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Abstract

We present a multi-agent simulation algorithm to compute the tra-
jectories and full-body motion of human-like agents. Our formula-
tion uses a coupled approach that combines 2D collision-free nav-
igation with high-DOF human motion simulation using a behav-
ioral finite state machine. In order to generate plausible pedestrian
motion, we use a closed-loop hierarchical planner that satisfies dy-
namic stability, biomechanical, and kinematic constraints, and is
tightly integrated with multi-agent navigation. Furthermore, we use
motion capture data to generate natural looking human motion. The
overall system is able to generate plausible motion with upper and
lower body movements and avoid collisions with other human-like
agents. We highlight its performance in indoor and outdoor scenar-
ios with tens of human-like agents.
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1 Introduction

The problem of simulating the motion of large number of human-
like agents in indoor and outdoor environments arises in many
applications, including computer games, animation, robotics,
computer-aided design, and pedestrian dynamics. Each agent or
pedestrian is typically modeled as a high degree-of-freedom (DOF)
articulated structure. The main goal is to compute collision-free
trajectories as well as full body actions for each agent. The overall
motion needs to satisfy many kinematic and dynamic constraints or
should appear plausible.

It is quite challenging to simulate a large group of human-like
agents, especially in dense scenarios with obstacles. Each agent
is typically modeled using tens of DOFs. In the most general case,
the overall simulation problem reduces to trajectory planning of a
very high DOF multi-agent system, with hundreds or thousands of
DOFs. Furthermore, the resulting motion trajectories need to sat-
isfy various constraints, such as collision-free, dynamically stable,
biomechanical constraints, natural looking, etc. This combination
of high number of DOFs and different constraints makes it chal-
lenging to find a good solution.

In order to overcome these challenges, most current methods for
human-like agents decompose the problem into two steps. Firstly,
they approximate each pedestrian or human agent using a circle on a
2D plane. There is extensive literature on computing collision-free
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planar trajectories for circular objects using global and local naviga-
tion methods. During the second step, these algorithms try to sim-
ulate or animate the precomputed human motion along the 2D tra-
jectory computed during the first. The simplest algorithms use pre-
computed walk cycles to animate the motion of each pedestrian or
use techniques such as motion blending [Kovar and Gleicher 2003]
and motion graphs [Kovar et al. 2002] to generate plausible char-
acter animation. The main benefit of these decoupled methods is
that they reduce the computational complexity by performing each
of the two steps independently, and can be used to simulate move-
ment of a large number of pedestrians. Most recent work in crowd
simulation uses such methods to generate plausible simulations and
renderings.

However, these decoupled methods have many limitations. The mo-
tion synthesis algorithms are prone to artifacts since the underly-
ing 2D navigation algorithms do not take into account human-like
constraints related to smoothness, kinematics or stability (e.g. foot
skating, infeasible angular velocity etc). Secondly, these methods
are unable to support navigation in complex 3D environments with
obstacles, where the pedestrians or human-like agents may need to
bend or step over the obstacles or perform upper body actions, e.g.
putting luggage in an overhead compartment in an airplane. As a re-
sult, prior methods are unable to capture many interactions between
the pedestrians or crowd behaviors in dense settings. Finally, these
decoupled methods are mainly limited to planar environments, and
may not be able to compute plausible trajectories on non-planar
scenarios, e.g. uneven terrains or stairs or guarantee collision-free
high DOF motion. As a result, we need good solutions to generate
plausible trajectories of high-DOF human-like agents.

Main Results: We present a novel coupled approach to compute
plausible trajectories for high-DOF human-like agents. Our ap-
proach is applicable to static and dynamic 3D environments and
can satisfy kinematic, dynamic stability and biomechanical con-
straints for virtual reality, crowd simulation, and robotics. We use
a hierarchical and multi-level planning approach that consists of a
2D multi-agent planner and a hierarchical high-DOF planner with
a closed-loop feedback between the two planners. Furthermore, we
use behavior finite state machine to model many complex agents
movements, including upper body or torso or arm movements, as
they interact with other pedestrians in the environment.

Our high-DOF planner uses a constrained optimization formula-
tion to compute feasible trajectories to perform the desired tasks.
This includes contact feasibility constraints that are used to gen-
erate physically plausible motion. Furthermore, the planner can
utilize mocap databases to generate natural looking motions to per-
form various tasks. We have applied our planner to many complex
indoor and outdoor scenarios with tens of human-like, each mod-
eled using 42 DOF. As compared to prior approaches, our coupled
formulation offers many benefits:

e We can generate smooth, oscillation-free trajectories for mul-
tiple high-DOF bodies in complex environments, while satis-
fying kinematic, dynamics, biomechanical, and contact con-
straints.

e We use behavior finite state machine to simulate a complex



set of agent behaviors and tasks.

e Our hierarchical feedback planner is able to compute plausi-
ble trajectories in challenging scenarios, where prior methods
would fail.

e Our approach bridges the gap between trajectory computation
and human motion synthesis thus generating human-like mo-
tion using a single framework.

e Our approach exploits parallelism for the high-DOF trajectory
computation to accelerate the computations.

The rest of the paper is organized as follows: In Section 2, we
survey related work in crowd simulation and motion planning for
high-DOF articulated models. Section 3 gives an overview of our
multi-level optimization framework that computes feasible trajec-
tories for each agent. We present the details of the hierarchical
feedback planner in Section 4. We highlight the performance on
challenging scenarios in Section 5.

2 Related Work

In this section, we give a brief overview of prior work in crowd
simulation and planning for high-DOF humans.

2.1 Multi-agent and Crowd Simulation

Crowd simulation has been extensively studied and a variety of
techniques and models have been proposed to generate plausible
crowd behaviors. At a broad level, these algorithms can be cat-
egorized as macroscopic models, which compute aggregate mo-
tion; and microscopic models which compute motion trajectories
for each individual agent. Macroscopic models generate fields
based on continuum theories of flows to guide the crowd [Treuille
et al. 2006; Narain et al. 2009]. Microscopic models often decou-
ple the problem into global planning and local navigation. Global
trajectory planning methods include navigation meshes, roadmaps
and potential fields [LaValle 2006]. There is also extensive lit-
erature on local navigation methods, including cellular Automata
models which discretize the simulation domain into a grid of
”cells” [Loscos et al. 2003; Bandini et al. 2006], social-force-
based models which treat pedestrians like mass particles and ap-
ply Netwonian-like physics to evolve the simulation [Helbing et al.
2000; Braun et al. 2003; Pelechano et al. 2007], Boid-like models
which create simple rules for velocities [Reynolds 1999], Vision-
based [Ondfej et al. 2010], and velocity-space-based [van den Berg
et al. 2011; Pettré et al. 2009] techniques which compute collision-
free paths by optimizing in velocity space. Other techniques for
crowd simulation are based on cognitive and behavioral model-
ing [Shao and Terzopoulos 2005], sociological or psychological
factors [Pelechano et al. 2007; Guy et al. 2011; Kim et al. 2012],
density-dependent behaviors [van Toll et al. 2012; Best et al. 2014b]
etc.

2.2 Motion Planning for High-DOF Robots

There is extensive literature on motion planning for articulated bod-
ies in robotics. Many such algorithms use randomized or sample-
based methods to compute collision-free paths in high dimensional
configuration space. These include algorithms for reaching and ma-
nipulation [Diankov et al. 2008], whole body motion [Hauser et al.
2008], and can be extended to take into account kinematic and dy-
namic constraints [Bouyarmane and Kheddar 2012; Dalibard et al.
2013].

There are also optimization-based planners that compute a trajec-
tory using a continuous planning formulation with various con-

straints. Some of these algorithms account for the stability of the
motion but are limited to planar ground. These include methods
based on inverse pendulum [Kajita and Tani 1991], zero moment
point [Kajita and Tani 1991], terrain uncertainty [Dai and Tedrake
2012]. Recent approaches integrate stability constraints directly
into trajectory optimization [Mordatch et al. 2012; Dai and Tedrake
2012]. Other planners tend to integrate high-DOF planning con-
straints with local navigation methods [Singh et al. 2011; Park and
Manocha 2014] or use them for high-DOF human-like articulated
figures [Pan et al. 2010].

2.3 Animating Human Motion in Crowds

There is extensive literature in computer graphics and animation
on generating human-like motion. Hoyet et al. [Hoyet et al. 2013]
have investigated different factors that make human motion rec-
ognizable and appealing. Prior research in the context of crowd
simulation has focused on combining motion clips to generate new
large-scale multi-character animations [Lee et al. 2006; Shum et al.
2008]. These include probabilistic models to synthesize new inter-
actions [Kwon et al. 2008], game-tree based close-knit interactions
for collaborative and competitive goals [Shum et al. 2012]. Kim
et al. [Kim et al. 2014] described an interactive method for editing
large crowd animations, while maintaining interactions between the
individuals. There is large literature on data driven techniques that
can be used to edit, retarget or synthesize new sequences of char-
acter motion using pre-captured motion data [Kovar et al. 2002;
Arikan and Forsyth 2002; Kovar and Gleicher 2004]. It is combined
with a 2d path planner for natural human locomotion [van Basten
et al. 2011]. Kwon et al. [Kwon et al. 2008] can generate data-
driven multi character interaction scenes using high level graphical
descriptions composed of simple clauses and phrases. However,
these techniques are limited by the availability of mocap data and
the difficulty of capturing the full body motion in constrained en-
vironments with multiple obstacles. Furthermore, it is difficult to
reuse or playback the motion in virtual environments that are dif-
ferent from the original environment, e.g. with a new set of obsta-
cles. Some kinematic based methods have been proposed to opti-
mize over the constraints and generate natural looking clips with a
variety of behaviors, but are limited to the linear space spanned by
the motion library [Safonova and Hodgins 2007]. Other approaches
are based on control strategies that are used to actuate a dynamics
model, but are restricted to relatively open environments [Jain et al.
2009].

3 Overview

In this section, we introduce the notation and terminology used in
the rest of the paper and give an overview of our hierarchical feed-
back planning algorithm.

3.1 Notation and Assumptions

In the rest of the paper, we use the following symbols and notation:
we denote a scalar variable n and a function f(x) with lower case
letters, a vector x with a bold face lower case letter, a matrix M
with a bold upper case letter, and a set C with an upper case italic
letter.

For a high-DOF articulated body A with multiple joints, each
configuration q of the A is defined using the degrees-of-freedom
(DOF) used to specify the 6-DOF root pose and the joint an-
gles. For example, we use a human model with 36 joint angles
and has 42 DOF altogether. The n-dimensional vector space de-
fined by these parameters is used to define the configuration space
C of the articulated human. The trajectory in the high dimen-



sional configuration space is a function of time and denoted as
q(t). Moreover, a trajectory q(¢) is represented using a matrix
Q = [a(to) q(t1) ... q(tm)], which corresponds to a set of con-
figurations at the discretized keyframes corresponding to to, t1, ...
t,, with a fixed keyframe interval At. The corresponding velocities
are represented using the matrix Q. The continuous function, q(t),
can be evaluated from Q and Q using cubic interpolation between

two keyframe configurations values, Q, Qr+1, Qk QkH, where
t € [kAt, (k4 1)At).

We also use a 2D multi-agent planner and model each agent A as
a 2D disk. Each disk is defined using a point pa = (x4, ya) and
aradius 74. We use the 2D position and velocity of the root link
of the articulated model, which usually corresponds to the waist or
pelvis link of a human-like articulated body, as pa and v 4, respec-
tively. The resulting trajectories, which correspond to the XY -root
translation of the 6-DOF root pose of the high-DOF body trajec-
tory, are denoted and represented as p 4 (¢) and P 4, and v 4 (¢) and
V 4, respectively. pa(t) and v 4(t) correspond to 2D time-varying
functions.

The input to our multi-agent planning algorithm is the start s4 and
the goal position g4 defined in the 2D space for each agent A, and
the output is the high-DOF trajectory qa(t) of each agent A from
s4 to ga. Our goal is to compute the feasible trajectory g’ (t) of
each high-DOF agents A for the given environments. Each agent
trajectory avoids collisions with the obstacles in the environment,
other agents, and also avoids self-collisions between different links
of the human model. The trajectories also satisfy kinematic and
dynamic constraints, given by joint limits and dynamic stability of
the high-DOF model.

3.2 Hierarchical Feedback Planner

Figure 1 gives an overview of our approach. We use a hierarchical
feedback planning algorithm which integrates a multi-agent plan-
ner and a high-DOF hierarchical motion planner with a closed-loop
feedback. This feedback approach allows computation of a large
number of agent motions efficiently and satisfy various constraints.

The input to the planner corresponds to the s4 and ga for each
agent. Our approach incrementally computes the trajectories q.(t)
of all the agents simultaneously with a time step A¢. During each
iteration, the 2D multi-agent planner first computes collision-free
root trajectories p 4 (t) of the agents for the given time interval ¢ =
[kAt, (k + 1)At]. Next, these 2D trajectories are used as an input
to the high-DOF hierarchical planner to compute high-DOF body
trajectories g4 () that satisfy kinematic and dynamic constraints.

2D Multi-agent Planner and BFSM: Many 2D multi-agent plan-
ning algorithms decompose the trajectory computation problem
into two phases: global path planning and local navigation. The
global planner computes a path to the current goal g4 while avoid-
ing collisions with the static obstacles in the environment. The local
planner adapts the computed globals path to avoid collisions with
the dynamic obstacles and other agents in the environment. In ad-
dition to collision free local navigation, our 2D multi-agent planner
can also simulate diverse and complex behaviors using a Behavioral
Finite State Machine(BFSM). For example, in the context of simu-
lating the behavior of passengers inside an airplane, these behaviors
may include an agent getting out of his seat to make way for an-
other agent, or an agent retrieving luggage from the overhead com-
partment. Given the disc-based shape abstraction for each agent,
non-locomotion behaviors (e.g. upper body action) are treated as
pointers to actual actions performed by the high-DOF hierarchical
planner (see below).

High-DOF Hierarchical Planner: Each computed 2D trajectory

pa(t) for an agent A is used to compute the initial trajectory for the
high-DOF motion planner. The position p 4 is used as the XY -root
translation of the high-DOF body root pose, and the root orienta-
tion is inferred from v 4. The high-DOF planner uses an optimiza-
tion algorithm to refine the initial trajectory and computes a new
trajectory for the high-DOF human, which satisfies kinematic and
dynamics constraints such as dynamic stability, contact feasiblity,
biomechanical constraints, etc. In order to perform the optimization
step efficiently, we represent the high-DOF articulated model using
multiple hierarchical components and apply the optimization step
to each level in the hierarchy sequentially. This approach lowers
the DOFs for each sub-problem, improve the overall performance
of the planning step. Section 4.2 gives the details of the high-DOF
motion optimization.

Closed-loop Feedback: The optimization algorithm uses a local
optimization strategy and may not converge to a feasible solution.
Moreover, it may be hard to compute a solution that also satisfies
the kinematic and dynamic constraints. In such cases, the high-
DOF planner attempts to compute a valid body trajectory by re-
ducing the agent’s speed thus covering a shorter distance than the
one expected by the 2D multi-agent planner. In such cases, the
high-DOF planner reports the updated positions to the multi-agent
planner to ensure consistency. However, if it still fails to find a
valid trajectory that satisfies the constraints, the high-DOF planner
requests an alternative 2D path from the multi-agent planner. We
present more details of our feedback approach in Section 4.3.

4 Hierarchical Feedback Planner

In this section, we present the details of the multi-agent planner and
the high-DOF planner used in our feedback planning approach.

4.1 2D Multi-agent Simulation

In our multi-agent simulation algorithm, agents are modeled as two-
dimensional disks of radius r. Similar to prior crowd simulation
algorithms, we decompose the 2D trajectory computation problem
into two phases: global path planning and local navigation. The
global planner generates a feasible path with respect to static ob-
stacles. This path is used to generate intermediate goals which
are communicated to the local planner as preferred-velocities, ve-
locities in the direction of an immediate goal, at a user-defined
preferred speed. The local navigation algorithm adapts or refines
these preferred velocities to avoid collisions with dynamic obstacles
and other agents, and thereby computes a collision-free trajectory
pa(t).

We augment our multi-agent simulation algorithm with a Behav-
ior Finite State Machine(BFSM) to produce diverse and complex
behaviors for the high-DOF pedestrians. Each state in the BFSM
corresponds to the goal that the agent seeks, how it intends to
achieve this goal and other behavior properties including sharing
the responsibility of avoiding collisions with the other agents, rep-
resented by a priority-value. Furthermore, states may also govern
whether an agent is locked. The 2D planner ensures that locked
agents are not affected by the action of other agents. For example,
consider an agent transitioning from a sitting-state to a standing-
state. Given the coupled high-DOF planner, it is imperative that the
local planning algorithm does not move the agent while high-DOF
planner computing the appropriate body motion. Furthermore, the
multi-agent planner cannot make any assumptions regarding the ex-
tent of simulation time that would be needed to execute the under-
lying actions. Thus, the BFSM locks the agent into a location on
the 2D plane and increases its priority-value, thereby ensuring that
the agent is unaffected by other agents while the high-DOF plan-
ner computes the appropriate trajectory to compute the upper body
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Figure 1: The overview of our approach. We use a hierarchical and multi-level planning approach, which consists of a 2D multi-agent
planner and a hierarchical high-DOF motion planner. We highlight different components of these planners. The overall algorithm performs
feedback computations from the high-DOF human planner to the 2D multi-agent planner till a plausible collision-free trajectory that satisfy
all the constraints is computed. The high-DOF motion planner also utilizes a motion database, which consist of motion capture data that can
used as the initial trajectory of different task states to compute plausible motion.

motion. Once finished, the high-DOF planner explicitly communi-
cates the new state to the multi-agent planner asking it to unlock
that given agent. This mechanism is part of the feedback loop de-
scribed in Section 4.3.

Our overall approach is almost independent of the choice of the
underlying 2D multi-agent simulation algorithm. Any one of the
commonly used global planning and local navigation algorithms
may be used. In our current implementation, we use a roadmap
for global planning and ORCA [van den Berg et al. 2011] for local
collision avoidance. ORCA is a velocity-space based optimization
model which can be used to generate smooth collision-free trajec-
tories that are stable over a large planning time. The priority-value
used for asymmetric collision avoidance is based on the formulation
described by Curtis et al. [Curtis et al. 2012].

4.2 High-DOF Trajectory Optimization

The high-DOF planner computes the full-body motion trajectory
qa(t) for a given time interval ¢t = [kAt, (k + 1)At] for the plan-
ning step k using trajectory optimization. The computed trajectory
qa(t) is physically plausible, which means the trajectory has no
collisions, satisfy kinematic constraints, and satisfies stability con-
straints with proper contact points.

4.2.1 Trajectory Initialization

The trajectory qa(t) is represented as a matrix Qa =
[@0 41 ... qm]”, where the trajectory is approximated using (m -+
1) keyframes. Q.4 is initialized from the 2D trajectory computed
using multi-agent planning, P 4 and V 4. The subset of Q4 that
corresponds to the XY -position is initialized using P 4, and values
of the Z-rotation are computed from V 4 and initialized accord-
ingly. The rest of elements are initialized using the values of the
predefined motion trajectory S, except the start configuration qo,
which is set as the last configuration qn from the previous (k — 1)-
th planning step.

The predefined motion trajectory S used for initial trajectory com-

putation is computed from the state value s extracted from the
multi-agent planner. For example, S corresponding to the default
state is a walking motion. This allows our high-DOF planner to
compute body motions for non-locomotor behaviors. The motions
are adjusted using inverse kinematics to set the contact points in
feasible positions in the environment.

4.2.2 Trajectory Optimization

Although the initial motion trajectory has feasible contact posi-
tions, the trajectory needs to be refined. This happens because the
stretched motion using inverse kinematics 1) may violate the dy-
namic stability constraints of the original motion trajectory, or 2)
may result in collisions with environment objects, other agents, or
itself (i.e. self-collision). Therefore, we use constrained optimiza-
tion to optimize Q 4 with a cost function subject to the constraints
corresponding to collision-free motion, dynamic stability, and con-
tact feasibility.

The optimization requires additional parameters c; and f; for each
keyframe, which correspond to vectors of contact points and contact
forces, respectively. Using the position and velocity parameters, the
optimization variables for a keyframe ¢ are defined as:

Xi = [qi,ci,fi,qi,ei,ﬂ] . (N

The objective function of the optimization is as follows:

X1y Xm <

min Y f(x:), )
i=1

where f(q;) represents the cost function for the keyframe q;. The
cost function is decomposed as:

f(xz) :fcol(Qz)+fds(xz)+fcf(xz)+fh(xz)7 (3)
where feor(Qi), fas(Xi), fer(xi), fn(x;) represent the costs for

the collision-free constraint, dynamic stability constraint, contact
feasibility constraint, and an auxiliary heuristic cost, respectively.



The details of the constraint cost implementation are described in
Section 4.2.3.

We use hierarchical planning to compute the trajectory for a high-
DOF model. Instead of optimizing the entire high-DOF trajectory,
we decompose the model into five components A® to A*, which
correspond to lower-body, torso, left arm, right arm, and head, re-
spectively. Next the planner traverses the entire hierarchy of the
body sequentially in a breadth-first order. The planning stage j op-
timizes subset of variable x0 that corresponds to the components
A®, ... AJ. This approach allows incremental computation of the
high-DOF trajectory planning.

We solve the non-linear optimization problem corresponding to (2)
using the well-known LBFGS algorithm with box constraints of
the variables computed using numerical derivatives. Given the op-
timized solution Q7, the trajectory g’ (¢) is evaluated using cubic
interpolation.

It is possible that the optimization algorithm cannot find a feasible
solution that satisfies all the constraints. In such cases, the planner
sends a failure message feedback to the multi-agent planner and ask
it to recompute a different 2D trajectory pa(t).

4.2.3 High-DOF Planning Constraints

Collision Constraints

The 2D root trajectory P 4 is computed using the local collision
avoidance mechanism in the multi-agent planning. That only guar-
antees that only the 2D disk is collision free. The trajectory plan-
ning of full-DOF model still requires to check for collisions con-
straints due to 1) the initial trajectory computed from motion S may
have collisions; 2) there are other obstacles in the 3D workspace
which were not considered in the 2D multi-agent planning; 3) pos-
sible self-collisions of the high-DOF model, and 4) to ensure that
trajectory optimization does not result in any new collisions.

The constraints for collisions with environment and self-collisions
are computed using the mesh objects BV (q) for the high-DOF
body, where BV (q) corresponds to BV located at the configu-
ration q, and the set WV of the triangle mesh objects in the envi-
ronment. Since the collision avoidance between multiple agents
is already guaranteed in the initial 2D trajectory computed using
multi-agent planning, we use the same position of the agents to en-
sure that the high-DOF optimization does not result in a colliding
configuration.

The collision constraint for a high-DOF body A is formulated as
a cost function fco:(q), which needs to be 0 to avoid collisions
with environment objects, self-collisions, and collisions with other
agents or pedestrians in the environment, B:

featl@) = Y PD(BV(a),E)?

BVcA
Eew

+ Y. PD(BVi(q), BV;(q))’
BV;,BV,€A 4)
BV, £BV;

+ Z max(ra +rp — ||pa — PB||70)27
BeP
BZA

where PD(O1, O2) is the penetration depth between mesh objects
01 and O3, which refers to the extend of inter-penetration.

Dynamic Stability and Contact Feasibility

Our constraint formulation for computing the physically plausi-
ble motion is based on prior work on optimization-based planning

———
: proj(c1)
Pr°J(C2)prc;j(c3) proj(co)

Figure 2: Contact points and their forces on a foot. Contact posi-
tions co,...,cy and contact forces fo, ..., £; are optimized to make
the equilibrium of forces on the body and also minimize the distance
between proj(c;), the projection of c; to the nearest environment
contact surface. and the corresponding potential contact point e;.

(CIO) [Mordatch et al. 2012]. This formulation uses two cost func-
tions corresponding to dynamic stability and contact feasibility con-
straints. The two constraint functions are coupled and allow com-
puting contact positions together with physically plausible motion
trajectory using optimization.

The stability constraints can be evaluated with Newton-Euler equa-
tion [Trinkle et al. 1997], using the external forces (gravity force,
reaction force, and etc.) and the internal forces (joint forces, inertial
force, etc.) that are exerted on the body. A pose is stable if all the
exerting forces and torques result in an equilibrium. As shown in
Figure 2, a body part that can have contacts (feet and hands) which
approximate a contact surface with the environment. Since the con-
tacts between the body and the environment objects exert forces
and torques on the body, we need to compute the appropriate forces
with feasible contact positions. We optimize the position c; and the
force f; for each contact j along the trajectory. The stability cost is
computed as

J
fas(x) = min 1> welf, €5) + wg(a) + wi(@)]]?, (5)

c1,C2,...,
f1,f2,...f;5 =1

where J is the total number of contact points, and wy(q) and
w;(q) are the gravity and inertia wrenchs (forces and torques) for
keyframe configuration q, respectively. w.(q) is the force and the
torque of f; at c;.

Equation (5) allows the trajectory optimization to compute contact
point forces f; which balances with other existing forces, but the
contact positions c; needs to correspond to an actual contact. The
contact feasibility cost can be formulated as

fer(x) =, £ (lej (@) — proj (P, e;)|* + ll&; (@)*),  (©)

j=1

where ¢; is the velocity of the j-th contact point, and e; is the cor-
responding potential contact point on the body at configuration gq.
We cluster the triangles in the environment object set WV into a con-
tact surface P. Triangles that have the same normals are clustered
as a large surface. proj(P, c;) is the projection of the position c;
to the nearest contact surface.

The formulation prevents contact sliding when the contact point
exerts contact force. Moreover, it reduces the distances from c;
to the environment object and the potential contact point on body
in the optimization for active contacts.

Heuristic Cost The heuristic cost fj(x;) varies for different hi-
erarchical stages. In the first stage which computes the trajectory



corresponds to the lower-body component A°, the heuristic cost is
only set on the last keyframe x,,, as the distance to the initial goal
position pa (). The cost is formulated as:

fr(xm) = [[Pa(tm) — aml|*. %)

This cost constrains the end configuration q,, of the computed tra-
jectory tends to close to the position pa(tm) passed from the 2d
multi-agent planner.

In the hierarchical stages corresponding to the torso and head, we
use a cost function that reduces the rotation of joints corresponding
to the spine and neck.

fn(x) = (ky - a())? + (ka-a(5))?, ®)

JEH

where q is the configuration variable in the keyframe variable x, H
consists of the indices of configuration elements that correspond to
the spine and neck joints, and k,, kq are constants. This cost for-
mulation tends to keep the torso and neck straight in the computed
trajectory.

The planning stages for arms satisfy biomechanical con-
straints [Tonneau et al. 2014] for computing human-like motions.
These constraints use the real data of the measured range of motion
in the 3D workspace to confine the position of joints in the range.
In practice, these constraints are able to perform better modeling of
human joint motion, as compared than using minmax limits.

4.3 Interplanner Communication and Feedback

As described above, the 2D multi-agent planner generates 2D
collision-free trajectories pa(t). The high-DOF planner then
attempts to compute physically plausibly high-DOF trajectories,
while respecting kinematic, dynamic stability and biomechanical
constraints. In complex scenes, it is possible that the high-DOF
planner fails to find a feasibly body trajectory. As a result, we cou-
ple the two planners using a feedback mechanism that provides al-
ternative paths when necessary. The feedback loop also allows our
approach to not be limited to a specific multi-agent planning al-
gorithm. The high-DOF motion planner can use pa(t) computed
using different global and local navigation methods as input, while
the previous footstep-based methods [Park and Manocha 2014] are
limited to a specific multi-agent planning algorithm that conserva-
tively enforced the kinematic constraints of high-DOF bodies. As
a result, our approach searches a large subspace for feasible solu-
tions that can satisfy various constraints. The high-DOF planner
can communicate either ”Success” or “Failure” messages to the 2D
planner. We describe both of these in the following sections.

4.3.1 Success

The high-DOF planner transmits a ”Success” message if it was able
to compute a feasible body trajectory for: (a) the input 2D trajectory
pa(t) or (b) a fraction or subset of the input 2D trajectory by re-
ducing its speed. The success message includes the updated (root)
positions for the agents, their orientations and an indicator variable
if an agent is to be unlocked. This allows the multi-agent planner
to synchronize with the high-DOF planner and update its BFSM
before planning the next step.

4.3.2 Failure
In case the high-DOF planner fails to find a feasible body trajectory,

it communicates a “Fail” message to the multi-agent planner. This
message indicates the agents or pedestrians for which the high-DOF

Average
Number of Trajector: Trajector:
Benchmark Agents (DOFs) Lerigth (s}; Optirjnizati)(;n
Time / Agents (s)
Headon stairs 2 (84) 16 12.5
Circle (small) 4(168) 20 14.6
Circle (big) 10 (420) 30 1.1
Crossflow 16 (672) 30 0.6
Construction Site 1(42) 360 22.0

Table 1: Simulation results for different benchmark scenarios. We
show the number of agents (DOFs); the trajectory length which cor-
responds to the total time that all the agents took to reach their goal
position; the average trajectory computation time for each planning
step (2 seconds = 40 frames).

plan failed. In this case, the multi-agent planner is responsible for
generating alternative plans or 2D paths for these agents. It per-
forms these computations using one of two mechanisms: reducing
their speeds which may enable the high-DOF planner to find fea-
sible body trajectories; or by temporarily inflating their radius to
generate moreconservative plans. The former is helpful in scenes
with constrained spaces while the latter is helpful in cases of close
pedestrian-pedestrian interaction.

5 Experimental Results

In this section, we highlight the performance of our algorithm on
different benchmark scenarios of varying complexity. The coupled
2D multi-agent planner and high-DOF hierarchical planner frame-
work enables us to generate plausible motion with upper and lower
body movements in indoor and outdoor scenes with tens of pedes-
trians. In our current implementation, each pedestrian is modeled
using 42 DOFs. The results for high-DOF planning in different
benchmarks are highlighted in Table. 1.

5.1 Headon Staircase

In this scenario, two agents of same radius walk up from opposite
ends of a uniform staircase with step height 0.2 m (Fig. 3(a)). They
walk across each other at the top of staircase of width 9.5 m. At
the beginning, both agents move towards their goal. As they get
closer at the top of the staircase, the 2D planner detects a collision
in the next planning window and each agent independently selects
a new collision-free velocity. This plan is adapted by the high-DOF
planner allowing the agents to pass by each other collision-free.

Unlike the same benchmark used in the prior work on a planar
ground [van den Berg et al. 2011], this scenario illustrates the abil-
ity of our motion planner to compute feasible trajectories on uneven
or non-planar terrain, while satisfying the contact and stability con-
straints.

5.2 Anti-podal Circle

The anti-podal circle scenario is used as a benchmark for many
prior crowd simulation algorithms. Agents are placed around a cir-
cle with goals directly anti-podal to their intial position (Fig. 3(b)).
While navigating towards their goal, each agent passes through the
center of the circle. This creates a high density scenario at the cen-
ter of the circle, when all the agents are near the center. We evaluate
the performance of benchmarks with different number of agents (4
and 10), which result in different densities.

In dense environments, the computed trajectories from 2D planning
approaches may have collision among agents in their 3D motion, as



(a) Headon staircase

(b) Anti-podal Circle

(¢) Crossflow

Figure 3: Benchmark scenarios with varying number of agents. (a) Two agents walk from opposite ends of a staircase. (b) 10 agents pass
through the center of the circle to reach their goals antipodal to their start positions. (c) 2 groups of 8 agent each, cross each other at a

hallway junction.

Figure 4: Construction site benchmark scenario. Human-like
agents navigate through various obstacles in 3D space such as scaf-
folding, metal beams, uneven solid mound etc.

the root of the 3D agent body (e.g. the pelvis) has transverse move-
ments [van Basten et al. 2011]. It results in several "Fail” messages
causing our multi-agent 2D planner to slow down the agents and
compute alternative plans that are more conservative. The plans
eventually succeed thereby generating feasible body trajectories for
each agent.

5.3 Crossflow

Crossflow is another dense crowd benchmark scenario which uti-
lizes the feedback loop. In this scenario, two groups with § agents
each are walking in two orthogonal hallways. (Fig. 3(c)). Both
groups reach the hallway junction at the same time causing conges-
tion as the agents attempt to cross each other. The 2D planner, in
order to avoid collision, often produces plans with sudden changes
in velocity, which may not be feasible for the high-DOF planner
given the dynamic and kinematic constraints. The feedback mech-
anism forces the 2D planner to generate more conservative, and
more likely smoother trajectories that can be adapted by the high-
DOF planner. Thus, using the feedback mechanism, the two crowd
flows cross each other collision-free.

5.4 Construction Site

This is the most complex scenario with varying behaviors. The
environment comprises of several obstacle courses that the agents
must navigate through (Fig. 4).

In one case, the agent is required to duck under a scaffold (Fig-
ure 5). This requires considerable upper and lower body motion
at the same time. Furthermore, the scaffold is not represented in
the environment of the 2D multi-agent planner. Thus the high-DOF
planner is mainly responsible for adapting the computed 2D trajec-
tory while performing collision avoidance and satisfying stability
constraints. The computed motion also shows that the heuristic cost
preserves the orientations of the torso and the head.

In another case, the agent is required to step over a beam placed on
the ground (Figure 6). The beam is not represented in the 2D scene
and thus is not considered in the 2D multi-agent planner. The high-
DOF planner creates a contact point on the beam by reducing the
initial foot step size, and computes a collision-free and physically
plausible trajectory.

Finally, there is a uneven solid mound placed on the terrain (Fig-
ure 7). The high-DOF planner computes dynamically stable trajec-
tories to guide the agent over the mound. It is especially difficult
to compute stable foot positions given the highly irregular and un-
even terrain. In such terrains, the feasible foot contact positions are
limited, and the 2D plan, which is computed without the 3D envi-
ronment information, may have too high a velocity to be feasible
on the uneven ground. Our closed-loop feedback planner ensures
that the 2D planner adapts to generate velocities suitable to the en-
vironment.

6 Discussion

In this section, we compare our algorithm with previous approaches
and discuss benefits of our hierarchical approach.

6.1 Handling 3D Environments

As shown in our benchmarks (Headon Staircase and Construction
Site), our approach uses high-DOF planner to compute agent mo-
tions in 3D space. Most of crowd simulations are computed in 2D
spaces, therefore obstacles defined in 2D space only can entirely
block the agents, and it is not possible to allow agents to pass over
or below the obstacles. On the other hand, our approach can han-
dle those obstacles, as the high-DOF planner computes ducking or
dodging motions.

6.2 Precise Control

The gain of the high-DOF planner is not limited to the obstacle han-
dling. In dense crowd scenarios (Circle and Crossflow benchmarks
in our experiments), the agents cannot move with the normal walk-
ing motion. The speed and stride are reduced, and may need to
side step or back pedal. Motion graphs [Kovar et al. 2002] are used



Figure 5: An agent passes under a scaffold.

>~

Figure 6: An agent steps over a beam placed on the ground.

to blend example motions to compute the corresponding motion.
However, these interpolated motions are not precise, unless the mo-
tion graph is dense enough, which requires both a large effort and
computation.

6.3 Feedback of Failure in High-DOF Planning

Our approach computes adaptive velocity and adjust the goal posi-
tion according to the environment, but there are still cases that an in-
put 2D trajectory does not have a corresponding feasible high-DOF
trajectory. As we discussed in Sec. 5.2, multi-agent 2D planners
do not consider the transverse movements in the high-DOF loco-
motion, which causes failures of the high-DOF planning in dense
environments. Previous work [Park and Manocha 2014] has to use
a conservative large radius for the multi-agent planning to avoid
these failures that cannot be handled in their framework. However,
our hierarchical feedback planner does not enforce a large radius
to the multi-agent planner as the radius is adaptively adjusted using
the feedback.

6.4 Parallel Computation

The use of high-DOF planner allows the computation of rich agent
motions, however computing high-DOF motions for a dense crowds
is a compute intensive task. Along with the multi-level approach,
we use parallelism to compute high-DOF motions efficiently. As
shown in Fig. 1, the multi-agent planner computes the collision
avoidance among agents, therefore the each High-DOF planner is
independent with other planners and only computes motion for a
single agent. We run the high-DOF planners in a separate machine
to exploit additional computational resources. This approach allows
each planner to use parallel computation for the trajectory optimiza-
tion which is described in Sec. 4.2.

6.5 Natural-looking Motion

One of the major challenges is to generate natural-looking move-
ments and trajectories for each human agent in the crowd. Prior
techniques for generating human-like motion use mocap (motion
capture) data [Kovar et al. 2002; Safonova et al. 2004]. How-
ever, current mocap datasets are mostly limited to capturing human
movements in large open spaces with no nearby obstacles. Even
though our approach has been integrated with mocap datasets, the

quality of the results varies as a functon of the available motion
libraries. In particular, current mocap datasets used in our imple-
mentation do not have good motion samples correspond to full-
body movements generated by our hierarchical planner. As a result,
many of the motions generated in our benchmarks are not natural-
looking. There has been work in robotics and bio-mechanics on
characterizing natural-looking or plausible human motion. These
include approaches based on energy efficient formulations [Khatib
et al. 2004; Sibella et al. 2007], or musculoskeletal models [Kim
et al. 2008; Wang et al. 2012]. Our goal would be to extend these
approaches to generate natural looking motion for human agents in
a crowd.

7 Conclusions, Limitations, and Future Work

We present a coupled approach to generate plausible high-DOF
pedestrian trajectories. It uses a unified approach for trajectory
computation as well as human motion synthesis. The main novelty
is in terms of using a feedback approach that provides a closed-loop
coupling between a multi-agent simulator and a high-DOF planner.
The high-DOF planner tends to compute trajectories that can sat-
isfy kinematic, dynamic stability, biomechanical and contact con-
straints. Furthermore, we use a BFSM to simulate a complex set of
agent behaviors and tasks. We have demonstrated the performance
in various complex scenarios with tens of human-like agents, each
composed of 42 DOF.

Our approach has some limitations. The computed motions are dy-
namically stable, however the agents look robot-like in some mo-
tions. More natural motions can be computed with accurate human
body models and motion constraints. In our implementation, our
high-DOF planner does not use any information of the expected fu-
ture motion or goals. It only computes feasible motion only for the
given time step At. The future action or position can be used to
generate better or smoother trajectories. We use local optimization
methods to compute the trajectories. It is not guaranteed to find a
solution, even if it exists. Our current approach is unable to model
many physical interactions, such as pushing or pedestrians exert-
ing forces on each other. Moreover, the quality of the computed
trajectories depend on the environment and the constants used for
different constraints.

There are many avenues for future work. In addition to resolve
these limitations, we would like to model heterogeneous agents of



Figure 7: An agent is walking over a uneven solid mound.

different sizes and complexity or motion speed (e.g. slow walking
vs. fast running). Furthermore, we would like to use them to sim-
ulate very complex scenarios[Best et al. 2014a] and large crowds.
Our current approach is not fast for interactive applications for com-
plex environments. As a result, we would like to accelerate the
computations to improve the performance.
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