
Volume xx (200y), Number z, pp. 1–13

An Efficient Hybrid Incompressible SPH Solver with
Interface Handling for Boundary Conditions

Tetsuya Takahashi1,2 Yoshinori Dobashi3,2 Tomoyuki Nishita2,4 Ming C. Lin1

1The University of North Carolina at Chapel Hill, USA
2UEI Research, Japan

3Hokkaido University, Japan
4Hiroshima Shudo University, Japan

Figure 1: A large scale corridor flood simulated with our solver, where 1.40 M fluid particles and 0.29 M solid particles are
used. (Left) opaque mesh view. (Middle) particle view, where cyan, magenta, and yellow particles represent Poisson, Dirichlet,
and Neumann particles, respectively (see § 4.1). (Right) final rendered view.

Abstract
We propose a hybrid Smoothed Particle Hydrodynamics solver for efficiently simulating incompressible fluids
using an interface handling method for boundary conditions in the pressure Poisson equation. We blend parti-
cle density computed with one smooth and one spiky kernel to improve the robustness against both fluid-fluid
and fluid-solid collisions. To further improve the robustness and efficiency, we present a new interface handling
method consisting of two components: free surface handling for Dirichlet boundary conditions and solid bound-
ary handling for Neumann boundary conditions. Our free surface handling appropriately determines particles for
Dirichlet boundary conditions using Jacobi-based pressure prediction while our solid boundary handling intro-
duces a new term to ensure the solvability of the linear system. We demonstrate that our method outperforms the
state-of-the-art particle-based fluid solvers.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Particle-based methods, such as Smoothed Particle Hydro-
dynamics (SPH), have been widely used to generate vi-
sual effects of fluids in computer graphics due to advan-
tages of Lagrangian representations [IOS∗14,MMCK14]. In

these methods, however, enforcing fluid incompressibility
has been a computational challenge, and various methods
have been proposed to address this problem [KTO96,CR99,
PTB∗03, SL03, SP09, HLL∗12, BLS12, MM13, ICS∗14,
KS14, BK15]. Among these methods, solving a Pressure

submitted to COMPUTER GRAPHICS Forum (2/2016).

2 Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions

Poisson Equation (PPE) has been shown to be an effective
approach [KTO96,CR99,SL03,PTB∗03,HLL∗12,ICS∗14].
While it is common that this approach requires solving
a sparse linear system, variations in discretization of the
Laplacian operator lead to the different sparsity of the sys-
tem and pressure solve. Incompressible SPH (ISPH) [CR99,
SL03] and Moving Particle Semi-implicit (MPS) [KTO96,
PTB∗03] directly discretize the Laplacian, while a current
state-of-the-art particle-based solver, Implicit Incompress-
ible SPH (IISPH) [ICS∗14] decomposes the Laplacian into
divergence and gradient, and then discretizes these opera-
tors applying SPH formulations to both operators. When a
(weighted) Jacobi method is used, IISPH outperforms ISPH
in convergence rate and computational efficiency [ICS∗14]
since IISPH can propagate updated pressures faster by in-
cluding farther particles with the decomposed operators.
However, for ISPH and MPS, we can use a more efficient
Conjugate Gradient (CG) method, which is a Krylov sub-
space method that generally shows faster convergence than
stationary iterative methods (e.g., Jacobi and Gauss-Seidel
methods). CG is inapplicable to IISPH, as pointed out in
[ICS∗14], due to the non-positive-definite property of the co-
efficient matrix (see § 6.1 for details). Additionally, the num-
ber of Jacobi iterations for IISPH increases super-linearly
with time steps making the use of larger time steps ineffec-
tive. Because of these issues, ISPH and MPS can possibly
offer performance advantages over IISPH by employing CG.

However, ISPH and MPS unfortunately have several is-
sues, which make them undesirable for fluid simulation.
First, ISPH uses a smooth kernel to compute the particle
density in the source term. The resulting particle density is
smooth and does not significantly increase although parti-
cles are almost overlapped. Consequently, ISPH with this
smooth kernel is more likely to fail to prevent fluid-solid
particle penetrations. On the other hand, MPS uses a spiky
kernel for the density computation. Thus, as particles ap-
proach others, the resulting density rapidly increases ef-
fectively preventing fluid-solid particle penetrations. How-
ever, because of the rapid density changes, the spiky kernel
tends to cause instabilities when fluid-fluid collisions occur.
Second, previously proposed free surface handling meth-
ods for specifying Dirichlet boundary conditions are likely
to undergo numerical instabilities mainly because of rough
estimates of physical values. The density-based [KTO96,
PTB∗03, SL03] and surface-based [HLW∗12] methods do
not take into consideration the predicted density and actual
pressures of neighboring particles while the ghost-particle-
based method [NT14] relies on very rough estimates and as-
sumptions based on ghost particles. Though the source-term-
based method (which depends purely on the source term)
considers the predicted density, this method disregards ac-
tual pressures of neighbor particles. Third, the previously
used solid boundary handling for Neumann boundary con-
ditions [KTO96,PTB∗03,SL03], which treats solid particles
as fluid ones, results in a much larger system of equations

thereby increasing the overall computational cost, and erro-
neously estimates particle pressures to ensure the solvability
of the linear system. Furthermore, even though this approach
is used, the system can become unsolvable due to objects
floating in the air.

We propose a hybrid SPH solver with a new interface han-
dling method for addressing the three aforementioned prob-
lems. The main results of this work are as follows:

• A hybrid solver that blends the particle density computed
with a smooth and a spiky kernel to take advantage of
the specific properties of these kernels. This improves the
robustness for both fluid-fluid and fluid-solid collisions
while taking larger time steps and thus leading to more
efficient simulation.

• A free surface handling method for Dirichlet boundary
conditions that appropriately determines fluid particles by
employing Jacobi-based pressure prediction. This takes
into account not only the predicted density but also pres-
sures of neighboring particles, to improve the robustness.

• A solid boundary handling method for Neumann bound-
ary conditions, which introduces a new term to ensure
the solvability of the linear system. This new term of-
fers three advantages over the previous methods. First, we
can completely exclude solid particles treated as unknown
variables from the PPE thereby significantly reducing the
size of the system and thus computational cost. Second,
our solid boundary handling can avoid underestimation of
particle pressures enabling the use of larger time steps.
Third, we can handle objects floating in the air with the
direct Laplacian discretization making it possible to simu-
late two-way interactions, which frequently cause objects
floating in the air because of fluid-solid and solid-solid
collisions.

By taking advantage of these, we demonstrate that our solver
outperforms other particle-based solvers. Figure 1 illustrates
a large-scale corridor flood scene involving two-way fluid-
solid interactions, simulated with our method.

2. Related Work

Many particle-based methods have been proposed in Com-
putational Fluid Dynamics (CFD) and computer graphics.
We refer readers to [Mon05] for a survey on SPH in CFD
and [IOS∗14] for applications of particle-based methods
in computer graphics. Below we focus our discussions on
particle-based methods most closely related to ours.

ISPH. ISPH was originally proposed by Cummins and
Rudman [CR99] introducing an idea of the pressure pro-
jection (which is commonly used in the Eulerian ap-
proach [Bri08]) into SPH. In this method, the divergence of
velocity is used as a source term in the PPE. However, errors
to the divergence-free velocity field can accumulate, lead-
ing to volume changes. To address this, Shao and Lo [SL03]
proposed a new source term using the rest density (known as

submitted to COMPUTER GRAPHICS Forum (2/2016).

Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions 3

the density invariance source term), which prevents the er-
ror accumulation, also presenting free surface handling for
Dirichlet boundary conditions to keep the PPE solvable with
the modified source term, which does not satisfy the com-
patibility condition [Bri08]. In addition, Shao and Lo [SL03]
replaced a mirroring solid boundary handling method, used
in [CR99], with a method that uses solid boundary particles
to handle complex geometry. Nair and Tomar [NT14] pro-
posed a new surface handling method for ISPH, adapting
an idea of ghost particles, and ensured solvable linear sys-
tems without Dirichlet boundary conditions at the expense of
difficult parameter tuning and inaccurately estimated pres-
sures. Cummins and Rudman [CR99] applied a multigrid
approach to the ISPH. However, this approach is imported
from the grid-based approach, and cannot handle irregular
domains. Additionally, their application is limited to fluid
simulation without free surfaces (Dirichlet boundary condi-
tion) and complex solid objects (Neumann boundary condi-
tion).

MPS. MPS is a particle-based pressure projection method
proposed in [KTO96, PTB∗03]. In the algorithm level, MPS
and ISPH (presented in [SL03]) are the same, and the dif-
ferences lie in two aspects: (1) the (number) density compu-
tation for the source term, and (2) discretization for spatial
derivatives. To compute the density, MPS uses a spiky kernel
whose values rapidly increase when particles are close. This
effectively prevents fluid-solid particle penetrations whereas
the rapidly increased density tends to cause stability issues
with fluid-fluid collision shocks. On the other hand, ISPH
uses a smooth kernel, which leads to the smooth density dis-
tribution. This is more robust against fluid-fluid collisions
whereas ISPH is more likely to fail to prevent fluid-solid par-
ticle penetrations. In MPS, since the gradient formulation is
not anti-symmetric, and thus pressure forces computed with
the gradient do not preserve fluid momentum.

IISPH. IISPH is a recently proposed particle-based
method that uses the pressure projection with divergence and
gradient operators instead of the Laplacian [ICS∗14]. IISPH
includes farther particles to faster propagate pressure up-
dates with weighted Jacobi than ISPH and MPS. Addition-
ally, to improve the robustness, Ihmsen et al. [ICS∗14] pro-
posed adopting a velocity-based density estimation (which
uses the continuity equation with predicted particle veloci-
ties) instead of the position-based density estimation (which
uses the summation approach with predicted particle posi-
tions) adopted in ISPH [SL03] and MPS. In IISPH, Ihm-
sen et al. used a clamping approach with weighted Ja-
cobi for free surface handling and mirrored hydrodynamic
forces [AIA∗12] for solid boundary handling.

There are some techniques for accelerating the pres-
sure solve. Kang and Sagong [KS14] and Bender and
Koschier [BK15] adjusted particle velocities after fluid in-
compressibility is enforced to reduce the deviation of par-
ticle density at the next step. Adams et al. [APKG07] and

Table 1: Feature comparison for density blending.

Method Fluid-fluid collision Fluid-solid collision
Smooth kernel [MCG03] Robust Weak
Spiky kernel [KTO96] Weak Robust
Our method Robust Robust

Table 2: Feature comparison for free surface handling.

Method Robustness
Density-based [KTO96] Weak
Surface-based [HLW∗12] Weak
Ghost-particle-based [NT14] Weak
Source-term-based Moderate
Our method Robust

Solenthaler and Gross [SG11] used adaptive particles to al-
locate more computational resources to important regions.
These techniques are orthogonal and can be combined with
our method for better performance.

We combine different advantages of ISPH, MPS, and
IISPH to achieve optimal performance with our new inter-
face handling method, which allows us to use CG with direct
Laplacian discretization. Therefore, our method outperforms
the previous particle-based fluid solvers including variants of
ISPH with CG. For clarity, features of previous approaches
and our method are summarized in Tables 1, 2, and 3, in
terms of the density blending, free surface handling, and
solid boundary handling, respectively.

3. Hybrid Incompressible SPH Solver

We first explain formulations of our hybrid fluid solver,
which takes advantages of ISPH, MPS, and IISPH to im-
prove the robustness and efficiency, adopting the fluid-solid
coupling method [AIA∗12]. Then, we present our interface
handling method in § 4.

Incompressible flows in the Lagrangian setting can be de-
scribed by the continuity equation dρi

dt +ρi∇·ui = 0, and the

Navier-Stokes equations dui
dt = − 1

ρi
∇pi +

Fv
i

mi
+

Fext
i

mi
, where

ρi denotes density of particle i, t time, ui velocity, pi pres-
sure, Fv

i viscosity force, mi mass, and Fext
i external force.

First, we compute density ρi and number density ni by us-
ing the summation approach with a smooth kernel Wi j and a
spiky kernel wi j, respectively, with solid particles:

ρi = ∑
j

m jWi j +ρ0 ∑
s

VsWis, (1)

Table 3: Feature comparison for solid boundary handling.

Method System size Pressure Solid floating in the air
Previous method [KTO96] Large Inaccurate 7

Our method Small More accurate 3

submitted to COMPUTER GRAPHICS Forum (2/2016).

4 Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions

ni = ∑
j

wi j +
1

V0
∑
s

Vswis, (2)

where j and s denote neighbor fluid and solid particles, re-
spectively, ρ0 the rest density, Vi the volume, and V0 the rest
volume defined as V0 = 1

∑ j Wi j
at the initial setting. We use

Vi =
mi
ρi

for the fluid particle volume, while we define the

solid particle volume as Vi =
1

∑s Wis
(see [AIA∗12]). Note that

we initialize particle mass by mi =
ρ0

∑ j Wi j
and compute the

rest number density n0 by n0 = ∑ j wi j with the initial parti-
cle configuration to enforce ρi

ρ0
= ni

n0
to hold, making density

and number density in the different dimensions interchange-
able with just scaling while achieving the equilibrium state
with the initial setup. We use kernels (including a smooth
kernel) proposed in [MCG03] for SPH discretization, and a
spiky kernel used in [KTO96, PTB∗03].

We estimate intermediate velocity u∗i with viscosity and
external forces. To take advantage of both of the kernels, we
blend ρi and ni with scaling as

ρ̃i = (1−ζi)ρi +ζi
ρ0
n0

ni, (3)

ζi =

0 Mi < α
Mi−α

β−α
α≤Mi < β

1 β≤Mi

,

where ρ̃i denotes blended density, Mi the number of neigh-
bor solid particles, and α and β are tunable parameters (we
typically use α = 5 and β = 15). To interpolate ρi and ni in
Eq. (3), we compute ζi such that ρi and ni become dominant
inside of the fluid volume and near solids, respectively. Since
ρi and ni are more robust against fluid-fluid and fluid-solid
collisions, respectively, the blended density with ζi takes
advantages of both kernels, and is more robust than non-
blended densities. Then, we compute intermediate density
ρ
∗
i using the continuity equation as in [ICS∗14]:

ρ
∗
i = ρ̃i +∆t

(
∑

j
m ju∗i j∇Wi j +ρ0 ∑

s
Vsu∗is∇Wis

)
, (4)

where ∆t denotes time step, and u∗i j = u∗i −u∗j .

Next, we solve the PPE to obtain a pressure field that
enforces fluid incompressibility. Assuming that the density
change in the continuity equation is caused by the pres-
sure forces, we formulate the PPE for the fluid domain Ω

as ∇2 pi =
ρ0−ρ

∗
i

∆t2 in Ω with Dirichlet boundary condition

pi = 0 on F and Neumann boundary condition d pi
dn̂i

= 0
on S, where F and S denote domain boundaries in con-
tact with free surfaces and solid objects, respectively, and
n̂i is the normal to S. In particle-based methods, negative
pressures which can occur because of the positive source
term if the PPE is solved without special cares produce at-
tractive forces between particles leading to tensile instabil-
ity [Mon00]. Thus, we need to satisfy pi ≥ 0 while solv-
ing the PPE, and this is a Linear Complementarity Prob-

lem (LCP), e.g., solved to avoid particle adhesion [AW09,
NGL10, AO11, IWT13, GB13, ICS∗14].

After the PPE is solved by using a CG solver, satisfying
the boundary conditions and constraint on pressure with our
interface handling (see § 4), we compute pressure forces,
and then integrate particle velocities and positions using the
semi-implicit Euler method.

We summarize the algorithm for our hybrid incompress-
ible SPH solver in Algorithm 1. An algorithm for solving the
PPE (line 9 in Algorithm 1) is given in Algorithm 2 (§ 4.6).

Algorithm 1 Hybrid incompressible SPH solver
1: for all particle i do
2: find neighbor particles
3: for all fluid particle i do
4: compute ρi and ni with Eqs. (1) and (2)
5: for all particle i do
6: compute intermediate velocity u∗i
7: for all fluid particle i do
8: estimate ρ

∗
i with Eq. (4)

9: solve the PPE (Algorithm 2)
10: for all fluid particle i do
11: compute pressure force Fp

12: for all fluid particle i do
13: integrate velocity ut+1

i and position xt+1
i

4. Interface Handling

In this section, we concisely describe boundary conditions
in the PPE (§ 4.1). Next, we clarify problems on Dirich-
let (§ 4.2) and Neumann (§ 4.3) boundary conditions in the
ISPH and MPS setting, and then explain our interface han-
dling consisting of free surface handling (§ 4.4) and solid
boundary handling (§ 4.5). Finally, we give an algorithm for
solving the PPE (§ 4.6).

We use our solid boundary handling method for Neumann
boundary conditions in the PPE and employ the work of Ak-
inci et al. [AIA∗12] to resolve collisions between fluid and
solid particles. [AIA∗12] is also suitable for our free surface
handling method since it allows for accurate density esti-
mates even with complex geometry. Our free surface han-
dling is for Dirichlet boundary conditions and is orthogonal
to other free surface handling methods that consider air do-
mains, e.g., [SB12, HWZ∗14]. Thus, these methods can be
combined with ours.

In our experiments, quantities computed with SPH and
MPS discretization for the Laplacian operator are almost the
same and are virtually interchangeable. However, since the
gradient formulation in MPS is not anti-symmetric, we use
SPH discretization for consistency to compute the spatial
derivatives.

submitted to COMPUTER GRAPHICS Forum (2/2016).

Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions 5

Set Dirichlet
boundary condition

Treat Neumann particles
as Poisson particles

(a)

(a)

(b)

(c) (d) (e)

Fluid particle

Solid particle

Poisson particle

Dirichlet particle

Neumann particle

Set Dirichlet
boundary condition

Figure 2: Illustration of particle configurations. Red arrows represent particle velocities. (a) Configuration of fluid particles,
unsolvable configuration of Poisson particles, and solvable configuration of Poisson and Dirichlet particles due to the newly
set Dirichlet boundary condition, from left to right. (b) Configuration of fluid and solid particles, unsolvable configuration of
Poisson and Neumann particles, and solvable configuration of Poisson, Dirichlet, and Neumann particles. (c) Configuration
of fluid particles, and solvable configuration of Poisson and Dirichlet particles. (d) Configuration of fluid and solid particles,
unsolvable configuration of Poisson, Dirichlet, and Neumann particles, and solvable configuration of Poisson and Dirichlet
particles due to the new Poisson particles converted from the Neumann particles. (e) Configuration of fluid and solid particles,
and unsolvable configuration of Poisson and Dirichlet particles due to the group of isolated Poisson particles without Dirichlet
particles.

4.1. Boundary Conditions in PPE

To aid in our description, we call fluid and solid particles in-
cluded in the PPE as unknown variables Poisson particles,
fluid particles used for Dirichlet boundary condition Dirich-
let particles, and solid particles for Neumann boundary con-
dition Neumann particles.

To solve the PPE, we can discretize ∇2 pi using the SPH
formulation taking solid particles into account with the as-
sumption of virtually existing solid particle’s pressure ps:

∇2 pi = ∇2 pfluid
i +∇2 psolid

i

= ∑
j

ai j(pi− p j)+∑
s

ais(pi− ps), (5)

where ai j = Vi jŴi j , Vi j = (Vi +V j)/2, Ŵi j = 2 xi j·∇Wi j

‖xi j‖2+0.01h2 ,
xi j = xi−x j (xi: particle position), and h denotes kernel ra-
dius. ai j < 0 because of the kernel definition [MCG03]. For
Neumann boundary condition (d pi

dni
= 0), pi = ps must be

satisfied, and thus the PPE becomes

∇2 pi = ∑
j

ai j(pi− p j) = ci,

where ci =
ρ0−ρ

∗
i

∆t2 . Unlike the Eulerian fluid simulation,
which uses the divergence of velocity as a source term,
the density invariance source term generally does not sat-
isfy the compatibility condition (even if the source term is
not blended), i.e., ∑i∈ΩP ci 6= 0, where Ω

P denotes a set of
Poisson particles. Therefore, this form of the PPE without
Dirichlet boundary conditions is unsolvable because of the
rank deficient coefficient matrix (see [Bri08] for more de-
tails). Figure 2 (a) illustrates a particle configuration without
solid particles for an unsolvable setting consisting of Poisson

particles only, and a solvable setting due to Dirichlet par-
ticles. Figure 2 (b) illustrates a similar situation with solid
Neumann particles.

4.2. Problems on Dirichlet Boundary Condition

Unlike Eulerian fluid simulation, negative pressures al-
most always work negatively, causing the tensile instabil-
ity [Mon00] in particle-based fluid simulation. Thus, it is es-
sential to avoid negative pressures, and formally, we need
to solve an LCP. With (weighted) Jacobi method, this step
can be easily achieved by clamping negative pressures to
zero in each iteration, whereas CG does not allow us to per-
form such an operation in its iterations [ICS∗14]. More ex-
pensive LCP solvers have been used in the Eulerian meth-
ods [NGL10, GB13]. By contrast, in Lagrangian particle-
based methods, we approximately solve the LCP to avoid
using the costly LCP solvers by solving the PPE with Dirich-
let boundary conditions, which are set to particles whose
pressures should be negative after the PPE is solved (See
Figure 2). Previously, the density-based [KTO96, PTB∗03,
SL03] or surface-based [HLW∗12] method has been used
to determine Dirichlet particles. However, since predicted
density and pressures of fluid particles are neglected, these
methods tend to fail to appropriately determine Dirichlet par-
ticles, i.e., fluid particles whose pressures should be posi-
tive (negative) after the PPE is solved could be erroneously
treated as Dirichlet (Poisson) particles consequently leading
to stability issues. The source-term-based method takes the
predicted density into account, and thus its stability is im-
proved. However, disregarded neighbor particles’ pressures
still negatively affect the stability of the simulation.

submitted to COMPUTER GRAPHICS Forum (2/2016).

6 Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions

The ghost-particle-based method [NT14] can change an
unsolvable system consisting of Poisson and Neumann par-
ticles only (without Dirichlet particles) to a solvable one
by setting Dirichlet boundary conditions to ghost particles,
assuming that they virtually exist outside of the fluid do-
main. When the particle uniformity is disturbed, however,
the linear system can be not diagonally-dominant, and thus
not positive-definite. Consequently, we fail to solve the sys-
tem using CG. Although taking larger diagonal entries can
ensure the diagonal dominance of the linear system, resul-
tant pressures can be much smaller failing to prevent particle
penetrations with mirrored hydrodynamic forces [AIA∗12].

4.3. Problems on Neumann Boundary Condition

When Poisson particles have a channel to at least one Dirich-
let particle directly or via other Poisson particles, the solv-
ability of the PPE is ensured. In liquid simulations, however,
fluid particles can be separated from the fluid bulk that has
Dirichlet particles (see Figures 2 (c) and (d)). If there is no
neighboring solid particle, we can appropriately set Dirich-
let boundary conditions with a free surface handling method
ensuring the solvability of the system, as illustrated in Fig-
ure 2 (c). In this case, although pressure forces of Dirich-
let particles do not resolve their collisions because of the
zero-pressures, artificial viscosity force, which is necessary
to stabilize particle behaviors, can prevent fluid particle pen-
etrations. On the other hand, if fluid particles have neighbor-
ing solid particles (see Figure 2 (d)), we cannot set Dirichlet
boundary condition (pi = 0) to the fluid particles except the
cases, where fluid particles do not move toward solid par-
ticles. This is because pressures of fluid particles must be
valid for [AIA∗12], and we need to treat the fluid particles
as Poisson particles. In this case, the resulting linear system
is unsolvable because of isolated groups of Poisson parti-
cles without Dirichlet particles (see Figure 2 (d)). To avoid
this unsolvable configuration, we tested pressures computed
with an equation of state instead of setting pi = 0 and arti-
ficial viscosity excluding Poisson particles that contact with
Neumann particles from the system, we could not determine
appropriate parameters and experienced significant fluid en-
ergy dissipations.

This problem was partially addressed in [KTO96,
PTB∗03, SL03] by treating solid particles as Poisson par-
ticles in the PPE (see Figure 2 (d)). This approach can con-
nect separated fluid Poisson particles to Dirichlet particles
via solid Poisson particles which are originally Neumann
particles, and thus can change an unsolvable PPE to a solv-
able one. However, this approach brings about several other
problems. First, solid Poisson particles newly included in
the PPE significantly increase the size of the system and
thus computational cost and memory usage. Second, this ap-
proach tends to underestimate pressures requiring smaller
time steps to ensure no fluid-solid particle penetrations be-
cause solid Poisson particles newly generate shorter chan-

Figure 3: Cutaway views for a dam break scene. Dirichlet
particles are appropriately set near free surfaces and cavi-
ties inside of the fluid.

nels between fluid Poisson particles and Dirichlet particles
limiting the pressures of the fluid Poisson particles to lower
values. Most importantly, this approach cannot handle solid
objects floating in the air, which frequently occur in the two-
way solid-fluid coupling (see Figure 1 and accompanying
video), since solid particles of these objects may not have
channels to Dirichlet particles (see Figure 2 (e)).

4.4. Free Surface Handling

We aim to approximately solve the LCP by appropriately
setting Dirichlet boundary conditions to particles, whose
pressures would be negative after the PPE is solved. To esti-
mate particle pressures, we compute a pseudo particle pres-
sure p̃i using the projected Jacobi method based on Eq. (5):

p̃l+1
i = max

(
0,

ci +∑ j ai j p̃l
j + p̃l

i ∑s ais

∑ j ai j +∑s ais

)
, (6)

where l denotes iteration count, and the initial pseudo pres-
sures are set as p̃0

i = γpt
i with a tunable parameter γ. Then,

if p̃l
i = 0, we treat the fluid particle i as a Dirichlet parti-

cle, otherwise a Poisson particle. We use a projected Jacobi
method, not Jacobi method, since Jacobi method excessively
increases the number of Dirichlet particles propagating neg-
ative pressures. Note that since our Jacobi-based prediction
includes pressures of neighboring particles and the source
term, which is based on the predicted density ρ

∗
i and thus

density ρi, we can appropriately set Dirichlet boundary con-
ditions to particles, e.g., on free surfaces and near cavities
inside of fluid, as shown in Figure 3.

Since repeatedly applying Eq. (6) means solving the PPE
using the projected Jacobi method as in [ICS∗14], we can
obtain more accurate particle pressures to determine Dirich-
let particles with many iterations. However, using many it-
erations did not significantly improve the stability. Addi-
tionally, since all particle pressures are zero or positive, re-
peatedly applying Eq. (6) generally increases pseudo pres-
sures and thus decreases the number of Dirichlet particles.
Whereas Dirichlet particles can cause stability issues if they
are excessive and inappropriately set, they can reduce the
number of Poisson particles in the system improving com-
putational efficiency and memory usage and accelerate the
convergence of CG because of their fixed pressure values
and the decreased system size. Taking these into account,

submitted to COMPUTER GRAPHICS Forum (2/2016).

Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions 7

we use Eq. (6) only once with γ = 0.5 not to excessively
decrease the number of Dirichlet particles.

Since negative pressures can still occur with Dirichlet par-
ticles specified using our free surface handling, we clamp
negative pressures to zero to prevent the tensile instabil-
ity [Mon00] after the PPE is solved.

It is worth noting that an ad-hoc technique, clamping the
positive source term to zero, can completely prevent negative
pressures. However, using this technique with our method
entirely and excessively increases particle pressures leading
to stability problems or surface artifacts [ICS∗14].

4.5. Solid Boundary Handling

To handle solid objects including isolated ones without treat-
ing solid particles as Poisson particles in the PPE, we aim to
compute the Laplacian without including the term pi− ps,
ensuring the solvability of the linear system even with Neu-
mann boundary condition d pi

dni
= 0, i.e., pi = ps applied. In-

spired by IISPH, we decompose the Laplacian operator for
solid particles into divergence and gradient as

∇2 psolid
i ≈∇·∇psolid

i =−∑
s

Vis
∇pi +∇ps

2
·∇Wis. (7)

Assuming ∇pi = ∇ps when pi = ps (Neumann boundary
condition) within a local domain because of the smoothed
distribution of physical quantities in the SPH setting [SP09],
we obtain

∑
s

Vis
∇pi +∇ps

2
·∇Wis =∇pi ·∑

s
Vis∇Wis. (8)

By using the SPH formulation, we can compute∇pi by

∇pi = ∑
j

Vi j
pi + p j

2
∇Wi j +∑

s
Vis

pi + ps

2
∇Wis.

Again, because of the smoothed pressures of fluid particles
within their local domain [SP09], we assume pi = p j. Com-
bining this assumption and Neumann boundary condition,
we obtain

∇pi = pi

(
∑

j
Vi j∇Wi j +∑

s
Vis∇Wis

)
. (9)

We did not gain any improvement in the robustness even if
the PPE is solved with pi 6= p j, and the matrix construction
cost significantly increased because of the coefficient of p j.
With Eqs. (7), (8), and (9), we obtain

∇2 psolid
i = bi pi,

bi =−

(
∑

j
Vi j∇Wi j +∑

s
Vis∇Wis

)
·∑

s
Vis∇Wis. (10)

Since our solid boundary handling introduces a new term
bi pi into the PPE when fluid Poisson particles are in contact
with Neumann particles, we can change an unsolvable sys-
tem to a solvable one. For example, when there are two fluid

particles i and j touching each other and a solid particle s
touching at least one of i and j, the PPE for i and j without
our solid handling can be written as ai j(pi− p j) = ci and
a ji(p j− pi) = c j , respectively, where ai j = a ji 6= 0. There-
fore, ci + c j = 0 must hold to ensure the solvability of the
PPE for the compatibility condition [Bri08]. In general, how-
ever, ci + c j 6= 0 with the density invariance source term,
and thus the linear system is unsolvable. On the other hand,
with our solid boundary handling, we can write the PPE as
ai j(pi− p j)+bi pi = ci and a ji(p j− pi)+b j p j = c j, where
at least one of bi 6= 0 and b j 6= 0 holds, and therefore this sys-

tem is solvable (pi =
ai j(ci+c j)+b jci
ai j(bi+b j)+bib j

and p j =
ai j(ci+c j)+bic j
ai j(bi+b j)+bib j

).

It is worth noting that bi is generally negative when parti-
cle i is compressed toward solid particles, and thus our solid
boundary handling is likely to lead to smaller pressures near
solid objects, as pi without our solid handling can be com-
puted by pi =

ci+∑ j ai j p j

∑ j ai j
, and pi =

ci+∑ j ai j p j

∑ j ai j+bi
with our solid

handling, where ai j is also negative because of the kernel
definition [MCG03]. However, the blended density can in-
crease particle pressures near solid objects because of the
spiky kernel, and effectively prevent particle penetrations.

Our solid boundary handling is decoupled from pressures
of neighbor fluid and solid particles. This decoupling al-
lows us to significantly simplify our implementation and
efficiently compute contributions from solid particles with-
out multiple access to fluid and solid particles and matrix
structures specialized for sparse linear systems. In addition,
our method does not increase the size of the linear sys-
tem nor CG iterations, unlike the solid handling used in
[KTO96, PTB∗03, SL03].

Our solid boundary handling is numerically equivalent to
implicitly adding Dirichlet boundary condition to the sys-
tem, to make the system solvable. Thus, in this perspective,
our method and the ghost-particle-based method [NT14]
share the same idea. However, our method cannot handle
isolated fluid Poisson particles with no channels to Dirichlet
particles (this case is handled by setting Dirichlet boundary
condition to such particles with our free surface handling),
and needs the fluid Poisson particles to be touching Neu-
mann particles to ensure the solvability. On the other hand,
the ghost-particle-based method can handle fluid Poisson
particles without Neumann and Dirichlet particles at the ex-
pense of difficult parameter tuning and underestimated pres-
sures.

4.6. PPE Solve

Algorithm 2 summarizes an algorithm for solving the PPE.
Since our free surface and solid boundary handling can be
incorporated into the originally existing particle loops, the
additional cost is trivial.

submitted to COMPUTER GRAPHICS Forum (2/2016).

8 Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions

Algorithm 2 PPE solve
1: for all fluid particle i do
2: compute source term ci
3: determine Dirichlet particles with Eq. (6)
4: if i is Dirichlet particle then
5: pi = 0
6: else
7: for all fluid particle j do
8: compute ai j for the matrix
9: compute Vi j∇Wi j

10: for all solid particle s do
11: compute Vis∇Wis
12: compute bi with Eq. (10) for the matrix
13: solve the linear system using a CG solver
14: for all fluid particle i do
15: if pi < 0 then
16: pi = 0

5. Results

We implemented our algorithm with artificial viscos-
ity [Mon92], and used incomplete Cholesky CG for solving
the linear system. In our method, we use h = 2d (d: initial
particle spacing). Light blue and green particles represent
fluid and solid particles, respectively. Cyan, magenta, and
yellow particles represent Poisson, Dirichlet, and Neumann
particles, respectively. We measured computational time for
a PC with 4-core 3.40 GHz CPU and RAM 16.0 GB, exclud-
ing the surface reconstruction and rendering from the mea-
surement. Nf and Ns denote the number of fluid and solid
particles, respectively. NP, ND, and NN denote the averaged
number of Poisson, Dirichlet, and Neumann particles, re-
spectively. lavg denotes the averaged number of CG itera-
tions per simulation step. tp and tf denote averaged compu-
tational time for solving the PPE and for the frame, respec-
tively. Particles are rendered at 60 Hz, and the result of the
last simulation step in the frame is used for the color code of
particle rendering.

5.1. Convergence Criterion

While the residual is commonly used in the Eulerian fluid
simulation, a density-based criterion, based on the positive
density error (ρerr

i)l = max(0,ρl
i − ρ0) (ρl

i : estimated den-
sity after l iterations), which represents the level of fluid
compression, is traditionally used as a convergence crite-
ria in the SPH fluid simulations [SP09, ICS∗14]. Ihmsen et
al. [ICS∗14] proposed using the average density error, not
the maximum one, to keep fluid volumes constant. For the
intuitiveness and fair comparison with previous methods, we
use the density-based criterion with the averaged positive
density error.

In each CG iteration, we can obtain the residual rl
i with-

out explicitly computing it, following its definition given as

Figure 4: Stability test with a bunny drop, where averaged
particle spacing is 1.50× 10−2 m. Smooth kernel with (a)
∆t = 1.03×10−3 s and (b) ∆t = 1.40×10−3 s, where par-
ticle penetrations occur as noted by a red circle. (c) Blended
density with ∆t = 1.40×10−3 s.

rl
i =

ρ0−(ρ∗
i)

l

∆t2 −∇2 pl
i . Since the estimated density ρ

l
i can be

computed by ρ
l
i = (ρ∗i)

l +∆t2∇2 pl
i [ICS∗14], we can obtain

the positive density error with the residual rl
i as (ρerr

i)l =
max(0,ρl

i − ρ0) = max(0,−rl
i ∆t2). Then, we compute the

averaged, positive density error (ρ̂err)l = 1
N ∑i∈ΩP(ρerr

i)l (N:
the number of Poisson particles). If (ρ̂err)l/ρ0 < η (η: er-
ror threshold), we terminate the CG iterations. We use η =
0.01% in all the scenarios.

5.2. Density Blending

We tested our density blending scheme by comparing our
method with the density blending and without it (i.e., our
method using a smooth or spiky kernel only). Particles are
color-coded based on ζi (when ρi (ni) computed with the
smooth (spiky) kernel is dominant, particle colors approach
white (blue)).

Comparison with the smooth kernel. Figure 4 compares
our method using the density blending and a smooth ker-
nel only. When the time step is large, our method with the
smooth kernel suffers from particle penetrations, as shown
in Figure 4 (b). Our method with density blending can pre-
vent penetrations because of the rapidly increased pressure
by the spiky kernel, as shown in Figure 4 (c), taking 1.36x
larger time steps.

Comparison with the spiky kernel. Figure 5 compares our
method using the density blending and a spiky kernel only,
where very large time steps are chosen to clearly show the
differences in the robustness. When the time step is large,
our method with the spiky kernel can become unstable and
causes particle penetrations, as shown in Figure 5 (b). Our
method with density blending does not cause particle pene-
trations because of the blended smooth kernel, as shown in
Figure 5 (c), taking 1.46x larger time steps.

5.3. Free Surface Handling

We tested our free surface handling to demonstrate its
robustness with a simple scene, where a cubed fluid is
dropped from a lower position to make the free sur-
face handling crucial in determining time steps (see Fig-
ure 6 (a) for the initial setup). We compared our method

submitted to COMPUTER GRAPHICS Forum (2/2016).

Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions 9

Figure 6: Comparison for free surface handling, where averaged particle spacing is 1.50×10−2 m. Different frames are chosen
for illustration. (a) Initial setup. Density-based with (b) ∆t = 0.75× 10−3 s (stable) and (c) ∆t = 1.68× 10−3 s (unstable).
Density-based (clamped) with (d) ∆t = 0.75× 10−3 s (stable) and (e) ∆t = 1.68× 10−3 s (unstable). (f) Surface-based with
∆t = 0.35×10−3 s (unstable). (g) Surface-based (clamped) with ∆t = 0.35×10−3 s (unstable). Ghost-particle-based with (h)
∆t = 0.42×10−3 s (stable) and (i) ∆t = 1.68×10−3 s (unstable). Ghost-particle-based (clamped) with (j) ∆t = 0.52×10−3 s
(stable) and (k) ∆t = 1.68×10−3 s (unstable). Source-term-based with (l) ∆t = 1.20×10−3 s (stable) and (m) ∆t = 1.68×10−3

s (unstable). (n) Ours with ∆t = 1.68×10−3 s (stable). (o) Ours (clamped) with ∆t = 1.68×10−3 s (unstable).

Figure 5: Stability test with a fluid column, where aver-
aged particle spacing is 1.50× 10−2 m. Spiky kernel with
(a) ∆t = 0.73× 10−3 s and (b) ∆t = 1.07× 10−3 s, where
particle penetrations occur. (c) Blended density with ∆t =
1.07×10−3 s.

with the density-based [KTO96, PTB∗03, SL03], surface-
based [HLW∗12], ghost-particle-based [NT14], and source-
term-based method, which treats fluid particles as Dirich-
let particles if ρ0 − ρ

∗
i ≥ 0, combining the clamping ap-

proach [ICS∗14]. For the comparisons, we used our solid
boundary handling. Figure 6 illustrates the results of our
method and others.

Density-based method. While the density-based method
with a small time step as in Figure 6 (b) generates plausible
fluid behaviors, the method suffered from a stability problem

with a large time step seen in Figure 6 (c). The clamping did
not improve nor deteriorate the robustness of this method
(see Figure 6 (d) and (e)).

Surface-based method. The surface-based method sets
Dirichlet particles only near surfaces, and consequently par-
ticle pressures are likely to be excessively high inside of the
fluid volume. Thus, this method failed to perform a stable
simulation even with a small time step as shown in Figure 6
(f). Since the clamping approach increases particle pres-
sures, this technique did not improve the stability as shown
in Figure 6 (g).

Ghost-particle-based method. Because of the underesti-
mated pressures, a small time step was necessary to ensure
no particle penetrations as in Figure 6 (h). This method failed
with a large time step as in Figure 6 (i). The increased pres-
sure using the clamping slightly improved the robustness of
this method, allowing for the use of a larger time step as seen
in Figure 6 (j). The clamping was insufficient to take a very
larger time step as in Figure 6 (k). For all the scenes, we
observed the volume change (fluid oscillation) because of
underestimated pressures even though the convergence cri-
terion is satisfied.

Source-term-based method. The source-term-based
method can perform a stable simulation with a moderately
large time step as in Figure 6 (l) while the simulation be-
comes unstable with a large time step as in Figure 6 (m).

submitted to COMPUTER GRAPHICS Forum (2/2016).

10 Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions

The clamping approach is ineffective for this method be-
cause Dirichlet particles determined by the source term are
excluded from the system.

Our method. Our method can perform a stable simulation
with a large time step as in Figure 6 (n), while the clamping
introduced stability issues due to increased pressures (see
Figure 6 (o)).

Table 4 shows simulation conditions and performance for
Figures 6 (b), (j), (l), and (n), where the density-based, ghost-
particle-based, source-term-based, and our method gener-
ate plausible fluid behaviors with their best performance,
respectively. Since our method can take larger time steps
than the others, ours outperformed the others regardless of
the more iterations required for convergence, amortizing the
increased cost of the pressure solve. When we need addi-
tional computations, e.g., for viscosity, stress, temperature,
and surface tension, taking larger time steps can further in-
crease the performance gain of our method.

The number of Poisson (Dirichlet) particles with our
method is smaller (larger) than that of the source-term-based
method in Table 4. However, this is due to different time
steps, and the number of Poisson and Dirichlet particles was
34.4k (> 32.0k) and 7.8k (< 10.3k), respectively, when the
same time step as in Figure 6 (l) was used with our method.

5.4. Solid Boundary Handling

We tested our solid handling method to demonstrate its ro-
bustness and efficiency with a dam break scene with a solid
dragon (see Figure 7 (a) for the initial setup). Note that the
dragon must be connected to the surrounding cube repre-
senting the simulation domain to ensure the solvability of
the linear system for [KTO96, PTB∗03, SL03]. We compare
these methods in Figure 7, adopting our free surface han-
dling for both methods, and show simulation conditions and
performance in Table 5.

While both methods can generate plausible fluid behav-
iors, the increased number of Poisson particles with the
previous method leads to a larger size of the linear sys-
tem, requiring more computations. Additionally, the previ-
ous method erroneously underestimates particle pressures,
and the averaged maximum pressure was 1.88× 104 and
2.32×104 kg/(m · s2) in Figures 7 (d) and (f), respectively,
with the same time step ∆t = 1.09×10−3 s. Thus, the previ-
ous method [KTO96, PTB∗03, SL03] needed to use smaller
time steps than those for our method to prevent particle pen-
etrations. Consequently, our method outperformed the pre-
vious method by a factor of 2.20.

Additionally, our method can handle solid objects floating
in the air (see Figure 8).

Figure 8: A fluid drop with a floating solid bunny.

Figure 9: Comparison of fluid behaviors. (Left) IISPH.
(Right) Our method.

5.5. Comparison with IISPH

We compare our method with IISPH [ICS∗14] using a dam
break scenario, as shown in Figure 9 for the fluid behav-
iors and Figure 10 for their performance of the pressure
solve. While both methods generate comparable results, our
method outperformed by a factor of 3.78 in the pressure
solve (IISPH used 86.73 s while ours used 22.95 s) because
of the fast convergence of CG.

5.6. Time Step Scaling

To compare the performance with different time steps, we
experimented with a dam break scene, shown in Figure 9.
For this comparison, averaged particle spacing was 1.80×
10−2 m. Table 6 shows performance results with different
time steps. With our method, the number of iterations in-
creases sublinearly according to time steps. The sublinearity
offers an advantage that our method generally achieves the

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200 250 300

Ti
m

e
(s

)

Frames

IISPH Ours

Figure 10: Comparison of pressure solve time for Figure 9.
Our method outperforms IISPH by a factor of 3.78.

submitted to COMPUTER GRAPHICS Forum (2/2016).

Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions 11

Table 4: Performance comparison for Figure 6. Ours achieves the best performance, taking the largest time step due to the
improved robustness.

Figure Method Nf Ns NP ND NN
∆t(s) lavg tp (s) tf (s)

6 (b) Density-based 42.2k 21.8k 40.0k 2.3k 21.8k 0.75 ×10−3 2.92 4.79 6.64
6 (j) Ghost-particle-based (clamped) 42.2k 21.8k 42.2k 0.0k 21.8k 0.52 ×10−3 0.99 5.95 8.85
6 (l) Source-term-based 42.2k 21.8k 32.0k 10.3k 21.8k 1.20 ×10−3 1.96 2.20 3.23
6 (n) Ours 42.2k 21.8k 28.3k 14.0k 21.8k 1.68 ×10−3 4.66 2.16 2.97

Figure 7: Comparison for solid boundary handling, where averaged particle spacing is 1.29× 10−2 m. (a) Initial setup.
Previous method with (b) ∆t = 0.51×10−3 s and (c) with ∆t = 1.09×10−3 s, where particle penetrations occur as noted by a
red circle; and (d) with particles color coded based on their pressures. (e) Our method with ∆t = 1.09× 10−3 s, and (f) with
particles color coded based on their pressures. Red and white particles represent high and low pressures, respectively.

Table 6: Performance results with different time steps. With
our method, lavg increases sublinearly w.r.t. time steps.

∆t(s) lavg tp(s) tf(s)

0.20×10−3 0.99 12.27 24.93
1.60×10−3 6.69 2.96 4.69

best performance with the largest available time steps, sim-
plifying a process of finding optimal time steps. By contrast,
the number of iterations for IISPH with weighted Jacobi in-
creases superlinearly [ICS∗14], and thus IISPH needs to take
into account various factors, e.g., pressure solve and neigh-
bor search, to determine time steps for the optimal perfor-
mance of IISPH.

6. Discussions and Limitations

In this section, we discuss applicability of CG to IISPH (§
6.1), and limitations of our solver (§ 6.2).

6.1. CG for IISPH

In [ICS∗14], the authors attempted to solve the PPE using
CG with the assumption of uniformly constant particle mass
and density to make the system symmetric. With the IISPH
discretization, however, the system can be not diagonally
dominant and thus not positive definite.

The left hand side of the PPE in the IISPH can be written
as −m2

ρ2
0

∑ j
(
∑ j(pi + p j)∇Wi j−∑k(p j + pk)∇W jk

)
∇Wi j

(j: first-ring neighbors and k: second-ring neigh-
bors), including second-ring neighbors. According
to [TDF∗15], we can separately write terms on
pi, p j, and pk with ωi j = ∑ j∇Wi j as −m2

ρ2
0
‖ωi j‖2 pi,

submitted to COMPUTER GRAPHICS Forum (2/2016).

12 Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions

Table 5: Performance comparison for Figure 7. Ours outperforms the previous method by taking a 2.14x larger time step, and
achieves the performance gain by a factor of 2.20.

Figure Method Nf Ns NP ND NN
∆t(s) lavg tp (s) tf (s)

7 (b) Previous method 76.6k 57.1k 90.6k 43.1k 0.0k 0.51 ×10−3 2.26 16.62 26.37
7 (e) Our method 76.6k 57.1k 59.1k 17.5k 57.1k 1.09 ×10−3 4.39 6.99 11.97

−m2

ρ2
0

∑ j∇Wi j(ωi j − ω jk)p j, and −m2

ρ2
0

ωi j ∑k∇W jk pk, re-
spectively, and the diagonal component is the coefficient of
pi, which is −m2

ρ2
0

ωi j · (ωi j +∑ j∇W ji) taking contributions
of k into account (particle k can be particle i). When particle
i has a completely uniform neighbor particles (ωi j = 0) and
j does not have (ω jk 6= 0), this system is not diagonally
dominant. Therefore, this system cannot be solved with CG.

It is worth noting that Jacobi method also cannot solve a
non-diagonally-dominant system, and thus weighted Jacobi
method is used in [ICS∗14].

6.2. Limitations

Our density blending and interface handling methods signif-
icantly improve the stability, and the improved robustness of
our solver can be comparable to IISPH depending on sce-
narios. However, our solver can be less robust than IISPH
when very large time steps and high resolutions are used,
since IISPH considers pressure forces with farther particles
in the PPE, generating more reliable pressures. Although
there are many situations where our method is more ad-
vantageous (e.g., when we cannot use very large time steps
because of fast moving particles), the weaker robustness is
a limitation and should be investigated to make our solver
more robust. Additionally, IISPH can be advantageous for
relatively smaller scenarios consisting of shallow water only,
with a soft constraint on volume changes, because fewer Ja-
cobi iterations can be sufficient to converge, and thus our
method cannot benefit from CG, which shows a fast, super-
linear convergence in the latter phase.

Our density blending uses two tunable parameters. Al-
though we were able to use constant values (as suggested in
Section 3) in our scenarios, when the distributions of solid
particles are highly irregular, it would be necessary to take
into account actual contributions from solid particles. Other
than blending, it might also be possible to design a new
shape of kernels to address this issue.

7. Conclusions and Future Work

We proposed a hybrid incompressible SPH solver with a
new interface handling method. Our density blending im-
proves the stability for both fluid-fluid and fluid-solid colli-
sions. Our free surface handling improves the robustness by
appropriately setting Dirichlet particles with Jacobi-based

pressure prediction while our solid boundary handling in-
troduces a new term to ensure the solvability of the linear
system even with objects floating in the air, without sacrific-
ing memory and computational efficiency. Several examples
demonstrated the effectiveness of our method.

In general, our solver becomes more efficient as we take
larger time steps unlike IISPH with weighted Jacobi since
required iterations sublinearly increase according to time
steps. Adopting a more effective preconditioner would fur-
ther accelerate our method, solving the linear system with
fewer iterations even if larger time steps make the system ill-
conditioned. Additionally, such a preconditioner might allow
us to handle larger scale scenarios with deep water depth, for
which both of our solver with CG and IISPH with weighted
Jacobi show a poor scalability.

It is interesting to adopt different approaches to ensure
the solvability of the linear system. We plan to use ghost
SPH [SB12] to generate particles outside of fluid volumes,
which can be used for Dirichlet boundary condition. Though
this is similar to [NT14], we can use better sampled parti-
cles with the ghost SPH, and this would further improve the
robustness. To simulate fluids with our method in a closed
container, i.e., Neumann boundary condition only (without
free surfaces, i.e., Dirichlet boundary condition), adopting
the source term correction approach described in [Bri08]
would be promising.

Acknowledgements

This work is supported in part by JASSO for Study Abroad,
JST CREST, U.S. National Science Foundation, and UNC
Arts and Sciences Foundation. We would like to thank
Matthias Teschner and anonymous reviewers for their valu-
able suggestions and comments. We also thank Pavel Kra-
jcevski for helping to proofread the final version of this pa-
per.

References

[AIA∗12] AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER
B., TESCHNER M.: Versatile rigid-fluid coupling for incom-
pressible SPH. ACM Transactions on Graphics 31, 4 (2012),
62:1–62:8. 3, 4, 6

[AO11] ALDUÁN I., OTADUY M. A.: SPH granular flow
with friction and cohesion. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2011), pp. 25–32. 4

submitted to COMPUTER GRAPHICS Forum (2/2016).

Takahashi et al. / An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions 13

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. ACM Transactions on Graph-
ics 26, 3 (2007). 3

[AW09] ADAMS B., WICKE M.: Meshless approximation meth-
ods and applications in physics based modeling and animation.
In Eurographics 2009 Tutorials (2009), pp. 213–239. 4

[BK15] BENDER J., KOSCHIER D.: Divergence-free smoothed
particle hydrodynamics. In Proceedings of the 14th ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation
(2015), pp. 147–155. 3

[BLS12] BODIN K., LACOURSIERE C., SERVIN M.: Constraint
fluids. IEEE Transactions on Visualization and Computer Graph-
ics 18, 3 (2012), 516–526. 1

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics.
A K Peters/CRC Press, 2008. 2, 3, 5, 7, 12

[CR99] CUMMINS S. J., RUDMAN M.: An SPH projection
method. Journal of Computational Physics 152, 2 (1999), 584–
607. 1, 2, 3

[GB13] GERSZEWSKI D., BARGTEIL A. W.: Physics-based an-
imation of large-scale splashing liquids. ACM Transactions on
Graphics 32, 6 (2013), 185:1–185:6. 4, 5

[HLL∗12] HE X., LIU N., LI S., WANG H., WANG G.: Lo-
cal poisson SPH for viscous incompressible fluids. Computer
Graphics Forum 31, 6 (2012), 1948–1958. 1, 2

[HLW∗12] HE X., LIU N., WANG G., ZHANG F., LI S., SHAO
S., WANG H.: Staggered meshless solid-fluid coupling. ACM
Transactions on Graphics 31, 6 (2012), 149:1–149:12. 2, 3, 5, 9

[HWZ∗14] HE X., WANG H., ZHANG F., WANG H., WANG G.,
ZHOU K.: Robust simulation of sparsely sampled thin features
in SPH-based free surface flows. ACM Transactions on Graphics
34, 1 (2014), 7:1–7:9. 4

[ICS∗14] IHMSEN M., CORNELIS J., SOLENTHALER B., HOR-
VATH C., TESCHNER M.: Implicit incompressible SPH. IEEE
Transactions on Visualization and Computer Graphics 20, 3
(2014), 426–435. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B.,
KOLB A., TESCHNER M.: SPH fluids in computer graphics. In
EUROGRAPHICS 2014 State of the Art Reports (2014), pp. 21–
42. 1, 2

[IWT13] IHMSEN M., WAHL A., TESCHNER M.: A Lagrangian
framework for simulating granular material with high detail.
Computers & Graphics 37, 7 (2013), 800–808. 4

[KS14] KANG N., SAGONG D.: Incompressible sph using the
divergence-free condition. Computer Graphics Forum 33, 7
(2014), 219–228. 1, 3

[KTO96] KOSHIZUKA S., TAMAKO H., OKA Y.: A particle
method for incompressible viscous flow with fluid fragmenta-
tions. Computational Fluid Dynamics Journal 4, 1 (1996), 29–
46. 1, 2, 3, 4, 5, 6, 7, 9, 10

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2003), pp. 154–159. 3, 4, 5, 7

[MM13] MACKLIN M., MÜLLER M.: Position based fluids.
ACM Transactions on Graphics 32, 4 (2013), 104:1–104:5. 1

[MMCK14] MACKLIN M., MÜLLER M., CHENTANEZ N., KIM
T.-Y.: Unified particle physics for real-time applications. ACM
Transactions on Graphics 33, 4 (2014), 153:1–153:12. 1

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Annual Review of Astronomy and Astrophysics 30 (1992), 543–
574. 8

[Mon00] MONAGHAN J.: SPH without a tensile instability. Jour-
nal of Computational Physics 159, 2 (2000), 290 – 311. 4, 5,
7

[Mon05] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Reports on Progress in Physics (2005). 2

[NGL10] NARAIN R., GOLAS A., LIN M. C.: Free-flowing
granular materials with two-way solid coupling. ACM Transac-
tions on Graphics 29, 6 (2010), 173:1–173:10. 4, 5

[NT14] NAIR P., TOMAR G.: An improved free surface modeling
for incompressible SPH. Computers & Fluids 102, 10 (2014),
304 – 314. 2, 3, 6, 7, 9, 12

[PTB∗03] PREMOZE S., TASDIZEN T., BIGLER J., LEFOHN A.,
WHITAKER R. T.: Particle-based simulation of fluids. Computer
Graphics Forum 22, 3 (2003), 401–410. 1, 2, 3, 4, 5, 6, 7, 9, 10

[SB12] SCHECHTER H., BRIDSON R.: Ghost SPH for animating
water. ACM Transactions on Graphics 31, 4 (2012), 61:1–61:8.
4, 12

[SG11] SOLENTHALER B., GROSS M.: Two-scale particle simu-
lation. ACM Transactions on Graphics 30, 4 (2011), 81:1–81:8.
3

[SL03] SHAO S., LO E. Y.: Incompressible SPH method for sim-
ulating newtonian and non-newtonian flows with a free surface.
Advances in Water Resources 26, 7 (2003), 787 – 800. 1, 2, 3, 5,
6, 7, 9, 10

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible SPH. ACM Transactions on Graphics 28, 3
(2009), 40:1–40:6. 1, 7, 8

[TDF∗15] TAKAHASHI T., DOBASHI Y., FUJISHIRO I.,
NISHITA T., LIN M. C.: Implicit formulation for SPH-based
viscous fluids. Computer Graphics Forum 34, 2 (2015),
493–502. 11

submitted to COMPUTER GRAPHICS Forum (2/2016).

