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Abstract
We presenta novel algorithm that simulatesice formation. Motivatedby the physicalprocessof ice growth,
wedevelopa novel hybrid algorithmby synthesizingthreetechniques:diffusionlimited aggregation,phase�eld
methods,and stable�uid solvers. Each techniquemapsto oneof the threestagesof solidi�cation. Thevisual
realismof theresultingalgorithmappears to surpassthat of each techniquealone, particularly in animationsof
freezing. In addition,wepresenta faster, simpli�ed phase�eld method,aswell asa uni�ed parameterizationthat
enablesartistic manipulationof thesimulation.We illustratetheresultsonarbitrary 3D surfaces.

CategoriesandSubjectDescriptors(accordingtoACM CCS): I.3.5[ComputerGraphics]:Physicallybasedmodeling

1. Intr oduction

Ice, in its many forms, is an integral part of any wintery
sceneanddirectly in�uencestheglobalclimatesystem.Vi-
sual simulationand animationof ice formation is becom-
ing increasinglypopularin the visual effectsindustry, with
computer-generatediceanimationsplayingaprominentrole
in atleastthreerecent�lms: TheDayAfterTomorrow, Harry
Potter and the Prisonerof Azkaban, andVan Helsing. The
mostcommonlyusedtechniquesusuallyinvolvesomeclever
combinationof particlesystemsand2D compositing.While
thesetechniquescanbeeffective,they aredif�cult to control
andtheresultscanvarywidely.

Very little investigation hasbeenconductedon the mod-
eling of ice formationin computergraphics.Most research
hasfocusedon modelingandsimulatingdynamic�uid me-
diasuchaswaterandsmoke.Relatively few havedealtwith
complex phasetransitionandsolidi�cation processes.Fur-
thermore,for certain forms of ice, suchas icicles, an ex-
actmathematicalmodeldescribingthephysicalprocessdoes
not yet exist. By contrast,in thecomputationalphysicsand
crystalgrowth communities,an enormousamountof effort
hasbeendevotedto theaccuratesimulationof solidi�cation
processes,asthey play an importantrole in the designand
evaluationof compositematerials.distinctfrom thatof gen-
eratingvisuallyplausiblesimulationsin computergraphics.

Main Contrib utions: In this paper, we presenta novel, hy-
brid algorithmthatsynthesizesthreesimulationtechniques:

diffusion limited aggregation,phase�eld methods,andsta-
ble �uid solvers.Our algorithmis motivatedby thethermo-
dynamicsof crystalization,whichiscommonlybrokendown
into threestages.Eachof the above algorithmscan accu-
ratelysimulateonly onestageof thecrystalizationprocess,
but by combiningall three techniques,we can accurately
simulatetheentireprocess.Additionally, we presenta sim-
pli�cation of oneof thetechniques,thephase�eld method,
that posesthe problem as an advection-reaction-diffusion
equation.We thenpresentan ef�cient solutionmethodfor
this simpli�ed formulation that acceleratesthe phase�eld
methodby morethana factorof two. Finally, we show how
thesimulationcanbeparameterizedto provideintuitiveuser
control.Themainresultsareasfollows:

� A physically-basedmodelingapproachthatis inspiredby
thethermodynamicsof ice formation;

� A novel discrete-continuousmethodthat combinesthree
techniques:diffusion limited aggregation, phase �eld
methods,andstable�uid solvers;

� A faster, simpli�ed formulationof thephase�eld method;
� A uni�ed parameterizationof simulationsthat enables

simpleartisticcontrolof visualresults.

We demonstratethe �e xibility of our algorithmby simu-
lating over arbitrary3D surfacesof widely varyingphysical
scale.

Organization: The rest of the paperis organizedas fol-
lows. A brief survey of relatedwork is presentedin Sec.2.
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In Sec.3, we summarizethe physics of freezingto moti-
vateouralgorithm.Thealgorithm,alongwith suggesteduser
controls,is describedin Sec.4. We presenta simpli�ed for-
mulationof thephase�eld methodandanef�cient solution
techniquein Sec.5. In Sec.6, we demonstratetheresultsof
our simulations.We discussthe limitations andgeneraliza-
tion of our hybrid algorithmin Sec.7. Finally, we conclude
with possibledirectionsfor futurework in Sec.8.

2. PreviousWork

Oneof theearliestpapersin computergraphicsonany form
of icegrowth is [KG93], whichpresentedasimpleapproach
for icicle formation.Fearing[Fea00] presentedamethodfor
simulatingfallensnow but this methoddealtpredominantly
with thedrift anddepositionof snow, not theprocessof so-
lidi�cation. Recently, Kim andLin [KL03] presentedanap-
proachfor modelingsolidi�cation on 2D surfacesusingthe
phase�eld method.

Phase�elds methodsare well known in computational
physics and have beenstudiedin the crystal growth com-
munity for almost20 years.They were�rst publishedin the
context of solidi�cation [Lan86], and successfullyusedto
simulatesnow�ak e-likegrowth for the�rst time in [Kob93].
Notably, level setmethodshave achieved recentsuccessin
simulatingsimilar structures[GFCO03], andcancurrently
achievehighernumericalaccuracy. However, giventhesim-
plicity of implementationandthenearlyidenticalvisual re-
sults,wepreferphase�eld methodsin thiswork.

Diffusionlimited aggregation(DLA) is alsoa popularal-
gorithmfor crystalgrowth. DLA was�rst developedto sim-
ulatetheaggregationof metalparticles[WS81], but thealgo-
rithm generalizesto themodelingof many othernaturalphe-
nomena,includingsnow�ak e growth [FPV87, NS87]. DLA
hasalsobeenusedto modelliquid surfacetension,fracture
patterns,lightningformation,andbiologicalgrowth patterns
[Vic92]. In thegraphicsliterature,Sumner[Sum01] hassuc-
cessfullyusedthe DLA algorithmto model lichen growth.
Dorsey andHanrahan[DH96] usedasimilaralgorithm,bal-
listic deposition,for modelingmetallicpatinas.

3. The Processof Solidi�cation

Ourhybrid algorithmis motivatedby theprocessof solidi�-
cation.We will �rst summarizethethreestagesof freezing,
and thendescribehow eachindividual stagecanbe simu-
lated.In thenext section,wewill show how thesethreesim-
ulationtechniquescanbeintegratedto accountfor theentire
process.

3.1. Thr eeStagesof Freezing

Givena freewatermoleculeandan ice crystal,theprocess
of solidi�cation proceedsin the threestagesillustrated in
Figure1:

� First, the watermoleculeis transportedto the surfaceof
thecrystal.This is calledthechemicaldiffusionstage.

� Second,in orderfor thewatermoleculeto beconsidered
frozen,it mustform two hydrogenbondswith thecrystal.
Themoleculewalksalongthesurfaceof thecrystaluntil
it �nds a kink sitewhereit canform thesebonds.This is
calledthesurfacekineticsstage.

� Finally, whenthe moleculeforms its hydrogenbonds,it
releasesasmallamountof heatthatthendiffusesthrough
space.This is calledtheheatconductionstage.

If all threeof theseprocessesoccurat perfectlybalanced
rates,then we encounterthe ideal growth case.However,
idealgrowth is rarelyfoundin nature,andtheprocessis usu-
ally limited by theslowestof thethreestages.

Whenthe �rst stageis slowest,diffusion limited growth
occurs.An exampleof this typeof growth would bea crys-
tal surroundedby watervapor. If a watermoleculehappens
to collide with the crystal, then it can �nd a kink site and
releaseheat.However, thesecollisionsarea relatively rare
occurrence,sothey becomethelimiting factor.

Whenthesecondstageis slowest,kineticslimitedgrowth
occurs.This typeof growth canoccurwhenacrystalis sub-
mergedin anundercooledliquid. Recallfrom chemistrythat
anundercooledliquid is onewhosetemperaturehasslowly
beenloweredbelow its freezingtemperature.Sincethecrys-
tal is alreadysurroundedby watermolecules,the chemical
diffusionrateis no longera factor. Instead,thelimiting fac-
tor is thespeedat whichwatermoleculescan�nd kink sites
on thesurface.

When the third stageis slowest, the crystal growth lit-
eraturealso refers to the caseas kinetics limited growth.
For clarity, we will refer to it hereasheat limited growth.
If the crystal is surroundedby a �uid �o w, then the �o w
of heataroundthe crystal is altered.This phenomenonin-
�uences the growth of the crystal becausethe numberof
kink sitesavailable on a crystal surfaceis proportionalto
the magnitudeof the local heatgradient.Consequently, for
sectionsof the crystal facing into the �o w, heatis pushed
backagainstthe crystal,creatinga sharpheatgradientthat
promotesgrowth. Conversely, for sectionsfacingawayfrom
the�o w, heatis carriedaway from thesurface,smearingout
thegradientandsuppressinggrowth.

For further details on the stagesof solidi�cation, the
readeris referredto [Sai96].

3.2. Diffusion Limited Growth

Thediffusionlimited growth casecanbemodeledby diffu-
sion limited aggregation (DLA). The basicDLA algorithm
was �rst describedby Witten and Sander[WS81], and is
simpleenoughto be describedinformally. Given a discrete
2D grid, asingleparticlerepresentingthecrystal(or `aggre-
gate') is placedin thecenter. A particlecalledthe `walker'
is thenplacedata randomlocationalongthegrid perimeter.
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(a) (b) (c)

Figure 1: A microscopicview of thethreestagesof freezing.(a) In chemicaldiffusion a watermoleculearrivesat thecrystal
(b) During surface kinetics, the moleculewalks the surfaceuntil it �nds a kink site whereit canform 2 bonds(c) In heat
conduction it formshydrogenbondswith thecrystalandreleasesheat.

Theparticlewalks randomlyalongadjacentgrid cellsuntil
it either is adjacentto the crystalor falls off the grid. If it
is adjacentto the crystal, it sticksandbecomespart of the
crystal.A new walker is theninsertedat the perimeterand
the randomwalk is repeated.The processrepeatsuntil the
aggregateachievesthe sizethe userdesires.If we think of
theaggregateasanicecrystalandthewalkerasaparticleof
water, thenthecorrespondenceto thediffusionlimited case
is straightforward.

The[WS81] algorithmis referredto asan`on-lattice'al-
gorithm becauseit takesplaceon a 2D grid. However, on-
latticealgorithmsaresusceptibleto grid anisotropy artifacts.
As shown in Figure2(a), astheaggregategrows larger, four
distinct armsemerge. Thesearmshave no physical justi�-
cation,andarepurelyanartifactof thegrid representation.
`Off-lattice' algorithmshave beendeveloped[Mea83] that
do not suffer from this artifact,but they canbemoreexpen-
siveto compute.Weuseon-latticeDLA becauseit simpli�es
the integration with the phase�eld methodsand the �uid
solver, whichalsotakeplaceongrids.

However, this selectionmeansthat our simulation will
suffer from grid anisotropy. Fortunately, it is possibleto
make the artifactscorrespondto the characteristicsof wa-
ter. By simulatingon a hexagonalgrid insteadof a square
grid,wecanobtainthe6 distinctarmsof asnow�ak e(Figure
2(b)). This resemblanceis nocoincidence,becausethe2 hy-
drogenbondsnecessaryfor ice formationinducesa hexag-
onal lattice.By simulatingon a hexagonalgrid, we aremir-
roring thisaspectof ice.

3.3. Kinetics Limited Growth

The phase�eld model of solidi�cation [Kob93] simulates
preciselythekineticslimited case:growth of a crystalin an
undercooledmelt.Thissituationmayseemrare,but in factit
frequentlyoccurs.In mostnaturalsettings,aswaterreaches
its freezingtemperature,themoleculesalreadylocatednear
a crystalwill freezevirtually instantly. However, it will take
sometime for theice front to expandandengulfall thewa-
termolecules.During this time,theunfrozenmoleculeswill
cool further, becomingundercooled.

(a) (b)
Figure 2: Grid anisotropy in diffusion limited aggregation.
(a) Thefour armsof a squaregrid arenon-physical.(b) The
six armsof ahexagonalgrid mirror thestructureof H2O.

Thephase�eld modelsimulatesthis processby tracking
two quantitiesoveragrid: temperature,T, andphase,p. This
modeleasilygeneralizesto threedimensions.ThevariableT
trackstheamountof heatwithin thegrid cell. Thevariable
p tracksthe phaseof the grid cell, and is de�ned over the
continuousrange[0;1]. Thevalue0 representswater, and1
representsice. We usuallythink of phaseasa binaryquan-
tity, so this continuumof phasevaluescanbe counterintu-
itive. A continuumof statesthat is crucial to thesolidi�ca-
tion processexistson themicroscopiclevel, but computing
theirvaluesdirectlywouldresultin anintractablystiff setof
equations.Phase�elds alleviatesomeof thenumericalprob-
lemsby magnifyingthecontinuum,suchthatthestiffnessis
resolvableon thesimulationgrid.

Thephase�eld equationsareapairof coupledpartialdif-
ferentialequations(PDEs):

t
¶p
¶t

= r � (e(q)2r p) �
¶
¶x

�
e(q)

¶e(q)
¶q

¶p
¶y

�

+
¶
¶y

�
e(q)

¶e(q)
¶q

¶p
¶x

�
+ n(p;T)

(1)

¶T
¶t

= r 2T + K
¶p
¶t

(2)
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where:
e(q) = e(1+ dcos( j(q0 � q)) (3)

n(p;T) = p(1� p)
�

p�
1
2

+ m(T)
�

(4)

m(T) =
a
p

arctan(g(Te � T))) (5)

The symbolst , a, K, e, d, q0, g, a, and Te are constants.
Unlessotherwisenoted,thevalueswe usedarelistedin Ta-
ble 1. Thesevaluesin the table are taken from [Kob93].
The quantities ¶p

¶t and ¶T
¶t are computedby replacingthe

derivativeswith �nite differences,andtheresultis thenused
to stepthe simulationusingforward Euler integration.Be-
causethe equationsarestill quite stiff, our timestepis lim-
ited to 0:0002.Wewill presentasimpli�cation thatallowsa
largertimestepin Section5. For a morein-depthdiscussion
of phase�eld methods,the interestedreaderis referredto
[KL03, Kob93].

a g Te j q0 e t d K

0.9 10.0 1.0 6.0 p
2 0.01 0.0003 0.1 1.5

Table1: SimulationconstantsTop: Equationsymbols;Bot-
tom: Settingsused.For aphysicalexplanationof theparam-
eters,see[Kob93].

3.4. Heat Limited Growth

As describedin [AMW00], the�o w of heataroundacrystal
cansigni�cantly in�uence its �nal shape.Wewill show how
to producethe samevisual characteristicsusing the �uid
solverdescribedin [Sta99] and[FSJ01]. Suchsimulatorsare
commonlyavailableandprovidesa simple,practicalalter-
native for modelingheatlimited growth.

4. A Hybrid Algorithm for Ice Growth

In eachof thegrowth typesdescribedin section3, a simpli-
fying assumptionis made.Diffusionlimited growth assumes
thepresenceof watervapor, andtheabsenceof liquid water
and�uid �o w. Kineticslimited growth assumesthepresence
of liquid water, andtheabsenceof vaporand�uid �o w. Heat
limited growth assumesthepresenceof liquid and�uid �o w,
but theabsenceof vapor. Thesesimpli�cations areapparent
in the resultsfrom eachalgorithm. DLA forms a branch-
ing patternthat canlook morelike fungusthanice (Figure
6(a)), andphase�eld methodsproducebranchesthat look
too smoothandthick (Figure6(b)). Adding �uids to either
alonedonotalleviatetheseproblems.

It seemsthat an environmentcontainingall threefactors
(vapor, liquid, and �uid �o w) would be the mostcommon
case.If ice is forming on a window, theremostlikely exists
watervaporin theair, moistureonthewindow, andat leasta
smallamountof wind. To properlysimulateice growth, we
shouldaccountfor all of thesefactors.

We have developeda novel, hybrid algorithmthat takes
into accountall three factorsby coupling the simulation
techniquesfor each of the three growth types. We will
presentthe algorithmin threeparts:the couplingof phase
�eld methodsandDLA, thenphase�elds and�uid �o w, and
�nally DLA and�uid �o w.

4.1. PhaseFieldsand DLA

Threenew stepsarenecessaryto integratephase�eld meth-
odswith DLA.
� Placementof thewalkerontothe p (phase)�eld;
� Releaseof heatwhenawalker sticks;
� Introductionof ahumidity term.

In the original DLA algorithm, the crystal can only grow
whena walker sticksto thecrystal.However, in our hybrid
setting,thephase�eld simulationmayhave alsoalteredthe
position of the crystal.So, we perform our randomwalks
onthegrid for the p variablein thephase�eld simulation.If
thewalker is adjacentto acell with p > 0:5, thentheparticle
sticks,andwesetthevalueof thatcell to p = 1.

When a walker sticks, it forms hydrogen bonds with
the crystal,releasinga small amountof heat.The freezing
walkerwill releaselessheatthanif theliquid hasfrozen,be-
causewalker itself is alreadyfrozen,andthebondswill only
form alongtheseambetweenitself andthecrystal.Wemust
modify Equation2 to accountfor thisheatrelease:

¶T
¶t

= r 2T + K
�

¶p
¶t

�

PF
+ L

�
¶p
¶t

�

DLA
(6)

where
�

¶p
¶t

�

PF
is the rateof changein p dueto the phase

�eld simulation,and
�

¶p
¶t

�

DLA
the rate of changedue to

DLA. We usea settingof L = K
6 becausebondshave only

formedalongonefaceof thehexagonalgrid cell.

Lastly, we must introducea humidity term, H, because
theoriginal DLA simulationdoesnot containany notionof
time.At everytimestep,H walkersarereleasedinto thesim-
ulationdomain.IncreasingH correspondsto increasingthe
humidity of theenvironment.NotethatH representstheto-
tal numberof walkers released,not just thosethat stick to
thecrystal.Thecorrectsettingfor H is moreof anaesthetic
questionthanaphysicalquestion,andis discussedfurtherin
4.4.

If DLA is performedon a hexagonalgrid, thenit is pos-
sible to simulatephase�elds on a squaregrid, and inter-
polatebetweenthe two representations.However, this ap-
proachwill introducesmoothingartifacts into the simula-
tion. This problemcanbeovercomeby runningphase�elds
onahexagonalgridaswell. Theonlymodi�cation necessary
is to switch from square�nite differencestencilsto hexag-
onal stencils.The weightson the hexagonalstencil canbe
computedby takingtheTaylor expansionandsolvingusing
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Figure 3: Finite differencestencilsfor a hexagonalgrid. (a)
y derivative (b) Laplacian.Stencil for x derivative remains
thesame.

themethodof undeterminedcoef�cients [Atk89]. Thesten-
cils areshown in Figure3.

Integratingphase�eld methodsandDLA may seemin-
correctat �rst, becauseif liquid wateris present,thenkinet-
ics limited growth shoulddominate.But, if we observe that
kineticslimited growth anddiffusionlimited growth canco-
exist at differentscales,this is no longertrue.Becausethe
vaporparticlesaremuchlargerthantheliquid molecules,the
freezingvaporfront will expandmuchfasterthanthefreez-
ing liquid front. Oncethe vaporhas�lled the domainwith
branches,theliquid will takeoverandfreezeeverythinginto
asolidplate.

4.2. PhaseFieldsand Fluid Flow

Anderson,et al. [AMW00] derived a model that couples
the phase�eld equationsand the Navier-Stokesequations.
Ratherthanusingthis morecomplex formulation,we have
found the major featuresof solidi�cation in a �o w canbe
capturedby simply advectingtheheat�eld with the“Stable
Fluid” solverdescribedin [Sta99].

[AMW00] doesnot presentany simulationresultsvisu-
ally, so we will insteadcompareour results to thoseof
[ART02]. Sincethis paperdoesnot usea phase�eld model,
exactly matchingsimulationparametersfor comparisonis
dif�cult. Fromthis paper, we observe thefollowing features
of growth in a �o w:
� Fastgrowth in regionsfacingupstream(into �o w)
� Stuntedgrowth in regionsfacingdownstream(away from

�o w)
� Asymmetricgrowth in regionsperpendicularto the�o w.

We canreproduceall of thesefeaturesusingthecouplingof
phase�elds methodsanda “StableFluid” solver.

We treat the crystal as an internal obstaclein the �uid
solver. After eachpair of phase�eld andDLA steps,we set
any grid cell with p > 0:5 to anobstaclein the�uid domain.
Wethensetthevelocitiesin theobstacleinterior to zero,and
alongtheobstacleboundaryto theno-slipcondition.Theve-
locity �eld u is thenadvancedasdescribedby [Sta99]. For

(a) (b)

Figure4: A 4-armeddendritegrowing in a �o w. Left wall is
setto in�o w, andotherwalls aresetto out�ow. (a) Results
from [ART02] (b) Resultsfrom ourmethod.

a lucid descriptionof implementinginternalobstaclesand
variousboundaryconditions,pleasereferto [GDN97].

The resultantvelocity �eld u can be usedto advancea
density�eld. In thiscase,thedensity�eld is thetemperature
�eld T from thephase�eld simulation.Notethatif the�uid
solver implementsa diffusionconstantfor thedensity�eld,
it mustbesetto zero.ObservethatthePDEfor atemperature
�eld T (Eqn. 2) and the PDE for a moving density�eld r
(Eqn.7) bothcontainthediffusionoperatorr 2.

¶r
¶t

= � (u� r )r + kr 2r (7)

If thediffusionconstantk in Eqn.7 is nonzero,thenthetem-
perature�eld T will incorrectlybe diffusedtwice; onceby
Eqn.2 andonceby Eqn.7. If k is setto zeroin Eqn.7, the
correctresultis obtained.

In theexamplesof [ART02], thecrystalsaregrown from
a dot of ice in the center. The left wall is set to an in�o w
condition,and the otherwalls areset to an out�ow condi-
tion. Theequivalentof the j parameterfrom thephase�eld
equationsis setto 4, meaningthatfour axis-aligneddendrite
armsaredesired.Theresultsof theirsimulationareshown in
Figure4(a),andthethreegrowth featuresmentionedearlier
areclearlyvisible.Theresultsof our simulation,with simi-
lar settings,areshown in Figure4(b). Althoughthefeatures
do not align exactly, our methodclearlyproducesthesame
growth features.

4.3. DLA and Fluid Flow

The integrationof DLA andsimpli�ed �uid �o w hasbeen
studiedby the physics community in the past.In particu-
lar, [NS91] modelsthe�uid asa uniform velocity �eld, and
[TDcT92] use Lattice Boltzmann-typecellular automata.
However, we requireno suchsimpli�cation. SincetheDLA
and phase�eld simulationssharethe p �eld, integrating
phase�eld methodsandwith the �uid solver automatically
integratesDLA with thefull setof Navier-Stokesequations.
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Additionally, the �uid velocities should in�uence the
walker. Whenthe walker is stepped,a randomdirection is
chosenasbefore,but the �uid velocity of the currentgrid
cell is alsoaddedto that direction.It seemsas thoughthe
velocity shouldbemultiplied by a timestep,but it is unclear
whatthis timestepshouldbebecauseDLA lacksany notion
of time. Using the timestepof the overall simulationdt is
not entirely correct,becausethe timespansimulatedby the
particleis thendt � (#of steps), not justdt. However, scaling
by this valueproducedacceptableresults,so it wasusedin
ourcurrentimplementation.

4.4. UserControl

Kim andLin [KL03] suggestedaseedcrystalmapandmelt-
ing temperaturemapascontrolsfor thephase�eld simula-
tion. Our hybrid algorithmcanbeeffectively controlledus-
ing thesesameparameters,aswell asanadditional`tunable
morphology'control,andthehumidity termH from section
4.1.

The melting temperaturemap is a user-speci�ed �eld
whosevaluesrangeover [0,1]. A valueof 1 indicatesfully
promotedgrowth, 0 indicatesfully suppressedgrowth, and
intermediatevalues representvarying degreesof desired
growth. The melting temperaturemapcandoubleas a se-
mantically identical `sticking probability' map for DLA.
Whenthewalker is adjacentto thecrystal,arandomnumber
over [0,1] is chosen.If the numberis lessthana `sticking
probability' [Vic84], then the walker freezes;otherwise,it
continueswalking. In basicDLA, the`stickingprobability'
is essentiallysetto 1 everywhere.

Additionally, the user may alternatelydesire different
growth typesfrom thecrystalmorphology, from therandom,
lichen-likegrowth in Figure5, to theregular, snow�ak e-like
growth in Figure2(b). Theseeffectscanbecontrolledusing
themultiple-hit averagingtechniqueof [NS87]. In orderfor
agrid cell to freeze,n walkersmuststickat thatcell. In basic
DLA, n= 1,but by increasingn, increasinglyregulargrowth
patternsareobtained.

The humidity control describedin 4.1 allows a way of
controlling how `branchy' or `frosty' the resultsappear. At
very high humidity, we obtain the extremebranchinessof
the DLA algorithm,andat very low humidity, the smooth
featuresof the phase�eld algorithmdominate.Usually we
would like the leading edge of the ice front to be very
branchy, with a rapidly thickeningfront trailing not too far
behind.

5. FasterPhaseField Methods

The performanceof our hybrid algorithm is limited by
the timesteprestriction of the phase�eld methods,so a
methodfor increasingthetimestepisdesired.[KL03] reports
that midpoint andRK4 areunableto increasethe timestep
enoughto justify theirexpense,sotechniquesotherthanlin-
earmultistepmethodsarerequired.

Figure5: Isotropiclichen-likegrowth.

RecallthePDEfor phase:

t
¶p
¶t

= r � (e(q)2r p)�
¶
¶x

�
e(q)

¶e(q)
¶q

¶p
¶y

�

+
¶
¶y

�
e(q)

¶e(q)
¶q

¶p
¶x

�
+ n(p;T)

We �rst observe that the partial derivative terms can be
thoughtof asthesumof theentriesin a variablecoef�cient
Hessianmatrix. Equations1 and 2 resemblethe reaction-
diffusion equationsdescribedin [Tur91, WK91]. However,
only thediagonalentriesof theHessianareusedin [WK91].
To seeif sucha simpli�cation canbe appliedhere,we ran
experimentswith a forwardEuler implementation,omitting

the� ¶
¶x

�
e¶e

¶q
¶p
¶y

�
+ ¶

¶y

�
e¶e

¶q
¶p
¶x

�
term.Althoughtheresults

arenoticeablysmoother, thebranchingfeaturesremainedthe
same.Informally we canthink of this as truncatinghigher
ordertermsfrom the non-lineardiffusion operator. A more
formalanalysisasto thephysicalsigni�canceof this trunca-
tion is complicatedandintroducesnoadditionalinsight,and
thusis omittedhere.

A simpli�ed phasePDEcannow bewritten:

t
¶p
¶t

= r � (e(q)2r p) + n(p;T)

If we apply the identity r � (a2r p) = r a2 � r p+ a2r 2p,
thisbecomes:

t
¶p
¶t

= r e(q)2 � r p+ e(q)2r 2p+ n(p;T): (8)

Thisis anon-linearadvection-reaction-diffusionequation.If
wenow applyasecondorderaccuratetemporalscheme,then
we will be able to take larger timesteps.For compactness
of notation,we will abbreviate e(q)2 to a, anddenotethe
value of p at grid coordinate(i; j) and timestepn as pn

i; j .
Theschemeswill only beshown in thex direction,with the
y directionfollowing by symmetry.

5.1. SecondOrder Accuracy In Time

The Lax-Wendroff schemeis appliedto the advectionterm
r e(q)2 � r p. Wereplacetheold scheme:

¶a
¶x

¶p
¶x

�
a i� 1; j � a i+ 1; j

Dx

pn
i� 1; j � pn

i+ 1; j

Dx
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with theLax-Wendroff scheme:

¶a
¶x

¶p
¶x

�
a i� 1; j � a i+ 1; j

Dx

pn
i� 1; j � pn

i+ 1; j

Dx
�

�
a i� 1; j � a i+ 1; j

Dx

� 2 pn
i� 1; j � 2pn

i; j + pn
i+ 1; j

(Dx)2

Next, the Crank-Nicolsondiscretizationis appliedto the
diffusionterm,e(q)2r 2p. Wereplacetheold method:

a2 ¶2p
¶x2 � a2

�
pn

i� 1; j � 2pn
i; j + pn

i+ 1; j

(Dx)2

�

with theCrank-Nicolsonscheme:

a2

2

 
pn

i� 1; j � 2pn
i; j + pn

i+ 1; j

(Dx)2 +
pn+ 1

i� 1; j � 2pn+ 1
i; j + pn+ 1

i+ 1; j

(Dx)2

!

Sincethis discretizationis implicit, a sparselinear system
mustnow besolved.

In practice,Red-BlackGauss-Seideliterationis the best
solution method.The systemconvergesto working preci-
sionin lessthan10 iterations,soa multigrid solver will not
likely givebetterperformance.Conjugategradientcannotbe
appliedbecausethesystemis not symmetric,and�nding an
optimalrelaxationvaluefor SORis dif�cult becausethema-
trix eigenvalueschangeevery iteration.For more informa-
tion on iterative solutionmethodsfor linearsystems,please
see[Dem97].

5.2. PerformanceAnalysis

Usingthissecond-ordermethod,thetimestepcanbequadru-
pled to 0.0008.If the linear systemis solved to working
precision,thenno signi�cant performancegain is observed.
However, experimentshaveshown thatsolvingthesystemto
within 5� 10� 3, givesresultsthatarevisually indistinguish-
able from the precisesolution,andachievesup to a 2.27x
speedup.Theresultsaresummarizedin Table2.

Resolution Euler WP RP Speedup

128x128 9 sec 7 sec 4 sec 2.25x
256x256 84sec 79sec 37sec 2.27x
512x512 801sec 871sec 392sec 2.04x

1024x 1024 6864sec 8509sec 3443sec 1.99x

Table 2: Phase�eld performanceover differentresolutions.
Euler timestepis 0.0002,secondorder timestepis 0.0008.
In WP column, the systemis solved to working precision
(10� 8). In RPcolumn,thesystemis solvedto reducedpre-
cision(5� 10� 3). Thelastcolumnis thespeedupof RPover
Euler.

6. Implementation and Results

We implementonestepof thehybrid algorithmas:
for 1:H

insert walker onto p field
simulate walker on p field

end
step phase fields
copy p > 0.5 to obstacle field
step fluid velocities
step density/temperature field

Thephase�eld simulationand�uid solver requiredno sig-
ni�cant alteration.TheDLA simulationwasalteredto walk
on the p �eld, insertheatinto the T �eld, andaccountfor
�uid velocities.Thep �eld wascopiedinto theobstacle�eld
by ahigh-level class.With C++ implementationsof all three
algorithms,only about100additionallinesof codearenec-
essaryto implementthe hybrid algorithmon a squaregrid.
To simulateon a hexagonalgrid, moresigni�cant changes
areneeded,but thesizeof thecoderemainsaboutthesame.
A displacementmapwasgeneratedfrom thesimulationre-
sultsby accumulatingthe ¶p

¶t valuesover thelifetime of the
simulationandnormalizingthevaluesto the[0;1] range.The
resultswerethenrenderedin 3DSMax 5.

Figure Resolution H Timesteps Sim.Time

7 1024x 1024 60000 200 2 hrs
6 256x 256 Variable 300 4 min 16sec
9 512x 512 100 1600 4 min 32sec
10 1024x 1024 4000 350 3 min 35sec

Table 3: Timing resultsfor simulation,excluding render-
ing time. For aestheticeffect in Figure6, thehumidity was
startedat300andincreasedby 50afterthe75thtimestep.

We ranour simulationat variousphysicalscales:themi-
croscaleof asnow�ak e,themesoscaleof apintglass,andthe
macroscaleof anautomobilewindsheild.Due to the fractal
natureof ice, our algorithmscalesnaturallyamonga wide
varietyof physicalscales.

All of thesimulationswererun on a 2.66GhzXeonpro-
cessor, with timing results(excludingrenderingtime)shown
in Table3. In Figure6, the in�o w �uid velocity along the
topedgewassetequalto 0 alongtheleft wall andincreased
quadraticallyto 3.5approachingtheright wall. In Figure10,
thetop edgewassetto a parabolicin�o w of 3.5 in thecen-
ter and0 at theends.Thesamesimulationwasusedfor the
hood,sidepanel,andwindshield.For all simulations,dx, dy
weresetto 3

64 to keepthetimestep�x ed.

7. Resultsand Discussion

In this section,we presenttheresultsof our simulation,dis-
cussthelimitationsandgeneralizationof thetechniques.

7.1. Comparisons

In Figures6-10, we show imagesof a snow�ak e pattern,
a frozen window pane,simulated(ice) frost forming on a
chilled glass,and ice on a car in a wintery scene.We also
presenta side-by-sidecomparisonbetweenimagesof the
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real sceneand the simulatedscenefor two: the snow�ak e
andchilledglass.

In Figure6, we comparethe resultsof visual simulation
from DLA, phase�eld methods[KL03], andour hybrid al-
gorithm. Notice that the hybrid algorithmis able to repro-
ducemorerealistic ice growth comparedto eitherDLA or
phase�eld methodsalone.

For Figure7, the snow�ak e scene,the insetphotograph
shows that the overall shapeand distribution of armshas
been reproduced.Most notably, the intricate network of
veinsinternalto theborderof thesnow�ak e have beenpro-
duced.Phase�elds (i.e. the methodof [KL03]) and DLA
can respectively producethe internal veins and the thick-
enedouter border, but neithertechniquecan produceboth
features,while ourhybrid algorithmproducesboth.

Validating the chilled glass posesa big challenge,as
chilled glassesfrost over almost instantly when removed
from afreezer. For comparisonpurposesin Figure8, theini-
tial conditionsof the chilled glasssimulationwerealtered
slightly so that somegrowth also occurredalong the top
edgeof the glass.Although a direct comparisonis dif�cult
in theabsenceof moresophisticatedrendering,wenotethat
the`�ngering' of the ice alongthe leadingedgeof thefrost
hasbeenfaithfully reproduced.Awayfrom leadingedge,the
frost in the photohasfrozen into a solid sheet.Our simu-
lation producesthe sheetfaithfully as well. The �ngering
alongtheedgeis afeatureof diffusionlimited growth,while
thesheetis a kineticslimited phenomena.NeitherDLA nor
phase�elds canproduceboth features,but thehybrid algo-
rithm reproducesboth.

Validatingresultsof any physicalsimulationcanbechal-
lenging,but this taskis prohibitively dif�cult for ice forma-
tion, especiallyfor outdoorenvironments,e.g.on the win-
dow or on thecarhood.In suchenvironments,a plethoraof
factorscanaffect the growth of ice patternin a signi�cant
wayatany giventimeduringtheformationstage.

7.2. Limitations

Our currentimplementationis limited by the 2D treatment
of �uid �o w, which assumesthat the wind velocities are
roughlyparallelto thesimulationdomain.To handletheper-
pendicularcase,a full 3D �uid solver is necessary, andwe
planto addthis featureto ourexisting framework. Ouralgo-
rithm alsocannothandlethick features,suchasicicles.The
thermodynamicsof icicle formationdiffer from thecasepre-
sentedhereandthesurfacetensionplaysa dominantrole in
theformationprocess.Furthermore,themathematicalmodel
for thephysicalprocessof icicle formationis still unknown
andpresentsaninterestingresearchchallenge.

7.3. Generalization

In a generalsense,we have developeda novel methodof
texture synthesis.Our statementof the phase�eld equa-

tions as a non-linear advection-reaction-diffusion system
shows that they representa moregeneralclassof phenom-
enathanpurereaction-diffusion.In additionto thecompeti-
tive morphogensusuallypresentin a reaction-diffusionsys-
tem[WK91], thehybrid algorithmaddstwo complementary
morphogensoperatingatdifferentscales.

In the absenceof a �uid �o w andwith isotropicgrowth
settings,this synthesismethodcanbe considereda Lapla-
cian growth algorithm [NPW84]. With the addition of
anisotropy and �uid �o w, it becomesa non-Laplacian
growth [RK93] algorithm.As such,it hasthe potential to
increasetherealismof otherLaplacianphenomena,suchas
the formationof cracks,the formationof lightning, andthe
growth of trees.

8. Conclusionsand Futur eWork

We have presenteda novel, hybrid algorithmfor modeling
ice formation,a setof parametersfor the algorithm,anda
methodof acceleratingoneof its main components.Based
onthesimulationresults,ourhybrid algorithmappearsto ac-
countfor amorediversesetof growth patternswith ahigher
degreeof realismthanany previoustechnique.

Several issuesstill exist for further re�nement. An un-
conditionally stable algorithm would be ideal for phase
�eld methods,but the non-linearnatureof the equations
makes the derivation dif�cult. For DLA, ideally an arbi-
traryanisotropy functioncouldbeimposedonasquaregrid,
but while someimpressive recentwork hasproducedtrue
isotropy on a squaregrid [Bog01], arbitraryanisotropy re-
mainselusive.For a largehumidity, DLA canbetheslowest
componentof thesimulation,sopotentiallyfasteralternative
solution methods,suchas dielectric breakdown [NPW84]
andHastings-Levitov conformalmapping[HL98], areworth
investigation.

Finally, we have yet to addresstherenderingissuesasso-
ciatedwith icegrowth. Iceis composedof highly anisotropic
mesofacetsthatexhibit strongspectraldispersion.As such,
it seemsto inhabita mesoscalein betweenthemacroscopic
featuresof texturesandthe microfacetfeaturesof BRDFs,
makingrealisticrenderingdif�cult. Furtherstudyis needed
to capturetheir sparkling,rainbow features.
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Figure 6: Comparisonof algorithms Top to bottom: Our
hybrid algorithm;DLA only; phase�elds only (methodof
[KL03])

Figure 7: Snow�ak e growth We show how our algo-
rithm canproducemicroscaledetail, suchasthe armsof a
snow�ak e. Inset: Photoof a realsnow�ak e.

Figure 8: Validation. Top: Closeupof chilled glasssimula-
tion. Bottom:Photographof iceonachilledglass.
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Figure9: Frostyice forming on a chilled glass.Top to bot-
tom:160timesteps;800timesteps;1300timesteps

Figure 10: Ice Accumulatedon a car. Top to bottom:50
timesteps;100timesteps;125timesteps
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