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1 Modal Sound Synthesis

A more detailed description of modal analysis is provided here, but as described
in the main paper, please refer to previous work for complete derivations [1,2]
Modal sound synthesis can be broken up into two steps: a preprocessing modal
analysis step to process the inputs and a faster modal synthesis step to synthesize
individual sounds.

1.1 Modal Analysis

Modal analysis is a process for modeling and understanding the vibrations of
objects in response to external forces. We use modal analysis in two ways: as
a step in modal synthesis and as a way to model real-world vibrating objects.
Vibrations in an object can be modeled with the wave equation [3], but in order
to handle arbitrary geometries with unknown analytical solutions, it is more
common to perform finite element analysis on a discretized representation of the
object [4,1].

Starting with a watertight triangle mesh representation of the object’s sur-
face, the interior volume of the object is filled with a tetrahedral volumetric
mesh. A finite elements model can then be constructed to represent the free
vibrations of the object:

Mr̈ + Cṙ +Kr = 0. (1)

For an object with n vertices, r ∈ R3n contains the set of displacements from
rest position. M , C, and K are the mass, damping, and stiffness matrices, re-
spectively. The mass matrix M (analogous to m in f = ma) and stiffness matrix
K (analogous to k in f = kx) can be constructed from the tetrahedral mesh
with the density, Poisson’s ratio, and Young’s modulus of the object’s material.

The damping matrix C models viscous damping, which is not as simple to
construct from first principles, so in practice it is approximated as a function of
the mass and stiffness matrices. Multiple functions have been applied to damping
modeling [5], with one example being the common Rayleigh damping model:

C = α1M + α2K, (2)
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where α1 and α2 are considered material parameters.
Given this representation of a vibrating object, we are interested in deter-

mining the frequencies at which it vibrates. This can be accomplished through
a generalized eigendecomposition of K and D The resulting eigenvectors can be
combined to create a matrix Φ that serves as the transformation between object
space and mode space.

Equation 1 can be decoupled by ΦT into linearly separable modes of vibration
with solutions of the form:

zi(t) = aie
−dit cos(ωd

i t), (3)

where, for a mode i, zi(t) is the amplitude at time t, ai is the initial amplitude,
di is the rate of decay, and ωd

i is the damped frequency of vibration. ωd
i and di

are computed as a result of the eigendecomposition, but please refer to previous
work for full derivations [2,5].

This modal analysis step is performed once per object, and is a computationally-
intensive task. As a result, the vibrations of any rigid-body object can be decom-
posed into a sum of damped sinusoids. This applies to both analysis of vibrations
in real-world objects and vibrations of synthetic objects. The resulting Φ matrix
and each mode’s frequency of vibration and damping rate are saved to be used
in modal synthesis.

1.2 Modal Synthesis

For real-world objects, impacts make the object vibrate according to its modes
of vibration, creating sound waves in the surrounding air. What we hear as the
object’s impact sound is the sum of all of its modes’ vibrations.

For virtual objects, impacts are modeled as an impulse which excites the
precomputed modes of vibration. Given an object-space impulse vector fo ∈ R3n

corresponding to the displacement vector r, the impulse can be converted to
mode impulses fm with:

fm = ΦT fo (4)

These mode impulses set the initial ai values for each mode i. The sinusoids for
the modes are then sampled, starting from the impact time at t = 0, and added
to produce the final sound. This process can be repeated for different materials,
geometries, and hit points to create a set of synthetic impact sounds.

2 3D Scene Reconstruction

2.1 Introduction

In Section 5.4 of the main document, we briefly discuss the application of our
method for enhancing 3D scene reconstruction. Existing methods have become
very effective at 3D scene reconstruction from RGB-D video, even in real-time.
However, due to limitations of vision-based methods, transparent and occluded
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objects are still a challenge for these methods. Our utility demonstrates how
ISNN can supplement these existing methods, using sound to provide cues about
the otherwise-challenging objects. In this document, we provide additional de-
tails about the application utility and the algorithm for inserting objects into
scenes.

Fig. 1: Our utility begins with a 3D reconstruction of a scene with incorrectly-
reconstructed objects. By using ISNN, we are able to complete the scene by
inserting the missing geometry. The inserted object is segmented as part of this
process.

Figure 1 provides a visual depiction of the algorithm. Please refer to the demo
video at http://gamma.cs.unc.edu/ISNN/ for a demonstration and additional
results.

2.2 Algorithm

The utility at its simplest provides a system for real-time scene reconstruction,
based on previous real-time RGB-D work [6,7]. Using the RGB-D camera of
a Kinect, a user scans the scene from multiple angles until estimations have
sufficiently converged. At this point, transparent objects may be incomplete or
missing. The user interacts with the application to select one of these objects,
then physically reaches into the scene to strike the corresponding object.

The Kinect’s microphone array records the impact sound, identifies the time
of impact, and extracts a 1-second clip containing the sound and its decay.
The recorded audio waveform is converted to the form of input to the ISNN-A
network: a downsampled mel-scaled spectrogram. This spectrogram is passed

http://gamma.cs.unc.edu/ISNN/
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through ISNN-A trained on the full RSAudio dataset. One network trained to
perform geometric model classification identifies the closest matching geome-
try to the recorded sound, while another network trained to perform material
classification identifies the closest matching material class.

The full object can then be inserted into the reconstructed scene. The object
is inserted at the position earlier selected, using the classified geometric model.
In our reconstruction utility, the object is textured with a different color than
that of the original geometry, indicating the segmentation of the object from the
rest of the scene. Alternatively, the material classification could correspond to
a texture which could be applied to the object. As a result of this process, the
transparent object which had previously been incomplete or missing, has been
both completed and segmented.

2.3 Limitations

ISNN’s geometric model classification cannot interpolate or extrapolate geom-
etry given new sounds. When ISNN is trained on the RSAudio dataset, each
individual geometric model is considered to be its own class, and classification
of a test sound is selection of the closest training geometry to that sound. For
the utility, this means that the inserted geometric model may be similar to the
ground truth object, but not match exactly. Shape optimization from sound is
still an open area of research. We have also tested pose estimation methods
based on RGB [8] and RGB-D [9,10]; however, future work is needed to extend
these to accept asymmetric transparent objects as input and integrate into our
application.

3 Feature Analysis

Figure 2 contains a scatter plot of material classes on the axes of the first two
principal components. The first principal component explains much of the vari-
ation between material classes, as there is clear horizontal delineation—albeit
with overlap. This is consistent with the expectation of damping as a material-
dependent property. The presence of specific frequency bins that comprise the
second component likely delineates model more than material.

4 Additional RSAudio Details

RSAudio contains both real and synthetic impact sounds. A number of the ge-
ometric models used to synthesize the sounds are shown in Figure 3. 62 400
synthesized sounds come from a set of 59 geometric models and 11 sets of ma-
terial parameters categorized into 6 classes of materials. For each model and
material pairing (with a few exceptions), 100 sounds with random hit points
were synthesized (subsection 1.1).
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Fig. 2: A scatter plot of material classes on the first two principle component
axes. While the horizontal delineation of materials is useful in characterizing
those sounds, a full understanding of the relationships between materials and
models necessitates a deeper classification scheme.

1183 real impact sounds come from a set of 24 struck rigid objects. These
objects are each made of one homogeneous material and primarily consist of din-
ing dishes, utensils, tools, and material samples used for building construction.
A majority of the sounds were recorded in a padded sound booth using a Zoom
H4 microphone to reduce background noise and room acoustics. The remaining
sounds were recorded in a wider set of environments ranging from small offices
to large outdoor areas. Each sound contains one impact in isolation from other
impacts.

Objects were either struck with a small metal wrench or a rubber-headed
drumstick, and in most cases, both. In either case, the striking tool was tightly
gripped in a hand while striking in order to minimize its vibrations while the
main struck object could vibrate freely. No post-processing was performed to
attempt to remove the remaining sound from the striking tool.

5 Additional ModelNet Details

ModelNet10 and ModelNet40 contain virtual objects categorized into 10 and 40
named classes, respectively. This is in contrast to RSAudio’s more diverse set
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Fig. 3: The RSAudio dataset consists of real and synthesized impact sounds,
and is used for training and testing our neural networks for material and object
classification. The dataset contains objects of varying shapes and sizes, and are
used to synthesize thousands of impact sounds.

Fig. 4: The ModelNet10 (samples pictured above) and ModelNet40 datasets are
collections of virtual objects categorized into fixed numbers of classes.
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of small and large objects. We use voxelized representations of these objects as
input to our multimodal networks.

Fig. 5: Confusion matrices on ModelNet10 models scaled and/or assigned a ma-
terial using ISNN. Applying per-class scaling reduces misclassification between
objects of similar geometries but different sizes (yellow), while assigning materi-
als reduces misclassification between objects of similar geometries but different
materials (red).

When synthesizing sound with ModelNet objects, by default we use the full
voxelized shapes. We also consider the effects of two modifications to the syn-
thesis process: per-class scaling and realistic material assignments. For per-class
scaling, each ModelNet class is assigned a scale, so that, for example, monitors
are smaller than dressers, which are smaller than beds. Sound synthesis is then
performed on the scaled version of the object. For realistic material assignments,
each class is assigned an appropriate material for synthesis instead of synthe-
sizing sounds for all possible combinations. Figure 5 shows the differences in
resulting confusion matrices when applying these two modifications. Adding au-
ditory data reduces the ambiguity as is shown by the increasing accuracy overall
and in the red/yellow highlighted regions from left to right.

Figure 6 further visualizes the per-class material assignment modification.
For each of the model classes in the outer ring of the diagram, the middle
ring indicates the selected per-class material, and the inner ring indicates which
dataset(s) the class is a part of. While many classes are assigned the “wood”
material, there are sufficient other materials assigned that classification accuracy
is improved.

6 Material Classification

The audio-only ISNN network can also be trained for the task of material clas-
sification. That is, given an input impact sound, ISNN trained in this way will
produce an estimate of the material class of the object. This is a task which has
been more thoroughly evaluated by previous work, but we are still interested in
the performance of ISNN on this same task.
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Fig. 6: Sunburst chart showing which model classes are present in ModelNet10
and ModelNet40 (inner and outer rings). Also shows which per-class materials
are assigned to each class when performing that modification for sound synthesis.

Material Classification Accuracy

Model RSAudio S RSAudio R Arnab Audio [11]

ISNN-A 98.69% 95.76% 71.86%
SoundNet5 [12] 99.97% 29.66% 43.11%
SoundNet8 [12] 92.66% 30.51% 43.11%

Table 1: Material classification accuracy and confusion matrix on subsets of the
RSAudio dataset
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In Table 1, we compare the material classification accuracy of various classifi-
cation models on multiple datasets. ISNN-A produces consistently high accuracy,
up to 98.69 %, and is either competitive with or or outperforms SoundNet. The
material labels provided with the Arnab dataset are not consistent with those
listed in their publication, but we selected a subset of those labels with clearly-
distinct material names for this test. In comparison to geometry classification
(see the main document Table 1), material classification accuracies are a few
percent higher on the RSA datasets, but somewhat lower on the Arnab dataset,
likely due to the labeling discrepancies.

(a) (b)

Fig. 7: Material classification confusion matrices produced by ISNN-A on (a) the
Arnab audio dataset and (b) the synthetic subset of RSAudio. In both cases,
there is high accuracy with only a minimal amount of confusion.

In Figure 7, we look at a breakdown of the classifications performed by ISNN
on RSAudio’s synthetic sounds and Arnab sounds. While RSAudio produces
consistently accurate classifications with only minor error, the majority of mis-
classifications on the Arnab dataset come from porcelain classified as plastic.

7 Activation Maximization

We additionally use activation maximization to visualize the spectrogram inputs
which would produce the highest activation for a given ModelNet class. Figure 8
shows how the result of activation maximization changes as different modifica-
tions to ModelNet sounds are performed. When no scale or material are applied,
the maximized spectrogram demonstrates a need for robustness to variance in
frequency and damping. When scale is fixed, so is the fundamental frequency,
as can be seen by the single active region and lower overall activation weights.
When material is fixed, so are the damping rates, which become recognizable
identifiers for this particular class of object.
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Fig. 8: Activation maximization results for the Toilet class of ModelNet10 as
different modifications are made to the model for sound synthesis. When both
scale and material are not fixed as distinguishing factors, the network must be
general and robust to differences (left). When both are fixed, the network clearly
identifies a recognizable pattern (right).
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