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Figure 1: Haptic Display of Interaction between Textured Models. From left to right: (a) high-resolution textured hammer (433K polygons) and
CAD part (658K polygons), (b) low-resolution models (518 & 720 polygons), (c) hammer texture with fine geometric detail.

ABSTRACT

Surface texture is among the most salient haptic characteristics of
objects; it can induce vibratory contact forces that lead to percep-
tion of roughness. In this paper, we present a new algorithm to
display haptic texture information resulting from the interaction be-
tween two textured objects. We compute contact forces and torques
using low-resolution geometric representations along with texture
images that encode surface details. We also introduce a novel force
model based on directional penetration depth and describe an effi-
cient implementation on programmable graphics hardware that en-
ables interactive haptic texture rendering of complex models. Our
force model takes into account important factors identified by psy-
chophysics studies and is able to haptically display interaction due
to fine surface textures that previous algorithms do not capture.
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1 INTRODUCTION

Haptic rendering provides a unique, two-way communication be-
tween humans and interactive systems, enabling bi-directional in-
teraction via tactile sensory cues. By harnessing the sense of touch,
haptic display can further enhance a user’s experience in a multi-
modal synthetic environment, providing a more natural and intu-
itive interface with the virtual world. A key area in haptics that has
received increasing attention is the rendering of surface texture, i.e.
fine geometric features on an object’s surface. The intrinsic surface
property of texture is among the most salient haptic characteristics
of objects. It can be a compelling cue to object identity, and it can
strongly influence forces during manipulation [16]. In medical ap-
plications with limited visual feedback, such as minimally-invasive
or endoscopic surgery [24], and virtual prototyping applications of

mechanical assembly and maintainability assessment [27], accurate
haptic feedback of surface detail is a key factor for successful metic-
ulous operations.

Most of the existing haptic rendering algorithms have focused
primarily on force rendering of rigid or deformable flat polygo-
nal models. This paper addresses the simulation of forces and
torques due to interaction between two textured objects. Effective
physically-based force models have been proposed to render the
interaction between the tip (a point) of a haptic probe and a tex-
tured object [18, 10]. However, no technique is known to display
both interaction forces and torques between two textured models.
In fact, computation of texture-induced forces using full-resolution
geometric representations of the objects and handling contacts at
micro-geometric scale is computationally prohibitive.

Similar to graphical texture rendering [2], objects with high com-
binatorial complexity (i.e. with a high polygon count) can be de-
scribed by coarse representations with their fine geometric detail
stored in texture images, which we will refer to as haptic textures
in this paper. Given this representation and a new force model that
captures the effect of geometric surface details, we are able to hap-
tically display intricate interaction between highly complex models
using haptic textures instead of actual surface geometry.

Main Contributions: In this paper, we introduce a physically-
based algorithm for incorporating texture effects to haptic display
of interaction between two polygonal models. This algorithm en-
ables, for the first time, interactive haptic display of forces and
torques due to fine surface details. The main results of our paper
are:

• A novel force model for haptic texture rendering, based on
the gradient of directional penetration depth, that accounts for
important factors identified by psychophysics studies;

• A fast algorithm for approximating directional penetration
depth between textured objects;

• An efficient implementation on programmable graphics hard-
ware that enables interactive haptic display of forces and
torques between complex textured models;



• A new approach to haptically render complex interaction due
to fine surface details using simplified representations of the
original models and the corresponding haptic textures.

Our algorithm can be integrated in state-of-the-art haptic ren-
dering algorithms to enhance the range of displayed stimuli. We
have successfully tested and demonstrated our algorithm and im-
plementation on several complex textured models. Some examples
are shown in Fig. 1. Subjects were able to perceive roughness of
various surface textures.

Organization: The rest of the paper is organized as follows. In
Sec. 2 we discuss related work. Sec. 3 defines key terminology and
describes several important concepts central to our force model.
Sec. 4 presents the force computation model. Sec. 5 introduces a
simple yet effective algorithm for approximating directional pen-
etration depth and its parallel implementation on graphics proces-
sors. We then describe our results in Sec. 6. Finally, we discuss and
analyze our approach in Sec. 7 and conclude with possible future
research directions in Sec. 8.

2 PREVIOUS WORK

In this section we briefly discuss related work on haptic rendering
and penetration depth computations.

2.1 Six Degree-of-Freedom Haptics

Haptic display of forces and torques between two interacting ob-
jects is commonly known as 6 degree-of-freedom (DoF) haptics.
In all approaches to 6-DoF haptics, collision detection is a dom-
inant computational cost. The performance of collision detection
algorithms depends on the size of the input models, which in turn
depends on the sampling density of the models, both for polygo-
nal representations [23, 15, 11] and for voxel-based representations
[17, 27].

To be correctly represented, surfaces with high-frequency geo-
metric texture detail require higher sampling densities, thereby in-
creasing the cost of collision detection. As a result, haptic rendering
of forces between textured objects becomes computationally infea-
sible to achieve, and new representations must be considered.

Otaduy and Lin [20] recently suggested multiresolution repre-
sentations to minimize the computational impact of collision de-
tection and to adaptively select the appropriate resolution at each
contact location. However, their approach filters out high resolu-
tion geometric features, thus ignoring all texture effects.

2.2 Haptic Texture Rendering

Rendering and perception of textures has been one of the most ac-
tive areas in haptics research. Please refer to [16] for a survey on
psychophysics of tactile texture perception. Klatzky and Lederman
made important distinctions between perception of textures with
bare skin vs. perception through a rigid object. When perceived
through a rigid probe, roughness of a textured surface is encoded as
vibration.

Several researchers have successfully developed haptic texture
rendering techniques for interaction between a probe point and an
object, using coarse geometric approximations and geometric tex-
ture images. These techniques use the idea of computing geometry-
dependent high frequency forces, which transmit vibratory infor-
mation to the user, and are perceived as virtual roughness. Minsky
[18] showed that texture information can be conveyed by displaying
forces on the tangent plane defined by the contact normal. Minsky
computed a texture-induced force proportional to the gradient of a
2D height field stored in a texture map. Ho et al. [10] have pro-
posed techniques that alter the magnitude and direction of 3D nor-
mal force based on height field gradient. Siira and Pai [26] followed

a stochastic approach, where texture forces are computed according
to a Gaussian distribution.

All these techniques exploit the fact that, for point-object con-
tact, a pair of texture coordinates can be well defined, and this is
used to query height fields stored in texture maps. Note that only
geometric effects of one object are captured. We are interested in
rendering forces occurring during the interaction of two surfaces. In
this case, the geometric interaction is not limited to and cannot be
described by a pair of contact points. Moreover, the local kinemat-
ics of the contact between two surfaces include rotational degrees
of freedom, not captured by point-based haptic rendering methods.

Choi and Tan [3] have studied the influence of collision detection
and penetration depth computation on point-based haptic rendering,
and their findings appear to be applicable to 6-DoF haptics as well.

2.3 Penetration Depth Computation

Several algorithms [12, 6, 5, 13] have been proposed for computing
a measure of penetration depth using various definitions. However,
each of them assumes that at least one of the input models is a
convex polytope. It is commonly known that if two polytopes in-
tersect, then the difference of their reference vectors with respect to
the origin of the world coordinate system lies in their convolution
or Minkowski sum [8]. The problem of penetration depth computa-
tion reduces to calculating the minimum distance from the origin to
the boundary of the Minkowski sum of two polyhedra. The worst
case complexity for two general, non-convex polyhedra can be as
high as O(m3n3), where m,n are the number of polygons in each
model. Kim et al. [14] presented an algorithm for estimating pen-
etration depth between two polyhedral models using rasterization
hardware and hierarchical refinement. Although it offers better per-
formance than previous techniques, this approach may take up to
minutes to compute the penetration depth, making it inadequate for
haptic simulation.

In this paper we present a new algorithm to estimate directional
penetration depth between models described by low-resolution rep-
resentations and haptic textures. Unlike the algorithm by Kim et al.
[14], it does not compute the global penetration depth between two
models, but its performance makes it suitable for haptic display.

3 PRELIMINARIES

In this section we first introduce notation used in the paper. Then,
we present definitions related to penetration depth, which is an es-
sential element of our force model. Finally, we describe the com-
putational pipeline for haptic rendering of interaction between tex-
tured models.

3.1 Notations

A height field H is defined as a set H = {(x,y,z) | z =
h(x,y),(x,y,z) ∈ R

3}. We call h : R
2 → R a height function. Let

q denote a point in R
3, let qxyz = (qx qy qz)

T denote the coordi-
nates of q in a global reference system, and quvn = (qu qv qn)

T

its coordinates in a rotated reference system {u,v,n}. A surface
patch S ⊂ R

3 can be represented as a height field along a direc-
tion n if qn = h(qu,qv),∀q ∈ S. Then, we can define a mapping
g : D → S,D ⊂ R

2, as g(qu,qv) = qxyz, where:

h(qu,qv) = qn = n ·qxyz = n ·g(qu,qv) (1)

The inverse of the mapping g is the orthographic projection of S
onto the plane (u,v) along the direction n.



3.2 Definitions of Penetration Depth

Penetration depth δ between two intersecting polytopes is typically
defined as the minimum translational distance required to separate
them (see Fig. 2-b). As mentioned in Sec. 2.3, this distance is equiv-
alent to the distance from the origin to the Minkowski sum of the
polyhedra. Directional penetration depth δn along the direction n is
defined as the minimum translation along n to separate the polyhe-
dra (see Fig. 2-c). The penetration depth between two intersecting
surface patches will be referred to as local penetration depth.

Figure 2: Definitions of Penetration Depth. (a) Intersecting objects A
and B, (b) global penetration depth δ , and (c) directional penetration
depth δn along n.

Let us assume that two intersecting surface patches SA and SB
can be represented as height fields along a direction n. Conse-
quently, SA and SB can be parameterized by orthographic projection
along n, as expressed in Sec. 3.1. As a result of the parameteriza-
tion, we obtain mappings gA : DA → SA and gB : DB → SB, as well
as height functions hA : DA → R and hB : DB → R. The directional
penetration depth δn of the surface patches SA and SB is the maxi-
mum height difference along the direction n, as illustrated in Fig. 3
by a 2D example. Therefore, we can define the directional penetra-
tion depth δn as:

δn = max
(u,v)∈(DA∩DB)

(

hA(u,v)−hB(u,v)
)

(2)

Figure 3: Penetration Depth of Height Fields. Directional penetration
depth of surface patches expressed as height difference.

3.3 Haptic Display Pipeline

We assume that the interacting objects can be described as parame-
terized low-resolution triangle meshes with texture maps that store
fine geometric detail. In a haptic simulation of object-object inter-
action, the object whose motion is controlled by the user is called
the probe object. Contacts between the probe object and the rest of
the objects in the environment generate forces that are displayed to
the user.

Following a common approach in 6-DoF haptics, we simulate
the dynamics of the probe object as a result of contact forces and a
virtual coupling force that ensures stable interaction with the user
[1]. We propose a novel algorithm for computing contact forces,
taking into account texture effects. We follow the steps below to
compute contact forces:

1. Each haptic simulation frame starts by performing collision
detection between the low-resolution meshes. We then iden-
tify intersecting surface patches as contacts. We characterize
each contact by a pair of contact points on the patches and a
penetration direction n.

2. For each contact, we compute force and torque using our
novel force model for texture rendering, based on the pene-
tration depth and its gradient. The penetration depth is ap-
proximated taking into account fine geometric detail stored in
haptic textures.

3. The forces and torques of all contacts are combined to com-
pute the net force and torque on the probe object.

Other effects, such as friction [9], can easily be incorporated into
this display pipeline using the contact information computed be-
tween the low-resolution meshes.

4 A FORCE MODEL FOR TEXTURE RENDERING

In this section we describe our force model for haptic display of
interaction between textured surfaces. We first show how factors
highlighted by psychophysics studies are taken into account. Then,
we introduce a penalty-based force model for texture rendering.
Finally, we present the formulation of the gradient of penetration
depth used in our force model.

4.1 Foundation of the Proposed Force Model

Roughness of surface textures perceived through a rigid probe is
mainly encoded as vibration and strongly influences the forces that
must be applied to manipulate the objects [16]. In point-based hap-
tic texture rendering, vibrating forces are commonly computed us-
ing a height field gradient [18, 10]. Our force model generalizes the
point-based approach by computing forces based on the gradient of
penetration depth between two objects.

Based on psychophysics studies, Klatzky and Lederman [16]
highlight factors influencing perception of roughness through a
rigid spherical probe. These factors are:

Probe Radius: For spherical probes, the texture frequency at which
perception of roughness is maximum depends on probe radius. At
low frequencies, roughness increases with texture frequency, but
after reaching a peak, roughness decreases as texture frequency in-
creases. Our conjecture is that roughness perception is tightly cou-
pled to the trajectory traced by the probe, which can be regarded as
an offset surface of the perceived geometry. Okamura and Cutkosky
[19] also modeled interaction between robotic fingers and textured
surfaces by tracing offset surfaces. They defined an offset surface
as the boundary of the Minkowski sum of a given surface and a
sphere. Therefore, the height of the offset surface at a particular
point is the distance to the boundary of the Minkowski sum for a
particular position of the probe, also known to be the penetration
depth1. In other words, the height of the offset surface reflects the
distance that the probe must move in order to avoid interpenetra-
tion with the surface. Since, for spherical probes, perception of
roughness seems to be tightly coupled with the oscillation of offset
surfaces, in our force model for general surfaces we have taken into
account the variation of penetration depth, i.e. its gradient.

Normal Force: Perception of roughness grows monotonically with
normal force. This relation is also captured by our force model in

1Actually, the height of the offset surface is the distance to the sur-
face along a particular direction, so the distance to the boundary of the
Minkowski sum must also be measured along a particular direction. This
is known to be the directional penetration depth.



a qualitative way, in making tangential forces and torques propor-
tional to the normal force.

Exploratory Speed: The exploratory speed, or velocity of the
probe in the plane of contact with the surface, affects the perception
of roughness. Our force model is intrinsically geometry-based, but
in a haptic simulation dynamic effects are introduced by the haptic
device and the user. We have analyzed the dynamic behavior of our
force model, and we have observed that vibratory motion produced
by simulated forces behaves in a way similar to physical roughness
perception. The results of our experiments are described in detail
in [21].

The influence of probe geometry, normal force and exploratory
speed is taken into consideration in the design of our force model,
which will be presented next.

4.2 Penalty-Based Texture Force

For two objects A and B in contact, we define a penalty-based force
proportional to the penetration depth δ between them. Penalty-
based forces are conservative, and they define an elastic potential
field. In our force model we have extended this principle to com-
pute texture-induced forces between two objects.

We define an elastic penetration energy U with stiffness k as:

U =
1
2

kδ 2 (3)

Based on this energy, we define force F and torque T as:
(

F
T

)

= −∇U = −kδ (∇δ ) (4)

where ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂ z ,

∂
∂θx

,

∂
∂θy

,

∂
∂θz

)

is the gradient in 6-DoF con-
figuration space.

As described in Sec. 3.3, each contact between objects A and B
can be described by a pair of contact points pA and pB, and by a
penetration direction n. We assume that, locally, the penetration
depth between objects A and B can be approximated by the direc-
tional penetration depth δn along n. We rewrite Eq. 4 for δn in a
reference system {u,v,n}2. In this case, Eq. 4 reduces to:

(

Fu Fv Fn Tu Tv Tn
)T

= −kδn

(

∂δn
∂u

∂δn
∂v 1 ∂δn

∂θu

∂δn
∂θv

∂δn
∂θn

)T

(5)
where θu, θv and θn are the rotation angles around the axes u, v and
n respectively.

The force and torque on object A (and similarly on object B) for
each contact can be expressed in the global reference system as:

FA = (u v n)(Fu Fv Fn)
T

TA = (u v n)(Tu Tv Tn)
T (6)

As explained in Sec. 3.3, forces and torques of all contacts are
summed up to compute the net force and torque.

Generalizing Minsky’s approach [18], we define tangential
forces Fu and Fv proportional to the gradient of penetration depth.
However, we also define a penalty-based normal force and gradient-
dependent torque that describe full 3D object-object interaction.
In addition, in our model the tangential force and the torque are
proportional to the normal force, which is consistent with psy-
chophysics studies showing that perceived roughness increases with
the magnitude of the normal force [16].

2u and v may be selected arbitrarily as long as they form an orthonormal
basis with n.

4.3 Penetration Depth and Gradient

In our formulation, δ and δn are functions defined on a 6-DoF con-
figuration space. We have opted for central differencing over one-
sided differencing to approximate ∇δn, because it offers better in-
terpolation properties and higher order approximation. The partial
derivatives are computed as:

∂δn
∂u

=
δn(u+∆u,v,n,θu,θv,θn)−δn(u−∆u,v,n,θu,θv,θn)

2∆u
(7)

and similarly for ∂δn
∂v , ∂δn

∂θu
, ∂δn

∂θv
and ∂δn

∂θn
.

δn(u + ∆u, ...) can be obtained by translating object A a dis-
tance ∆u along the u axis and computing the directional penetration
depth. A similar procedure is followed for other penetration depth
values.

5 DIRECTIONAL PENETRATION DEPTH

In this section we present an algorithm for approximating local di-
rectional penetration depth for textured models and describe a par-
allel implementation on graphics hardware.

5.1 Approximate Directional Penetration Depth between Tex-
tured Models

A contact between objects A and B is defined by two intersecting
surface patches SA and SB. The surface patch SA is approximated by
a low-resolution surface patch ŜA (and similarly for SB). We define
fA : ŜA → SA, a mapping function from the low-resolution surface
patch ŜA to the surface patch SA.

Collision detection between two low-resolution surfaces patches
ŜA and ŜB returns a penetration direction n. Let us assume that both
SA and ŜA (and similarly for SB and ŜB) can be represented as height
fields along n, following the definition in Sec. 3.1. Given a rotated
reference system {u,v,n}, we can project SA and ŜA orthographi-
cally along n onto the plane (u,v). As the result of this projection,
we obtain mappings gA : DA → SA and ĝA : D̂A → ŜA. We define
D̄A = DA ∩ D̂A.

The mapping function gA can be approximated by a composite
mapping function fA ◦ ĝA : D̄A → SA (See Fig. 4). From Eq. 1, we
define an approximate height function ĥ : D̄A → R as:

ĥ(u,v) = n · ( fA ◦ ĝA(u,v)) (8)

Figure 4: Approximate Height Function. Height function of a surface
patch approximated by a composite mapping function.

Given approximate height functions ĥA and ĥB, a domain D =
D̄A∩ D̄B, and Eq. 2, we can approximate the directional penetration
depth δn of SA and SB by:

δ̂n = max
(u,v)∈D

(

ĥA(u,v)− ĥB(u,v)
)

(9)

Although this algorithm can be realized on CPUs, it is best
suited for implementation on graphics processors (GPUs), as we
will present next.



5.2 Computation on Graphics Hardware

As shown in Eq. 5, computation of 3D texture-induced force and
torque according to our model requires the computation of direc-
tional penetration depth δn and its gradient at every contact. From
Eq. 7, this reduces to computing δn all together at 11 configurations
of object A3. As pointed out in section 2.3, computation of pene-
tration depth using exact object-space or configuration-space algo-
rithms is too expensive for haptic rendering applications. Instead,
the approximation δ̂n according to Eqs. 8 and 9 leads to a natural
and efficient image-based implementation on programmable graph-
ics hardware. The mappings ĝ and f correspond, respectively, to
orthographic projection and texture mapping operations, which are
best suited for the parallel and grid-based nature of GPUs.

For every contact, we first compute ĥB, and then perform two
operations for each of the 11 object configurations: compute ĥA
for the transformed object A, and then find the penetration depth
δ̂n = max(∆ĥ) = max

(

ĥA − ĥB
)4.

Height Computation
In our GPU-based implementation, the mapping f : Ŝ → S is im-

plemented as a texture map that stores geometric detail of the high-
resolution surface patch S. We refer to f as a “haptic texture”. The
mapping ĝ is implemented by rendering Ŝ using an orthographic
projection along n. We compute the height function ĥ in a fragment
program. We obtain a point in S by looking up the haptic texture f
and then we project it onto n. The result is stored in a floating point
texture t.

We choose geometric texture mapping over other methods for
approximating h (e.g. rendering S directly or performing displace-
ment mapping) in order to maximize performance. We store the
input haptic texture f as a floating point texture, thus alleviating
precision problems.

Max Search
The max function in Eq. 9 can be implemented as a combination

of frame buffer read-back and CPU-based search. However, we
avoid expensive read-backs by posing the max function as a binary
search on the GPU [7]. Given two height functions ĥA and ĥB stored
in textures t1 and t2, we compute their difference and store it in
the depth buffer. We scale and offset the height difference to fit in
the depth range. Height subtraction and copy to depth buffer are
performed in a fragment program, by rendering a quad that covers
the entire buffer. For a depth buffer with N bits of precision, the
search domain is the integer interval [0,2N). The binary search
starts by querying if there is any value larger than 2N−1. We render
a quad at depth 2N−1 and perform an occlusion query 5, which will
report if any pixel passed the depth test, i.e. the stored depth was
larger than 2N−1. Based on the result, we set the depth of a new
quad and continue the binary search.

Gradient Computation
The height functions ĥA(±∆u), ĥA(±∆v) and ĥA(±∆θn) may be

obtained by simply translating or rotating ĥA(0). As a result, only 6
height functions ĥA(0), ĥB(0), ĥA(±∆θu) and ĥA(±∆θv) need to be
computed for each pair of contact patches. These 6 height functions
are tiled in one single texture t to minimize context switches and
increase performance (See Fig. 5). Moreover, the domain of each
height function is split into 4 quarters, each of which is mapped to

3Note that, since we use central differencing to compute partial deriva-
tives of δn, we need to transform object A to two different configurations and
recompute δn. All together we compute δn itself and 5 partial derivatives,
hence 11 configurations

4We denote the height difference at the actual object configuration by
∆ĥ(0), and the height differences at the transformed configurations by
∆ĥ(±∆u), ∆ĥ(±∆v), ∆ĥ(±∆θu), ∆ĥ(±∆θv) and ∆ĥ(±∆θn).

5http://www.nvidia.com/dev content/nvopenglspecs/GL NV occlusion query.txt

one of the RGBA channels. This optimization allows us to exploit
vector computation capabilities of fragment processors. As shown
in Fig. 5, we also tile 11 height differences per contact in the depth
buffer.

Figure 5: Tiling in the GPU. Tiling of multiple height functions and
contacts to minimize context switches between target buffers.

Multiple Simultaneous Contacts:
The computational cost of haptic texture rendering increases lin-

early with the number of contact patches between the interacting
objects. However, performance can be further optimized. In or-
der to limit context switches, we tile the height functions associated
with multiple pairs of contact patches in one single texture t, and we
tile the height differences in the depth buffer, as shown in Fig. 5. We
also minimize the cost of “max search” operations by performing
occlusion queries on all contacts in parallel.

6 RESULTS

We now describe the implementation details and results obtained
with our haptic texture rendering algorithm, both in terms of force
and motion characteristics, as well as performance.

6.1 Implementation Details

Our haptic texture rendering algorithm requires a preprocessing
step. Input models are assumed to be 2-manifold triangle meshes
with fine geometric details. We parameterize the meshes and cre-
ate texture atlas storing surface positions. We also simplify the
meshes to produce coarse resolution approximations which are used
by the collision detection module. The parameterization must be
preserved during the simplification process, and distortion must
be minimized. Our implementation of parameterization-preserving
simplification is based on existing approaches [25, 4].

As described in Sec. 3.3, before computing forces we perform
collision detection between coarse-resolution models. We adapt the
approach of Kim et al. [15] and decompose the models in convex
pieces. Object interpenetration is considered to occur when objects
are closer than a distance tolerance. In practice, by using this tech-
nique, penetration depth between the coarse resolution models is
computed less frequently, thus accelerating collision detection.

For texture force computation, we compute each value of pen-
etration depth between contact patches on a 50× 50, 16-bit depth
buffer. This resolution proved to be sufficient based on the results.

In our experiments we have used a 6-DoF PhantomT M hap-
tic device, a dual Pentium-4 2.4GHz processor PC with 2.0
GB of memory and an NVidia GeForce FX5950 graphics card,
and Windows2000 OS. The penetration depth computation on
graphics hardware is implemented using OpenGL plus OpenGL’s
ARB fragment program and GL NV occlusion query extensions.
Our haptic texture rendering cannot be stalled by the visual dis-
play of the scene; hence, it requires a dedicated graphics card.
We display the full resolution scene on a separate commodity PC.
The force update of the haptic device takes place at a frequency of
1kHz, but the haptic simulation is executed in a separate thread that
updates the force input to a stabilizing virtual coupling [1] asyn-
chronously.



Figure 6: Benchmark Models. From left to right: (a) textured blocks, (b) block and gear, (c) hammer and torus, (d) file and CAD part.

6.2 Benchmarks

In our experiments we have used the models shown in Fig. 6. The
complexity of full resolution textured models and their coarse res-
olution approximations is listed in Table 1.

Models Full Res. Tris Low Res. Tris Low Res. Pcs
Block 65536 16 1
Gear 25600 1600 1

Hammer 433152 518 210
CAD Part 658432 720 390

File 285824 632 113
Torus 128000 532 114

Table 1: Complexity of Benchmark Models. Number of triangles at
full resolution (Full Res. Tris) and low resolution (Low Res. Tris),
and number of convex pieces at low resolution (Low Res. Pcs).

Notice the drastic simplification of the low resolution models.
At this level all texture information is eliminated from the geome-
try, but it is stored in 1024×1024-size floating point textures. The
number of convex pieces at coarse resolution reflects the geometric
complexity for the collision detection module. Also notice that the
block and gear models are fully convex at coarse resolution. The in-
teraction between these models is described by one single contact,
so they are better suited for analyzing force and motion character-
istics in the simulations.

6.3 Conveyance of Roughness

We have performed experiments to test the conveyance of rough-
ness with our haptic texture rendering algorithm.

Roughness under Translation: The gear and block models present
ridges that interlock with each other. One of our experiments con-
sisted of translating the block in the 3 Cartesian axes, while being
in contact with the fixed gear, as depicted in Fig. 6-b. Fig. 7 shows
the position of the block and the force exerted on it during 1500
frames of interactive simulation (approx. 3 seconds).

Notice that the force in the x direction, which is parallel to the
ridges, is almost 0. Our model successfully yields this expected re-
sult, because the derivative of the penetration depth is 0 along the x
direction. Notice also the staircase shape of the motion in the z di-
rection, which reflects how the block rests for short periods of time
on the ridges of the gear. The motion in the y direction resembles a
staircase as well, but with small overshoots. These reflect the state
between two successive interlocking situations, when the ridges are
opposing each other. The wide frequency spectrum of staircase mo-
tion is possible due to the fine spatial resolution of penetration depth
and gradient computation. Last, the forces in y and z are correlated
with the motion profiles.

Roughness under Rotation: We placed two identical striped
blocks interlocking each other, as shown in Fig. 6-a. We then
performed small rotations of the upper block around the direc-
tion n, and observed the induced translation along that same direc-
tion. Fig. 8 shows the rotation and translation captured during 6000
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Figure 7: Roughness under Translation. Position and force profiles
generated while translating the model of a textured block in contact
with a gear model, as shown in Fig. 6-b. Notice the staircase like
motion in z, and the correlation between force and position changes.

frames of interactive haptic simulation (approx. 12 seconds). No-
tice how the top block rises along n as soon as we rotate it slightly,
thus producing a motion very similar to the one that occurs in real-
ity. Point-based haptic rendering methods are unable to capture this
type of effect. Our force model successfully produces the desired
effect by taking into account the local penetration depth between
the blocks. Also, the derivative of the penetration depth produces a
physically-based torque in the direction n that opposes the rotation.

Summary of Experiments: From the experiments described
above, we conclude that our force model successfully captures
roughness properties of objects with fine geometric detail. We have
also conducted informal experiments where subjects were asked to
explore a textured plate with a virtual probe, while only the untex-
tured coarse-resolution models were displayed graphically on the
screen. Hence, the subjects could only recognize the texture pat-
terns through haptic cues. The reported experiences were promis-
ing, as subjects were able to successfully describe regular patterns
such as stripes, but had more difficulty with irregular patterns. This
result is what we expect when real, physical textured models are
explored.

6.4 Performance Tests

One of the key issues to achieve realistic haptic rendering is very
high force update rate. High update rates enhance the stability of
the system, as well as the range of stimuli that can be displayed.
We have tested the performance of our haptic texture rendering al-
gorithm and its implementation in scenarios where the coarse res-
olution models present complex contact configurations. These sce-
narios consist of a file scraping a rough CAD part, and a textured
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Figure 8: Roughness under Rotation. Motion profile obtained by
rotating one textured block on top of another one, as depicted in
Fig. 6-a. Notice the translation induced by the interaction of ridges
during the rotational motion.

hammer touching a wrinkled torus. In particular, we show timings
for 500 frames of the simulation of the file interacting with the CAD
part in Fig. 9. The graph reflects the time spent on collision detec-
tion between the coarse-resolution models (an average of 2ms), the
time spent on haptic texture rendering, and the total time per frame,
which is approximately equal to the sum of the previous two. In
this experiment we computed each value of penetration depth on a
50× 50 16-bit depth buffer (See Sec. 5.2). As shown in Sec. 6.3,
this proved to be sufficient to display convincing roughness stimuli.
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Figure 9: Timings. Performance analysis and number of clustered
contact patches during 500 simulation frames of a file model scraping
a CAD part, as shown in Fig. 6-d. In this complex contact scenario we
are able to maintain a haptic frame rate between 100Hz and 200Hz.

In this particularly challenging experiment we were able to ob-
tain haptic update rates between 100Hz and 200Hz. The domi-
nant cost appears to be the haptic texture rendering, which depends
nearly linearly on the number of contacts. The achieved force up-
date rate may not be high enough to render textures with very high
spatial frequency. However, as shown in Sec. 6.3, our proposed
force model enables perception of roughness stimuli that were not
captured previously by earlier methods. Moreover, in Fig. 9 we
show performance results for a contact configuration in which large
areas of the file at many different locations are in close proxim-

ity with the CAD part. In fact, collision detection using coarse-
resolution models reports an average of 104 pairs of convex pieces
in close proximity, which are later clustered into as many as 7 con-
tacts. Using the full-resolution models, the number of contact pairs
in close proximity would increase by several orders of magnitude,
and simply handling collision detection would become challeng-
ing at the desired haptic rendering frame rates. Furthermore, as
the support for programming on GPUs and capabilities of GPUs
continue to grow at a rate faster than Moore’s Law, we expect the
performance of our algorithm to reach KHz update rates in the near
future.

7 DISCUSSION AND ANALYSIS

In Sec. 6.3 we have analyzed forces and motion generated by our
algorithm during actual haptic simulations. We have further ana-
lyzed the properties of the force model presented in Sec. 4 by sim-
ulating its behavior in experiments similar to the ones conducted in
psychophysics studies [16]. Our main conclusion is that the accel-
eration produced by our force model matches qualitatively the be-
havior of roughness perception as a function of texture frequency.
A detailed description of the experiments we have conducted can
be found in [21].

Our force model and implementation present a few limitations,
some of which are common to existing haptic rendering methods.
Next we discuss these limitations.

7.1 Force Model

In some contact scenarios with large contact areas, the definition
of a local and directional penetration depth is not applicable. An
example is the problem of screw insertion. Situations also exist in
which local geometry cannot be represented as height fields, and
the gradient of directional penetration depth may not capture the
effect of interlocking features.

As shown in Sec. 6, in practice our force model generates forces
that create a realistic perception of roughness for object-object in-
teraction; however, one essential limitation of penalty-based meth-
ods and impedance-type haptic devices is the inability to enforce
motion constraints. Our force model attempts to do so by increasing
tangential contact stiffness when the gradient of penetration depth
is high. Implicit integration of the motion of the probe object allows
for high stiffness and, therefore, small interpenetrations, but the per-
ceived stiffness of rigid contact is limited through virtual coupling
for stability reasons. New constraint-based haptic rendering tech-
niques and perhaps other haptic devices [22] will be required to
properly enforce constraints.

A very important issue in every force model for haptic render-
ing is its stability. Choi and Tan [3] have shown that even passive
force models may suffer from a problem called aliveness. In our
algorithm, discontinuities in the collision detection between low-
resolution models are possible sources of aliveness.

7.2 Frequency and Sampling Issues

As with other sample-based techniques, our haptic texture render-
ing algorithm is susceptible to aliasing problems. Here we discuss
different aliasing sources and suggest some solutions.

Input textures: The resolution of input textures must be high
enough to capture the highest spatial frequency of input models,
although input textures can be filtered as a preprocessing step to
downsample and reduce their size.

Image-based computation: In the height function computation
step, buffer resolution must be selected so as to capture the spatial



frequency of input models. Buffer size, however, has a significant
impact in the performance of force computation.

Discrete derivatives: Penetration depth may not be a smooth func-
tion. This property results in an infinitely wide frequency spectrum,
which introduces aliasing when sampled. Differentiation aggra-
vates the problem, because it amplifies higher frequencies. The im-
mediate consequence in our texture rendering approach is that the
input texture frequencies have to be low enough so as to represent
faithfully their derivatives. This limitation is common to existing
point-based haptic rendering methods [18] as well.

Temporal sampling. Force computation undergoes temporal sam-
pling too. The Nyquist rate depends on object speed and spatial
texture frequency. Image-based filtering prior to computation of
penetration depth may remove undesirable high frequencies, but it
may also remove low frequencies that would otherwise appear due
to the nonlinearity of the max search operation. In other words, fil-
tering a texture with very high frequency may incorrectly remove
all torque and tangential forces. Temporal supersampling appears
to be a solution to the problem, but is often infeasible due to the
high update rates required by haptic simulation.

8 CONCLUSION

We have introduced a new haptic rendering algorithm for display-
ing interaction between two textured models, based on localized
directional penetration depth and its gradient. We have also pre-
sented an image-based implementation on programmable graphics
hardware that enables interactive haptic display between complex
textured models for the first time. We have further shown that, us-
ing a coarse geometric representation with haptic textures that en-
code fine surface details, it is possible to render contact forces and
torques between two interacting textured models at haptic rates.

Several possible directions for future research remain, including
but not limited to:

• Interactive haptic texture synthesis;
• Addition of constraint forces for fine motion and dexterous

manipulation;
• Further analysis of human factors.

Finally, we would like to integrate our haptic rendering system
with different applications, such as assisted technology, surgical
training, and virtual prototyping.
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