

0.8

1

x0 x1

lx
R

si
d
e

b,
s

0

0.2

0.4

0.6

0.8

1

y0 y1

ly

R
si

d
e

b,
t

0

2

4

6

Fig. 22: Critical resolution factor for error bound parameterizations. From left to right, R end
b,t , R side

b,s , and

R side
b,t for the light at varying positions. The plots show lz = σ(y1−y0), where from dark to light, σ = 0.1, 0.2, 0.5, 1,∞.

The grayed out region indicates light positions over the face. The frustum parameters are θ = 45◦, ne = 1, and
fe = 1000. The cos θ term has been factored out of R end

b,t and R side
b,s .

y0 y1

ly

R
en

d
u
n

,t

0

0.2

0.4

0.6

0.8

1

x0 x1

lx

R
si

d
e

u
n

,s

0

200

400

600

800

1000

y0 y1

ly

R
si

d
e

u
n

,t

0

200

400

600

800

1000

Fig. 23: Critical resolution factor for uniform parameterization. From left to right, R end
un,t, R

side
un,s, and

R side
un,t for various light positions. For all graphs lz = σ(y1 − y0), where from dark to light, the plots are for σ =

0.1, 0.2, 0.5, 1,∞. The grayed out region indicates light positions over the face. The frustum parameters are θ = 45◦,
ne = 1, and fe = 1000. The cos θ term has been factored out of R end

un,t and R side
un,s.

value of y0. Putting all of this together, we get:

R end
un,t =

1
cos θ

(92)

R side
un,s =

y1

y0 cos θ
=

fe
ne cos θ

(93)

R side
un,t =

(y1 − y0)
We cos θ

=
fe − ne

2ne tan θ cos2 θ

=
(fe/ne)− 1

sin 2θ
. (94)

The maximum critical resolution for the uniform parameterization is identical to that of the error bound
parameterization for the end faces.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 43

x0 x1

lx

R
si

d
e

p
,s

0

0.2

0.4

0.6

0.8

1

y0 y1

ly
R

si
d
e

p
,t

0

5

10

15

20

25

30

y0 y1

ly

S
si

d
e

p

0

200

400

600

800

1000

Fig. 24: Optimal critical resolution factors for perspective parameterization. From left to right R side
p,s , R side

p,t ,
and S side

p for various light positions. When parameterizing with a perspective matrix, δsidep,s and δsidep,t are coupled.
S side

p combines the errors in both directions so that the optimal perspective parameter can be found considering both
directions together. For all graphs lz = σ(y1 − y0), where from dark to light, the plots are for σ = 0.1, 0.2, 0.5, 1,∞.
The grayed out region indicates light positions over the face. The frustum parameters are θ = 45◦, ne = 1, and
fe = 1000. The cos θ term has been factored out of R side

p,s .

Perspective parameterization

Existing warping methods use perspective projections. The normalized spacing distribution functions on a
side face for the perspective parameterization Fp in Equation 73 can be computed by taking the multiplicative
inverse of the derivatives of Fp,s and Fp,t w.r.t. u and v, respectively:

δside
p,s =

y(v) + a

p0 (x1(y1)− x0(y1))

=
(y(v) + a)
(y1 + a)

(95)

δside
p,t = − (y(v) + a)2

p2(y1 − y0)

=
(y(v) + a)2

(y0 + a)(y1 + a)
. (96)

δside
p,s is constant in u and increases linearly in v, while δside

p,t is quadratic in v.
Figure 24 shows the optimal R side

p,s , R side
p,t , and S side

p . The optimal R side
p,s is computed as:

min
a
R side
p,s = min

a
max

(u,v)∈F

(
δside
p,s

δside
b,s

)

= min
a

max
(u,v)∈F

(
y1

(y1 + a)
(y(v) + a)
y(v)

cosφlx(u)
cos θ

)
. (97)

The maximum in R side
p,s is achieved when y(v) = y0. R side

p,s is minimized when a = 0, which leaves only the
cosφlx/ cos θ term in Equation 97. Geometrically, setting a = 0 causes the face to be stretched out to fill the
entire shadow map, maximizing the use of the available resolution. With a = 0, Equation 97 is essentially
the same as Equation 91. The optimal a parameter for R side

p,t varies with the position of the light. For a
directional light directly above the face, aopt =

√
y0y1, the same optimal parameter as used by LiSPSMs.

The maximum occurs at either y(v) = y0 or y(v) = y1. Using these optimal parameters for s and t for the
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

44 · Lloyd et al.

y0 y1

ly

a
o
p
t

0

20

40

60

80

100

Fig. 25: Optimal perspective parameter. (Left) When the errors in the s and t are combined, a range of
parameters (those below the curve) produce the same storage factor S side

p for each light position (ly = 0.5y1.) (Right)
The maximum parameter value in optimal range for lz = σ(y1 − y0), where from dark to light σ = 0.1, 0.2, 0.5, 1,∞.
The frustum parameters are θ = 45◦, ne = 1, and fe = 1000.

overhead light case gives the optimal R side
p :

min
a

R side
p,s =

1
cos θ

(98)

min
a

R side
p,t =

y0(y1 − y0)
We
√
y0y1 cos θ

=
(fe − ne)

2 tan θ cos3θ
√
nefe

=
fe/ne − 1

sin 2θ
√
fe/ne cos θ

(99)

≈ O(
√
fe/ne).

The parameterization Fp is usually implemented with a projective matrix, in which case the parameter
a is the same for s and t. This means that R side

p,s and R side
p,t can not be optimized separately, as we have

done. Rather they should be optimized simultaneously by optimizing the storage factor S side
p . Lloyd et al.

[2006] noted that for overhead directional lights, there exists a range of parameter values for which S side
p is

constant and is minimal. Figure 25 shows that a range of optimal parameter values for S side
p also exists for

point lights. S, however, does not measure the error due to shearing. Shearing decreases with increasing a.
Therefore it is advisable to choose the largest a possible on the equivalent range. For an overhead directional
light, this corresponds to the LiSPSM parameter. Using this value we can compute S side

p :

min
a

S side
p =

y1 − y0

We cos2 θ
=

(fe − ne)
2ne tan θ cos2 θ

=
(fe/ne − 1)

sin 2θ
(100)

≈ O(fe/ne).

The optimal range for a includes a = 0. If a = 0, then R side
p,s is minimized and most of the error is in t.

Logarithmic parameterization

We have now shown that the uniform parameterization gives error for end faces on the same order as that
of the error bound parameterization. The perspective parameterization can do the same for the s on side
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 45

y0 y1

ly

R
si

d
e

lo
g
,t

0

2

4

6

y0 y1

ly

S
si

d
e

lp
,t

0

2

4

6

Fig. 26: Critical resolution factor for logarithmic parameterization. For all graphs lz = σ(y1 − y0), where
from dark to light, the plots are for σ = 0.1, 0.2, 0.5, 1,∞. The grayed out region indicates light positions over the
face. The frustum parameters are θ = 45◦, ne = 1, and fe = 1000.

faces. We will now show that a logarithmic parameterization can do the same for t. The normalized spacing
distribution for Equation 74 is:

δside
log,t = log

(
y1 + a

y0 + a

)
y + a

y1 − y0
(101)

This spacing distribution is linear, as is that of the δside
b,t for a directional light (see Figure 21). Figure 26

shows R side
log,t. Because δside

log,t is not a very good match for the cosφl factor, the error is not as low as it could
be when the light is close to the face, but it is on the same order as R side

b,t . When the cosφl factor in δside
b,t

becomes 1 for a directional light, the optimal aopt = 0 gives a perfect match for the y(v) term. With this
parameter we get:

min
a

R side
log,t =

y0 log(y1/y0)
We cos θ

=
log(fe/ne)

sin 2θ
, (102)

which is the same as R side
b,t .

Logarithmic + perspective parameterization

The general spacing distribution for Flp,t is found by computing (dFlp,t/dv)−1:

δlp,t =
(y(v) + a)

(
(y(v) + a)(c1p2 + c2) + c1p3

)

c0c1p3(y1 − y0)
. (103)

δlp,t has two real roots (in terms of y(v)):

λ0 = −a, λ1 = −
(
a+

c1p3

c1p2 + c2

)
. (104)

If we choose the constants c1 and c2 such that λ1 = −b, we can write δlp,t as:

δlp,t ∼ (y(v) + a)(y(v) + b). (105)

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

46 · Lloyd et al.

y0 y1

ly

S
si

d
e

lp

0

2

4

6

0

50

100

y
sp

ac
in

g
y0 ly y1

δb,t

δlp,t

y0 y1

ly

R
si

d
e

lp
,t

0

2

4

6

Fig. 27: Critical resolution and storage factors for logarithmic+perspective parameterizations. (Left)
Storage factor for the linear form of δsidelp,t that we use for LogPSMs. (Middle) The logarithmic + perspective parame-

terization can also generate parabolic spacing distribution functions that can give a good fit to δsideb,t . (Right) The two

parabola form gives a storage factor that approaches that of δsideb . For the plots on the left and the right, lx = 0 and
z = σy1, where from dark to light σ = 0.1, 0.2, 0.5, 1,∞. The grayed out region indicates light positions over the face.
The frustum parameters are θ = 45◦, ne = 1, and fe = 1000.

To compute c1 and c2 we need an additional constraint, which comes from the requirement that Flp,t(y0) = 0.
This constraint is satisfied when the argument of the logarithm, c1Fp,t(v) + c2, is 1. Solving for c1 and c2
we get:

c1 = − (y0 + a)(a− b)
(y0 + b)p3

(106)

c2 =
(y0 + a)(ap2 − bp2 + p3)

(y0 + b)p3
. (107)

Plugging these values into Equation 103 gives us the normalized spacing distribution:

δlp,t = − (y(v) + a)(y(v) + b)
c0(a− b)(y1 − y0)

. (108)

The constant c0 can be computed from the constraint that Flp,t(y1) = 1:

c0 =
1

log
(

(y0+a)(y1+b)
(y0+b)(y1+a)

) . (109)

When b→∞, the constants converge to those given in Section 5.3 and δlp,t converges to a linear spacing
distribution. Figure 27 shows the optimal S side

lp,t with b = ∞. The a parameter also affects R side
lp,s and

thus must be optimized simultaneously with R side
lp,t by optimizing S side

lp,t . We find the optimal a parameter
numerically. Over the wide range of parameters we tested, it appears that the optimal parameter is always
a = 0. Note that when the light is over the face, R side

lp,t is higher than R side
log,t. However R side

log,t is still the same.
When b is finite, δlp,t is a parabola. Using two parabolas we can get a better fit to the curved portions of

δside
b,t (see Figure 27). Fitting two parabolas, however, is more expensive because it requires that the face be

split into two partitions with each partition parameterized separately. The optimal split point ys is difficult
to compute, but ys = ly produces good results that are close to optimal. Figure 27 also shows S side

lp,t with
ys = ly, a = 0, and b chosen to optimize S side

lp,t . The curves for R side
lp,t are very similar to those for R side

b,t . One
disadvantage of this parameterization is that a closed-form solution for the optimal parameter bopt for each
parabola does not exist. Therefore bopt must be computed numerically, which is somewhat involved. We
would like to further explore the additional degrees of freedom in Flp as future work.
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 47

1

θ

W
n

W
0

n

W
s2

W
0

s2

γ

v
:

0

1

Wf

W 0
n

W 0
s2

Wfθ
Wn

W
s2

Ws1

W
0s
1
W
0n

W
0s
2

v
:
0

1

v
n
1

W 0
s1

v
n
1

v
n
0

n0

n0

lig
ht

light

Fig. 28: Parameterizing the entire frustum for a directional light. (Left) Side views of the view frustum.
The exit faces of the view frustum are projected onto the light image plane, which is oriented perpendicular to the
light direction. (Right) The light’s view of the view frustum. The perspective warping frustum surrounding the view
frustum is shown in black. On the top row γ > θ and on the bottom row γ < θ, where γ is the angle between the light
and view vector, and θ is half the field of view of the view frustum.

Error analysis for parameterizations over entire view frustum

The error analysis for point lights that we performed on the frustum faces can be extended for analyzing
single shadow map methods. We restrict our attention here, however, to directional lights in order to simplify
the discussion. These methods are typically used for directional lights anyway, or for spot lights with a fairly
narrow field of view.

We first derive equations that can be used to analyze the error for varying light directions. These equations
are similar to those used by Zhang et al. [2006]. The main difference is that Zhang et al. analyze error along
the view direction while we evaluate the error along the faces.

Figure 28 shows the light image plane and the light frustum surrounding the view frustum. We param-
eterize the light direction by the angle γ between the light and view directions. We will consider only
γ ∈ [0◦, 90◦]. For this range, Equation 46 dictates that we compute M̃ using δb along the exit faces of the
view frustum. The near face is an exit face for all γ < 90◦. Both side faces are exit faces when γ < θ, while
only one of them is for γ > θ. The various terms of δb can be computed using simple geometry on Figure 28:

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

48 · Lloyd et al.

Wly = W ′n +W ′s2 +

{
W ′s1 γ ∈ [0, θ]
0 γ ∈ [θ, 90◦]

(110)

Wlx = (n′ +Wly)





Wf

n′ γ ∈ [0, θ]
Wf

n′+W ′
s1

γ ∈ [θ, 90◦]
(111)

de(v) = ne + (fe − ne) max
(
y(vn0)− y(v)

W ′s1
, 0,

Wly − y(v)
W ′s2

)
(112)

y(v) = Wlyv (113)

vn0 =

{
W ′

s1
Wly

γ ∈ [0, θ]

0 γ ∈ [θ, 90◦]
vn1 = vn0 +

W ′n
Wly

(114)

W ′n = Wn cos γ, W ′s1 = Ws (1− cos(θ − γ)) W ′s2 = Ws sin(θ − γ) (115)

Wn = We, Wf = Wn
fe
ne
, Ws =

fe − ne
cos θ

. (116)

Because we are using a directional light source and the light image plane is perpendicular to the light
direction, both the nl/dl and cosφl terms are 1. The spacing distribution functions computed for the various
face parameterizations in the Appendix need to be modified slightly when parameterizing the frustum because
the coordinate system we are using is not the same. We make the following substitutions: y0 = 0, y1 = Wly,
and a = n′.

Equipped with these equations we can now analyze the error distribution of the uniform, perspective, and
logarithmic perspective parameterizations for a single frustum. We will assume throughout this discussion
that rs = ri and rt = rj . We will also drop the cos θ term from δb so that the dependence of the error on
a function of fe/ne can be more easily observed. Because the warping parameter n′ which controls Fp and
Flp can diverge to ∞, we parameterize n′ with η, which is defined over the finite range [−1, 1]. As given by
Lloyd et al. [2006], η is parameterization of n′ that corresponds to n′ = ∞ at η = −1, n′ = ne +

√
nefe at

η = 0, and n′ = ne at η = 1. We modify their equations slightly for use with varying γ:

n′(η) =
Wly

α− 1





√
α+1−η(α−1)

η+1 η < 0
√
α+1

η
√
α+1

η ≥ 0
(117)

α =
fe
ne
.

Figure 29 shows the error distribution using Fp and Flp over all η. The graphs are shown over all v. Fp,s(u, v)
is constant in u, which is not shown. Let us consider first the case of an overhead light with γ = 90◦. The
value of M̃p,s (and M̃lp,s because Flp,s = Fp,s) attains its maximum at v = 0, decreases rapidly, and then
descends more slowly to its minimum value at v = 1. At η = 1 the warping frustum matches the view
frustum and the error is constant and minimal over all v. M̃p,t shows a wider range of behavior. At η = −1,
M̃p,t degenerates to a uniform parameterization and looks very much like M̃p,s with an initial, rapid descent
followed by a more gradual one. At η = 1, M̃p,t increases (linearly, in fact) from v = 0 to v = 1. At η = 0
the values at v = 0 and v = 1 are the same and the maximum error over all v is minimal. In general, over
some range around η = 0 the minimum error over v does not occur at the endpoints. For the parameters
used to generate Figure 29, this range is approximately η ∈ [−0.4, 0.4]. Note that η was derived such that
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 49

η

log2 M̃p,s

−1

−0.5

0

0.5

1

0

1

2

3

log2 M̃p,t

0

1

2

3

log2 M̃lp,t

0

1

2

3

η

v
0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1

2

3

4

5

6

7

v
0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

6

v
0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

4

Fig. 29: Error distribution for varying warping parameter. (Top) γ = 90◦. (Bottom) γ = 0◦. The white line

on the graph for M̃p,t is the location of the minimum error over v as a function of η. The frustum parameters are
n = 1, f = 16, and θ = 30◦.

the maximum error over v would decrease linearly along v = 0 for η ∈ [−1, 0] and rise again linearly along
v = 1 for η ∈ [0, 1]. This behavior can be seen in the graph. As with M̃p,s, the maximum of M̃lp,t is always
at v = 0, the minimum is at v = 1, and at η = 1 the error is uniform over all v.

Looking at the graphs for the light directly in front of the view frustum (γ = 0◦) we see that the maximum
error occurs on the farthest end of near plane at v = vn1. This is true for all γ ∈ [0◦, 90◦]. When γ = 90◦,
vn1 = 0. The minimal maximum error is attained for all parameterizations at η = −1, which is why the
single shadow map warping algorithms all degenerate to a uniform parameterization at γ = 0◦.

In order to compute a function that gives us a smooth degeneration to a uniform parameterization as
γ → 0◦ while maintaining low error, we examine the behavior of these functions over varying γ in Figure
30. Based on the analysis of Figure 29, we plot the error at v = vn1, v = 1, and for M̃p,t, at the location
of the minimum v = vmin. The maximum value of all the plots is the critical resolution factor R and the
distance between the maximum and minimum captures the variation in error over v. For an overhead light,
both R and the variation in M̃ for Fp,s and Flp,t are minimal at η = 1. As γ decreases, the variation in error
increases slightly at η = 1, but Rp,s rises significantly, while Rlp,t remains practically the same. At γ = θ,
there is a rapid shift in R for η ∈ [0, 1]. M̃p,s also sees a rapid change at v = vn1 for η in this range, but the
shift in Rp,t is more gradual because the maximum error is already high. As γ continues to decrease, the
maximum error for all the functions grows steadily until it is higher than that of a uniform parameterization
for all η 6= 0. From this we can see that as γ decreases, it is important that η be close to 0 by the time
γ = θ. As γ continues to decrease, η should eventually decrease to −1.

Figure 31 shows the error over γ ∈ [0◦, 90◦] for various shaping functions for the warping parameter. When
each parameterization uses its optimal parameter without any shaping, the error for γ < θ is very high. The

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

50 · Lloyd et al.

1

0

5

10

15

20
γ = 90◦

lo
g 2
f M p,s

0

5

10

15

20

lo
g 2
f M p,t

0

5

10

15

20

lo
g 2
f M lp,t

-1 0 1
0

10

20

30

40

lo
g 2
S

η

γ = 35◦

-1 0 1
η

γ = 31◦

-1 0 1
η

γ = 29◦

-1 0 1
η

γ = 23◦

-1 0 1
η

γ = 0◦

-1 0 1
η

Sp

Slp

Fig. 30: Perspective error over all warping parameters for several light directions. These graphs plot the
error at v = vn1 (heavy dotted line), v = 1 (thin solid line), and for M̃p,t, v = vmin, where vmin is the location of
the minimum value. Sp is constant over η ∈ [0, 1] for γ = 90◦. The frustum parameters are n = 1, f = 1024, and
θ = 30◦.

LiSPSM algorithm uses a 1/ sin γ factor to modulate the optimal parameter. The figure shows that the effect
of this shaping function is relatively minor for γ ∈ [θ, 90◦], which is desirable for keeping the error low. But
for γ ∈ [θ, 90◦] the falloff is not fast enough to escape the increase in error in M̃s for η 6= −1. M̃lp,s has even
higher error because ηlp is further from −1 than ηp. If we compute the optimal parameter with respect to
S, we see that for γ ∈ [θ, 90◦], η is the same as with no shaping at all. At γ = θ, η suddenly jumps to 0 and
then decreases almost linearly to −1 as γ approaches a point somewhere between 0 and θ. The optimal Sp
and Slp never rise above Sun. One problem with the S-optimal warping parameter is that S can change very
rapidly near γ = θ.

Computing the parameter that minimizes Sp and Slp is involved. Instead we propose the simple function
in Equation 76 that can nearly replicate the S-optimal warping parameter, while giving the user better
control over the shape of S curve. This function provides a linear transition from −1 to ηb on the interval
γ ∈ [γa, γb]. From there it provides a smooth transition to ηc over γ ∈ [γb, γc]. We choose γb = θ because
this gives us precise control over η at the point where the error functions begin to change rapidly. Based on
observations of the optimal S curves over the typical range of θ and fe/ne, we choose γa = θ/3 for Fp and
ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

Logarithmic Perspective Shadow Maps · 51

1

resize : 40%

-1

-0.5

0

0.5

1
η

0

5

10

15

log2 fMs

0

5

10

15

log2 fMt

0

10

20

30

log2 S

-1

-0.5

0

0.5

1

0

5

10

15

0

5

10

15

0

10

20

30

-1

-0.5

0

0.5

1

0

5

10

15

0

5

10

15

0

10

20

30

20 40 60 80
-1

-0.5

0

0.5

1

γ
20 40 60 80

0

5

10

15

γ
20 40 60 80

0

5

10

15

γ
20 40 60 80

0

10

20

30

γ

Uniform
Persp.
LogP

Fig. 31: Various shaping functions for the warping parameter. For the M̃ graphs, the solid lines are v = vn

and dotted lines are v = 1. The dashed line is v = vmin for M̃p,t. (First row) The optimal warping parameter
computed for γ = 90◦ is used for all γ without modification by a shaping function. The error is extremely high for
γ < θ. (Second row) The LiSPSM 1/ sin γ is used to ramp off n′ (n′ is converted to η in this graph). (Third row) The
warping parameter is chosen to minimize S, but the transition from low to high error at γ = θ is too rapid. (Fourth
row) Our shaping function keeps the error low for γ > θ while avoiding excessive error for γ < θ. In addition it
provides a smoother transition. Note that the uniform parameterization actually does not have a parameter but the
other two parameterizations converge to uniform as η → −1. The frustum parameters are n = 1, f = 1024, and
θ = 30◦.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

52 · Lloyd et al.

γa = θ/2 for Flp. γc controls how quickly the transition from low to high error occurs as γ → 0. We choose
γc = θ + 0.3(90− θ) so that the error is kept low for γ > θ while extending the transition period. ηc should
be 1 for optimal Slp and 0 for optimal Sp. ηb should be 0 to replicate the behavior of the S-optimal curve.
However, this causes the value of M̃p,s at v = 1 to rise to the same value as at v = vn1. By decreasing ηb
a small amount, it is possible to mitigate this effect without affecting S too much. By experimentation we
arrive at the value of ηb = −0.2. The behavior of S when using these parameters to choose the warping
parameter is fairly consistent over varying θ and fe/ne. We have observed that for some light positions not
in the yz plane, the warping can be slightly stronger than necessary.

Our shaping function is based on the optimal parameter using S as an error metric. S is only one possible
error metric and may not be suited for all applications. Our shaping function may not be able to provide a
good fit for other metrics. For this reason we would like to create a more flexible system that would allow a
user to build a shaping function interactively using something like smooth splines. By presenting users with
graphs similar to those shown in this paper, they could interactively generate a shaping function that meets
their particular needs.

ACM Transactions on Graphics, Vol. 27, No. 4, October 2008.

