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Collective behavior is ubiquitous in living systems such as human crowds, microbial communities,
insect swarms, and bird flocks. It is widely reported that simple, local, temporal interactions between
individuals may lead to the emergence of collective behavior. In large-scale flocks, however, the
global information transfer in dynamical models with time-varying neighborhoods is not normally
instantaneous. Here, we present an information transfer network in which interactions last for a
certain period of time. We then combine this network with a dynamic model of self-propelled
particles. We observe that the resulting model that uses a stable information transfer network
creates a bird flock with a more robust performance. We further show that the time of information
transfer in a flock grows logarithmically with its size and is proportional to the average response
time of the birds. Moreover, we find that the ranking curves displaying the order in which birds first
perceive an external stimulus have similar shapes across different flocks. Our results demonstrate
that, beyond the traditional local, temporal interactions, our stable information transfer network
serves as an efficient mechanism to model the emergence of large-scale collective behavior.

I. INTRODUCTION

Collective behavior and cooperation of individuals in
large groups are widespread in nature and occur in var-
ious species such as bacteria, midges, fish, birds, human
beings, etc. [1–13]. Various theories of collective behav-
ior have been developed in many fields, including ecol-
ogy [14], biology [15, 16], physics [17–19], computer sci-
ence [20], economics [21], control theory [22], and social
science [23, 24]. As a unit, an aggregation often out-
performs a simple sum of individuals [25]. For example,
bird flocks escape from predators with a higher proba-
bility of success, honey bee swarms can find or build a
comb, and bacteria colonies reverse their directions to ex-
pand rapidly [26–28]. One challenge is to figure out how
do animals coordinate with each other to generate such
adaptive collective behaviors.

With simple rules for local interactions, many collec-
tive behaviors among groups can be modeled [29, 30].
Many scientists are interested in a mechanism to produce
global information transfer through local interactions.
Marginal opacity was introduced to represent long-range
information exchange [31]. Recently, scientists have come
to believe that an individual bird interacts with six or
seven birds on average, replacing the belief that a bird
interacts with all other birds within a certain Euclidean
distance [10, 32]. These models and empirical observa-
tions presume that birds interact with the birds near-
est to them, which means that the neighborhood of each
bird varies over time. However, the Coherent Neighbor
Invariance theory states that the relationships among n-
earest individuals tend to be invariant in coherent behav-
iors [33]. In addition, it has been shown that equilibrium
inference with a fixed interaction network can produce

consistent results with dynamical inference by analyzing
the data from flocking events with 50 to 600 individual-
s [34]. Therefore, the fundamental mechanism that can
explain the emergence of collective behavior in bird flocks
is not well understood.

In this work, we use graph theory [35] to model the
information transfer network of bird flocks. Within this
stable information transfer network, each bird only trans-
fers information with fixed neighbors and information re-
ceived by one bird can be transferred to an arbitrary bird
in the same flock. We further show that the time of in-
formation transfer in a flock grows logarithmically with
its size. Moreover, we find that the ranking curves dis-
playing the order in which birds first perceive an external
stimulus have similar shapes for different flocks. Our ex-
periments demonstrate that stable local interactions lead
to more realistic and robust collective behavior, especial-
ly for large-scale flocks.

II. STABLE INFORMATION TRANSFER
NETWORK: AN INVARIANT GRAPH

We construct a directed graph G = (V,E) (Fig. 1A) to
model the stable information transfer network of a bird
flock, where V and E represent the sets of nodes and
edges, respectively. We take the bird i in the flock as
node i ∈ V in G and define Ωi as the set of nodes rep-
resenting birds that have connections with node i. The
number of nodes in V is N . Ei denotes the set of di-
rected edges ending at i and starting from i’s neighbors,
i.e. Ei = {eji|j ∈ Ωi}. The indegree of each node i
is din(i) = 6, i.e. each bird only connects with six birds.
Within this information transfer network, birds only per-
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ceive information from the neighbors connected to them.
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FIG. 1. (A) The invariant directed graph. Each node rep-
resents a bird in the flock and is adjacent to the six edges
in the graph. If there are two arrows on one edge, the two
nodes adjacent to this edge can propagate information with
each other. (B) The number of strongly connected compo-
nents increases (SCCs) linearly with the numbers of birds in
a flock (the number of birds ranges from 1000 to 100,000).
The nodes in each SCC can transfer information. We average
the results of 10 different simulations. (C) The graph G de-
scribes the connections between birds (with 70 birds in total).
For illustration, G contains three typical kinds of SCCs: sink,
source, and isolated component, and each kind only has one
sample. (D) We compute the strongly connected components
of the graph shown in (C). Each component is distinguished
from the others with a closed, dashed gray circle. We further
add a minimum number of edges (black arrows) to make G
strongly connected without changing the other edges.

We randomly assign node i in graph G a 3D position
and find the six nearest nodes, which are designated as
its neighbors. With the development of the whole flock’s
locomotion, these neighbors are not always the nearest
neighbors. To explore the strong connectivity of G, we
use the Eswaran-Tarjan algorithm [35] to find all the
strongly connected components (SCCs) in which every
node is reachable from other nodes. G is a strongly con-
nected graph if it only has one SCC. In our experiments,
we test flocks of 1000 to 100,000 birds. The number
of strongly connected components corresponding to the
number of birds in one flock is shown in Fig. 1B. With
more birds, the number of strongly connected compo-
nents of G is larger and G is farther from being a strong-
ly connected graph. This indicates that information first
obtained by a certain bird may not be propagated to all
the other birds in the same flock; this is not consisten-
t with the scale-free spatial correlation theory [36]. In
addition, the birds that are not fully connected to other
birds cannot receive useful information, such as danger
signals in time to react. As a result, a strongly connect-
ed graph is needed to model the information transfer be-
tween the birds.

Taking the set of nodes V as input, we first add edges
eji to connect each node i with its six nearest neighbors
j ∈ Ωi and then add edges to make G (Fig. 1C) strong-
ly connected. To simplify the graph G, we find strongly
connected components (SCCs) forG, condenseG to a di-
rected acyclic graph G∗, and then compute sources (with
indegree zero), sinks (with outdegree zero), and isolat-
ed nodes (with both indegree and outdegree zero) of G∗

(Fig. 1D). The nodes of G∗ correspond to the strongly
connected components of G.

Let s1, s2,..., sp be sources in G∗ and w1, w2,..., wp be
sinks, where p is the smaller number of nodes between
the sources and sinks. Moreover, there exists at least one
path pi from si to wi for 1 ≤ i ≤ p. We add edges along
the reverse path p′i (1 ≤ i ≤ p); these edges share the
same nodes but run in the direction opposite direction to
pi if and only if two adjacent nodes on the path p′i are
not connected. For all the nodes except for si, wi, i =
1, 2, ..., p in G∗, we can add a reverse edge to the existing
edge if the node is a source or a sink. If the node is
an isolated node, we find the node nearest to it and add
two edges with directions opposite to each other. Now
that we have added edges to G∗, we move from adding
the edges between two SCCs in G∗ to adding the edges
between two nodes in G, and then add the edges directly
without changing other edges (Fig. 1D).

III. INFORMATION TRANSFER ON THE
GRAPH

Information propagates along the strongly connected
graph and each bird in the flock can perceive information
from its neighbors. We use matrix A with entries 0 and 1
to represent the connection between birds, where Aij = 1
means that bird i can perceive information from bird j
and vice versa. Birds require a response time τ to sense
the information. To simulate this phenomenon, we use
the accumulated time to count the time elapsed during
a response period. We first set the response time τ as
a constant. The accumulated time Tj+1 of all birds at
frame j+1 is generated from Tj = (Tj,1, Tj,2, · · · , Tj,N )T,
τ > Tj,i ≥ 0, and Tj+1,i = H(τ − Tj,i − ∆t)(Tj,i + ∆t),
where the Heaviside function H(x) = 0 for x < 0 and 1
otherwise. As a result,

Tj+1 = diag(H(1τ −Tj − 1∆t))(Tj + 1∆t), (1)

where ∆t is the time unit, diag(X) indicates where
the main diagonal equals the vector X, and 1 =
(1, 1, · · · , 1)T.

The state of an external stimulus that affects the be-
havior of the flock may change over time. We use sj ∈ N
to represent the state ID of the external stimulus at frame
j, where sj+1 = sj+1 and s0 = 1. Due to the delay of in-
formation transfer, the state of each bird’s perception of
the external stimulus may be different at the same time
instance. We use the vector Sj = (Sj,1, Sj,2, · · · , Sj,N )T
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to represent the information state IDs of the external s-
timuli that birds perceive at frame j. Each bird in the
flock senses the external information from its neighbors
at every τ time unit. A bird updates its current infor-
mation state according to the newest information. The
information state Sj+1 at frame j + 1 can be updated
from Tj and Sj (Eq. 2).

Sj+1 = diag(H(Tj + 1∆t− τ))(B1, · · · , Bi, · · · , BN )T,
(2)

where Bi = ‖diag(Ai)Sj‖∞, Ai is the ith row of A and
the initial state of S0 = (0, 0, · · · , 0)T. When an exter-
nal stimulus appears around the flock, nr birds that are
nearest to this stimulus will perceive it first. For simpli-
fication, we call nr a reaction number. The information
state Sj corresponding to these nr birds denotes as sj .

A. Information transfer time
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FIG. 2. The analysis of information transfer time. We obtain
the following results by averaging over 10 simulations. (A)
The information transfer time with different numbers of birds
in one flock with the number of birds n ranging from 4,000
to 40,000, response time τ = 0.04s, reaction number nr = 40,
and time unit ∆t = 0.01s. (B) The information transfer time
with different response times τ of birds, N = 4, 000, nr = 40,
and ∆t = 0.01s. (C) The information transfer time with
different numbers of reaction birds, τ = 0.04s, N = 4, 000,
and ∆t = 0.01s. (D) The information transfer time with
different time units, τ = 0.04s, nr = 40, and N = 4, 000.
The blue curve represents the information transfer time in
the simulation and the red curve represents the estimation
of the real information transfer time in which the simulation
error is eliminated.

We define the longest directed path for information
propagation starting from one of the nr birds as l. The
information transfer time Q refers to the time when
Sj,i 6= 0, for all i = 1, 2, ..., N and

Q = lτ. (3)

For simulation, the information transfer time could be

T = l
⌈ τ

∆t

⌉
∆t, (4)

where τ ≥ ∆t.
According to Eqs. (1) to (4), we choose the number

of birds N , the response time of birds τ , the reaction
number nr, and the time unit ∆t as the main influencing
factors for the information transfer time Q of the flock.
The simulation results are shown in Fig. 2.

The information transfer simulation time T grows log-
arithmically with the number of birds N in the flock
(Fig. 2A). Because the information transfers through the
graph with linear speed, the number of nodes perceiv-
ing the information increases exponentially. As a result,
the depth of information transfer in the graph is linear-
ly related to log(N). In other words, l ∝ log(N) and
thus Q ∝ log(N), according to Eq. 3. The information
transfer simulation time T is proportional to the response
time τ (Fig. 2B). This simulation result agrees with Eq. 3,
which shows Q ∝ τ .

The information transfer simulation time T is inverse-
ly proportional to the number of reaction birds nr, but
the decline of T is only approximately 3.7% when mov-
ing from 6 to 78 reaction birds, according to Fig. 2C.
To estimate the theoretical time saved with an arbitrary
nr compared to nr = 1, we can compute the informa-
tion transfer time from 1 bird to nr birds. Ideally, the
information transfer time is Q = log6(Nnr

)τ . Thus, the
transfer time saved using 78 birds compared to 6 birds
could be 0.036s (τ = 0.04s, ‘6’ is the ideal number of
neighbors for each bird). The fluctuation of Q in Fig. 2C
mainly results from the randomness of the structure of
graph G in each simulation.

The information transfer simulation time T is propor-
tional to ∆t, according to Fig. 2D. However, according to
Eq. 3, Q should be irrelevant to ∆t given that Q is only
relevant to l and τ . This may result from the simulation
error e which denotes the error caused by the simula-
tion. According to Eq. 4, the range of error e could be
e ∈ [0, l∆t]. We set e = k∆t (k is a constant value)
and obtain an estimate of the information transfer time,

T̃ = T − k∆t. As shown in Fig. 2D, the estimation of

T̃ is irrelevant to ∆t, and this result is consistent with
Eq. 3.

B. The process of information transfer through the
flock

We simulate the information propagation through the
bird flock and rank all birds in the flock according to the
moment when they first become aware of the external
stimulus. To verify the accuracy of our method, we also
compare our results with the empirical observations from
Attanasi et al. [37].

Up to this point, we have discussed information trans-
fer time with the hypothesis that the birds’ response time
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is constant. In the real world, however, the response
times cannot be the same for all birds, even if they are
under the same physical conditions. We compare the
ranked orders during an information transfer process in
which τ is a constant and it follows a Gaussian distribu-
tion, which results in τ ∼ N(µ, σ2). We set a minimum
value for τ with Gaussian distribution because τ cannot
be a negative value.

If τ is a constant, more birds are perceiving the ex-
ternal information at the same time and the ranking
curve is continuous with τ being a Gaussian distribution
(Fig. 3A). We find that the ranking curve of the flock
with τ obeying a Gaussian distribution is closer to the
real-world scenario, according to the empirical observa-
tions.

An information transfer network with a stable connec-
tion is easy to control; we only need to set parameters
for the distribution of τ , including the mean µ, the stan-
dard deviation σ, and the minimum value of τ to generate
various results (Fig. 3B). Meanwhile, our model captures
the characteristics of the ranked birds in a flock, which
are consistent with the empirical observations.

We also test our method with different sizes of flocks as
shown in Figs. 3C and D, which display small flocks and
large flocks, respectively. Further, these ranking curves
are similar in shape, which indicates that the number of
birds that sense the information increases slowly, then
rapidly, and finally slowly again. The number of birds
that perceive information n(t) increases exponentially at

first, which meets the ideal estimation that n(t) = nr6
t
τ .

Because of the fixed flock size N in one simulation, the
change in n(t) finally decreases.

IV. STABLE INFORMATION TRANSFER
NETWORK VS. UNSTABLE INFORMATION

TRANSFER NETWORK

Traditional methods assume that individuals interact
with the nearest individuals within a certain Euclidean
distance [29, 38, 39]. Recently, scientists discovered that
a bird interacts with six or seven birds on average [10, 32].
By combining these advanced works, we compare our sta-
ble information transfer network with an unstable infor-
mation transfer network in which each bird considers the
six nearest birds. The stable information transfer net-
work is static, while the unstable one is temporal. In
this section, we compare the properties of these two net-
works.

A. Self-propelled model

Groups of individuals adjust their velocities according
to those of their local neighbors and external stimuli. In
existing particle-based models [29, 31, 38], local interac-
tions occur only among the nearest agents. Instead, we
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FIG. 3. The process of information transfer through the flock
described by the ranking curve of birds sorted by the time
at which they first perceive information. (A) Comparison of
different methods for generating response time τ for birds:
constant (the purple curve) and Gaussian distribution (the
red curve) of different birds. τ is invariant for one bird with
a Gaussian distribution. (B) Simulation results with different
sizes of flocks for comparison with real datasets [37]. (C)
Simulation results with a small number of birds in one flock;
the number of birds ranges from 150 to 450. These results use
the same parameter values: the distribution of τ , the reaction
number of birds nr, and the time unit ∆t. (D) Simulation
results with a large number of birds in one flock, with the
number of birds ranging from 4,000 to 40,000. They also use
the same parameters.

believe that individuals in a group mainly have local in-
teractions with fixed sets of individuals. We use cohesion
force, alignment force and repulsion force to describe the
effects of local interactions among birds based on the in-
teraction rules in Ref. [38] (see the Appendix for more
details). In contrast to the existing particle-based mod-
els, cohesion force and alignment force only occur among
agents that have connections with each other, while re-
pulsion force occurs among individuals within a certain
distance for collision avoidance.

B. Comparison

With our self-propelled model, we can simulate the
common behavior of bird flocks avoiding a preda-
tor. By analyzing ranking curve, polarization Φj =∥∥∥ 1
N

∑N
i=1

vi,j
‖vi,j‖

∥∥∥ (which measures the overall degree of

alignment), and spatial correlations C(r) (which mea-
sures the behavior correlation among birds in a distance
range d ∈ [r − 1, r]) (see the Appendix for more detail-
s). We compare the stable information transfer networks
and unstable information transfer networks with empiri-
cal observations [36, 37].

The ranking curve of the stable information transfer
network is an S-curve while that of an unstable informa-
tion transfer network is an exponential curve (Fig. 4A).
This is because, for an unstable information transfer net-
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FIG. 4. Comparison between the stable information trans-
fer network (the red curve) and the unstable one (the green
curve). (A) The rank of each bird in an information transfer
sequence is plotted against the time when it perceives the in-
formation. (B) Polarization as a function of time in stable or
unstable information transfer networks. The time is counted
from the start of the transfer of information about an external
stimulus. (C) This correlation function measures the correla-
tion of the orientation of velocity fluctuations among birds in
a certain distance range. It is the average inner production of
the velocity fluctuations of bird pairs at a mutual distance r.

work, a bird will move towards the flock once it senses
danger and transfer that information to birds that are
far from it. The ranking curve for the stable informa-
tion transfer network is closer to that of the empirical
observations [37].

Polarization is a quantity that describes the coherence
of the flock. If Φj = 0, the directions taken by the birds
in this flock are totally random while if Φj = 1, all birds
in this flock move in the same direction. The polariza-
tion for a stable information transfer network is larger
than that for an unstable information transfer network
(Fig. 4B). This shows that the behaviors of birds in the
flock with a stable information transfer network are more
consistent when they confront a predator.

The spatial correlation of fluctuation (see the Ap-
pendix for details) is plotted in Fig. 4C. The spatial corre-
lation of the flock with a stable information transfer net-
work is close to 1 at short distances, decays dramatically
with a gradually decreasing rate as the distance increases,
and tends to be negative at large distances. Although the
spatial correlation with an unstable information transfer
network decays dramatically at short distances, it decays
with an approximately constant rate as the distance in-
creases. The spatial correlation for a stable information
transfer network is closer to the real-world one [36].

We visually compare simulation results of the stable
information network with those of the unstable informa-
tion transfer network (see Supplemental Material Movies
S1-S2 [40]). We separately test these two methods with

a fixed danger stimulus and a moving danger stimulus.
Birds simulated by our method remain cohesive over
time, while birds tend to separate with the unstable infor-
mation transfer network. The cohesion of the bird flock
when it encounters a predator is affected by the structure
of the information transfer network due to the attraction
of birds in the neighborhood. If the information trans-
fer network is strongly connected, the birds will always
fly together no matter how often the structure of the
information transfer network is updated. If the informa-
tion transfer network is not strongly connected, the birds
will always fly together if they are in the same strongly
connected component so that the global cohesion is in-
distinctive, regardless of changes to the update frequency
of the information transfer network.

The information transfer time Q depends on the up-
date frequency of the information transfer network f ,
the response time of the birds τ , the average minimal
distance among neighbors dmin, and the average veloci-
ty difference in the desired direction between two neigh-
bors ∆v. If τ ≤ dmin/∆v, Q will not change dramati-
cally when f increases. Meanwhile, if τ > dmin/∆v, Q
decreases when f increases. The updated information
transfer network is related to the new spatial position-
al relationships among the birds. As a consequence, if
τ > dmin/∆v, more birds will perceive the external in-
formation at the same time as the information transfer
network is updated. For the stable information transfer
network, f = 0; and for the unstable information transfer
network, f = 1/∆t.

V. DISCUSSION AND CONCLUSIONS

To summarize, our information transfer network model
depicts how bird flocks perceive and respond to the exter-
nal stimuli. Based on this information transfer network,
we consider another type of interaction among individ-
uals by suggesting that an individual does not always
interact with its nearest neighbors and instead interacts
with a fixed set of birds in a limited time.

Previously, researchers believed that animals are influ-
enced by neighbors within a certain distance. Recently,
researchers have claimed that the interactions between
birds in a flock depend on topological distance, rather
than metric distance [10, 32]. The neighborhood of each
bird is still governed by distance, and there is usually
a fixed number of nearest neighbors [31]. Particle-based
approaches [29, 31, 41, 42] have been proposed to describe
the mechanical dynamics of individuals. In our case, the
neighborhood of each bird is static; birds therefore main-
ly communicate with a fixed set of birds in their neigh-
borhood. Combined with a self-propelled model of birds
in a flock, we explore the properties of their movement
with a stable information transfer network and compare
the performance with an unstable network. Although our
hypothesis that the neighbors of each bird are not always
the nearest birds is different from that of Ref. [32], our



6

experiment results indicate that using a stable informa-
tion transfer network is more robust and closer to both
the statistical results generated from empirical dataset-
s [36, 37] and the empirical observations (see Supplemen-
tal Material Movies S3-S4 [40]). Therefore, our method
with the stable information transfer network can be treat-
ed as an improved model to describe the information
transfer mechanism of bird flocks.

Our method can be applied to bird flocks. According
to Ref. [32], “each bird interacts on average with a fixed
number of neighbors (six to seven), rather than with all
neighbors within a fixed metric distance.” In our ap-
proach, in our method, the bird won’t fly too far away
from its neighbors due to the attractions among them.
As a consequence, a bird is capable of identifying and
tracking six neighbors. Cavagna A et al. [36] find that
“the change in the behavioral state of one animal af-
fects and is affected by that of all other animals in the
group, no matter how large the group is.” Thus, bird-
s are widely believed to possess the ability to transfer
such information in a large murmuration. Birds are so-
cial animals and they share their songs to a greater or
lesser extent, depending on the degree of their social as-
sociation [43]. Birds can communicate with each other
not only by visual information, but also through verbal
cues like song. Therefore, the nearest birds (in terms of
Euclidean distance) might not be the ones receiving in-
formation transfer because distance is not the sole factor
affecting the communications among the birds.

When simulating the information transfer process with
a stable network, we find that the information transfer
time increases logarithmically with the size of the flock
and linearly with the increase in the response time. These
results are consistent with the theoretical conclusions
drawn from Eq. 4. The number of birds reacting to an
external stimulus will affect the total transfer time of the
flock, but the effect is negligible. Our method combined
with a response time that obeys a Gaussian distribution
generates results closer to the empirical datasets because
the real response times of birds can vary due to position
difference, orientation difference, body conditions, etc.

The previous experiments around bird flocks were
based on very short time clips. Therefore, it is currently
difficult to verify our model on a large time scale. We
need more experimental observations with longer dura-
tions and systematic analysis to verify the network with a
delayed update. It is worth extending the stable informa-
tion transfer network to the temporal scenario in which
individuals might change their interaction relationships
at heterogeneous time scales [44–46] in the future work.
In addition to the dynamics of bird flocks, our approach
can be applied to other related fields. The stable in-
formation transfer network is general and applicable to
collective behaviors of other social animals. Our method
can also be extended to construct the communication net-
works of unmanned aerial vehicle groups, robotics, and
any other self-organized intelligent agent group.
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APPENDIX A: SELF-PROPELLED MODEL

Grouped individuals adjust their velocities according
to those of their neighbors and in response to the external
stimuli (see Eq. 5). We use mechanical force to represent
the factors that drive an individual,

Fj,i = Finter
j,i + Fsti

j,i, (5)

where Fj,i is the force working on individual i at frame
j, Finter

j,i is the force in relation to interactions with other

birds, and Fsti
j,i is the stimulus force when individual i

perceives information about an external stimuli.
The velocity of each individual can be computed ac-

cording to the following equation,

m
∆vj,i

∆t
= Fj,i, (6)

where m is the mass of one individual, vj,i is the velocity
of individual i at frame j, and ∆vj,i is the difference of
vj,i.

Interaction force Fj,i consists of three parts: long-
range cohesion Fcoh

j,i , intermediate-range alignment Fali
j,i

and short-range repulsion Frep
j,i ,

Finterj,i = Fcoh
j,i + Fali

j,i + Frep
j,i . (7)

Cohesion force Fcoh
j,i and alignment force Fali

j,i only oc-
cur among agents that are connected to each other, while
repulsion force Frep

j,i occurs among agents within a certain
distance and contributes to collision avoidance. We com-
pute Finterj,i from two views: graph view for cohesion force

Fcoh
j,i and alignment force Fali

j,i (Fig. 5A), and grid view

for repulsion force Frep
j,i (Fig. 5B).

Graph View: In graph view, we treat the flock as an
invariant directed graph (Fig. 5A), which represents the
stable information transfer network, and use it to com-
pute the attraction force and the alignment force. The
borders of zones for repulsion, alignment, and attraction
for a given bird are defined by the radii dr and dc with
dc ≥ dr ≥ 0. An individual agent attempts to keep co-
hesion with its neighbors within the cohesion zone. The
cohesion force is defined as

Fcoh
j,i =

wcoh

ncohj,i

∑
k∈Ncoh

i

Pj,k −Pj,i
‖Pj,k −Pj,i‖2

, (8)
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Graph View Grid View

Repulsion

Attraction

Alignment

A B

FIG. 5. Graph view and grid view. The red nodes refer to
the birds on which we focus, the white nodes refer to the
birds around them, the grey arrows refer to the directions of
the birds, and the black arrows refer to the directions of the
forces. (A) Graph view. The 3D graph represents the stable
information transfer network. The blue nodes refer to the
birds and the red lines refer to the social relationships between
the birds. Attraction and alignment mainly occur between
birds that have connections in the graph. (B) Grid view. The
3D grids are segmentations of the 3D space in which the bird
flock flies. The red cube represents the minimal sub-grid to
which the bird that we focus on belongs. Repulsion occurs
among birds in the same or the adjacent minimal sub-grid.

where Pj,k and Pj,i are the positions of bird k and bird
i, respectively, and wcoh is the weight of Fcoh

j,i . N coh
j,i =

{k|k ∈ Ni, ‖Pj,i −Pj,k‖2 ≥ dc} is the set of neighbors of

bird i that are in the scope of cohesion, and ncohj,i is the

number of birds in N coh
j,i .

An individual agent attempts to maintain alignment
with its neighbors within the zone of alignment. The
alignment force is defined as

Fali
j,i =

wali

nalij,i

∑
k∈Nali

i

vj,k − vj,i
‖vj,k − vj,i‖2

(9)

where wali is the weight of Fali
j,i, N

ali
j,i = {k|k ∈ Ni, dc >

‖Pj,i − Pj,k‖2 ≥ dr} is the set of neighbors of bird i that

are in the scope of alignment, and nalij,i is the number of

birds in Nali
j,i .

Grid View: In grid view, we treat the space in which
the bird flock flies as a 3D moving grid (Fig. 5B). We use
this 3D moving grid to compute the repulsion force.

An individual attempts to maintain repulsion with its
neighbors within the zone of repulsion. The repulsion
force is defined as

Frep
j,i =

wrep

nrepj,i

∑
k∈Nrep

j,i

Pj,i −Pj,k
‖Pj,i −Pj,k‖2

(10)

where wrep is the weight of Frep
j,i , N rep

j,i =

{k| ‖Pj,i −Pj,k‖2 ≤ dr} is the set of neighbors of
bird i that are in the scope of repulsion, and nrepj,i is the

number of birds in N rep
j,i .

In order to efficiently search for the neighbors, we con-
struct a hash table (Fig. 6 C) by splitting the space

around the flock into smaller grids (Fig. 6 A). The cen-
ter of the 3D grids is the center of the bird flock. The
hash table is used to represent proximity information and
compute the grid that the bird belongs to. Each data el-
ement in the hash table corresponds to a grid in 3D that
stores all IDs of birds belonging to that grid. When we
compute the repulsion force for one bird, we only need to
search the grid to which this bird belongs and the grids
that are adjacent to this grid.

0
1

2

TableSize-1

TableSize-2

Hash Table

3D Grids 3D Grids Zoom In The 2D Data Structure

A B C

FIG. 6. 3D grids and hash table. (A) 3D grids split the flying
space of a bird flock. (B) A zoomed-in version of twenty seven
grids. (C) The hash table is the data structure storing the
information about the grid to which each bird belongs. The
size of the hash table equals the number of the 3D grids. Each
element of the hash table corresponds to a grid in (A) storing
the IDs of birds that belong to this grid.

Stimulus Force When individuals perceive informa-
tion about a predator, they try to escape the threat. We
define the stimulus force as

Fsti
j,i =

Pj,i −Ppre
j∥∥Pj,i −Ppre
j

∥∥
2

, (11)

where Ppre
j is the position of the predator at frame j.

Then the stimulus force for attraction would be:

Fsti
j,i =

Patt
j −Pj,i∥∥Patt
j −Pj,i

∥∥
2

, (12)

where Patt
j is the position of the attraction at frame j.

If there is more than one external stimuli, the stimulus
force will be:

Fsti
j,i =

1

Ns

Ns∑
k=1

Pχkj −Pj,i∥∥Pχkj −Pj,i
∥∥
2

, (13)

where Ns is the number of external stimuli, χk ∈
{pre, att}.

APPENDIX B: SPATIAL CORRELATION

Spatial correlation quantifies the behavior correlation
among birds in a certain distance range [36]. The defini-
tion of spatial correlation is

C(r) =
1

c0

∑
ik ui · ukH(r − rik)H(rik − r + 1)∑

ik H(r − rik)H(rik − r + 1)
,
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where rik is the distance between bird i and j, and c0
is a normalization factor such that C(r = 0) = 1. ui is
the fluctuation of bird i around the mean velocity of the
flock,

ui = vi −
1

N

N∑
k=1

vk.

APPENDIX C: COMPARISON BETWEEN
STABLE INFORMATION TRANSFER

NETWORK AND UNSTABLE INFORMATION
TRANSFER NETWORK

We use the average distance between each bird and the
center of the flock Dj to describe the degree of cohesion
of the flock at frame j :

Dj =
1

N

N∑
k=1

∥∥∥∥∥Pj,k − 1

N

N∑
i=1

Pj,i

∥∥∥∥∥
2

.

We compare the cohesion degree between the stable
information transfer network and the unstable network,
and the results are illustrated in Fig. 7. The flock simu-
lated by our method can maintain cohesion as the time
passes, while the flock simulated by the method with
unstable information transfer network cannot maintain
cohesion and the birds gradually fly become far away
from each other (see Supplemental Material Movies S1-
S2 [40]).
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FIG. 7. Cohesion comparison between the stable information
transfer network (the red curve) and the unstable one (the
green curve). (A) The average distance is plotted versus the
time when a fixed external stimulus (predator) attacks the
bird flock. (B) The average distance is potted versus the time
when a moving external stimulus (predator) attacks the bird
flock.

APPENDIX D: COMPARISON BETWEEN
SIMULATION BASED ON OUR METHOD AND

EMPIRICAL MOVEMENTS OF BIRDS

We select two clips of empirical movements of bird
flocks (from https://vimeo.com/121168616 and http-
s://vimeo.com/121168616 respectively). We design the
external stimuli according to those videos. The com-
parison results (shown in Supplemental Material Movies
S3-S4 [40]) demonstrate that our method can achieve re-
alistic collective behavior for bird flocks. More simula-
tion results are presented in the Supplemental Material
Movies S5-S6 [40].
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