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ABSTRACT ni cant; use of generic or non-personalized HRTFs in spatial sound

Accurate rendering of 3D spatial audio for interactive virtual audi- rendering can lead to localization errors, lateralization artifacts, and
tory displays requires the use of personalized head-related transfet!ncOnvincing spatial impressions [25, 49]. However, most VR sys-

functions (HRTFs). We present a new approach to compute per- €MS O game engines useganericHRTF for all users. Thisis
sonalized HRTFs for any individual using a method that combines because traditional measurement-based techniques to obtain indi-

state-of-the-art image-based 3D modeling with an ef cient numer- Vidual HRTFs involve specialized, expensive equipment and set-
ical simulation pipeline. Our 3D modeling framework enables cap- 1ings [5, 54], and it is both dif cult and expensive to compute per-
ture of the listener's head and torso using consumer-grade digital SOnalized HRTFs for each user. _

cameras to estimate a high-resolution non-parametric surface rep- 1 his has motivated the development of alternative approaches to
resentation of the head, including the extended vicinity of the lis- obtaining personalized HRTFs. One approach is to compute per-
tener's ear. We leverage sparse structure from motion and densesonalizéd HRTFs by using the 3-D mesh of the head and torso
surface reconstruction techniques to generate a 3D mesh. This mes@&S input to a numerical sound simulation technique to reproduce
is used as input to a numeric sound propagation solver, which usesth® HRTF measurement process. These numerical techniques are
acoustic reciprocity and Kirchhoff surface integral representation to known to generate HRTFs that match well with measurements.
ef ciently compute an individual's personalized HRTF. The overall However, they take tens of hours or days to compute an individ-
computation takes tens of minutes on multi-core desktop machine. Ual's HRTF using a desktop machine. _ _

We have used our approach to compute the personalized HRTFs of Generating personalized HRTFs using numerical sound simula-
few individuals, and we present our preliminary evaluation here. tiontechniques has akey problem: the need for accurate 3D meshes
To the best of our knowledge, this is the rst commodity technique Of users or subjects. Traditionally, such meshes are obtained using
that can be used to compute personalized HRTFs in a lab or homelaser scanners or MRIs, which can be expensive or time-consuming.

setting. Image-based 3D modeling, the reconstruction of dense 3D geom-
etry from a set of photographs, offers a passive and cost-efecti
1 INTRODUCTION mechanism for obtaining object mesh models. Given the rapid de-

The recent interest in the development of low-cost head-mounted v_elopment of image-based dense modeling techniques in computer

displays (HMDs) has sparked consumer and commercial interest inV|sion [46, 21], one can robustly reconstruct a dense 3D object mesh

production of immersive virtual reality (VR) experiences. While for input images using autom_ated techniques. In particular, itis not

most of the developments in virtual and augmented reality have fo- uncommon to have commodlty cameras (e.9. in smartphones) W.'th
cused on the visual modality, the developers of these HMDs and 10720 Megapixel resolution, which can be used to generate the in-
content developers have also been emphasizing the importance o&u(;v';nda%fgt}(gé c;ﬁreti%hgé?%?'img:ggtv zrr’]éh; Cﬁ{gg:ﬁf Craelr(]jl?see%se”y
spatial sound and high-quality acoustic effects to increase the user'sintricacies of inout ca Jt re setun. Accordin ? ima g—based mod-
sense of presence in virtual environments. This is backed by studieseIin offers a fa\egrablg tljrade-olfjfpﬁeUNeen ea?s)é’ of usge and modelin
that have demonstrated that sound is important in the formation of 9 9

presence percepts [25], and that renderingpattial soundhrough accuracy. Many state-of-the-art methods attain very high recon-
headphones increases presence in virtual environments [6, 47]. struction accuracy that are comparable to laser range sensors [46].

Head-related transfer functions (HRTFs) are commonly used in In this paper, we explore the use of image-based 3D modeling as a

spatial sound rendering to model the acoustic Itering of sound by means to streamline the customization of HRTF's for speci ¢ sub-
the human head and body. These functions are known to provideJeCt.s' . .

important spatial cues to the human auditory system [6, 53]. Sound Main results We present an efcient personalized HRTF com-
ltered through HRTFs, when presented over headphones, can bePUtation pipeline that combines a state-of-the-art image-based 3D
used to simulate free- eld (anechoic) listening for users, enabling M0deling technique with an ef cient numerical simulation pipeline
perception of sound source location [50]. However, HRTFs depend based on the adapt[ve rectangular decomposmon tephmque [42,
on the geometry of the outer ears (pinnae), head, and torso, mean-zg]' The underlying image-based 3D modeling technique reduces

ing that HRTFs vary between individuals. This variation is sig- tmhtees%(()ass:[ \?vfitﬁcggg&ngciﬁang; Sr?;eggi?:ggﬁgg lzr\ghdlfegegf rgltjirn ng]u-

merical simulation pipeline which combines the principle of acous-
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*e-mail: yhs@cs.unc.edu numerical solver; it ef ciently computes the full HRTF in tens
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a preliminary evaluation of these personalized HRTFs by compar-
ing them with the commonly used measured HRTF of the KEMAR
dummy head. Overall, our HRTF computation pipeline can gener-
ate personalized HRTFs in a relatively small amount of time with-



out using expensive or specialized equipment. To the best of our

knowledge, this is the rst commodity solution to compute person-
alized HRTFs for spatial sound rendering.

2 BACKGROUND

In this section, we provide some background on spatial hearing,
sound localization, HRTFs, and their role in rendering spatial
sound.

2.1 Spatial Hearing and Sound Localization
Spatial hearing refers to the ability of the human hearing system to

perceive spatial aspects of our acoustic environment. This includes

sound localization, our ability to associate a spatial position to a
sound event or a sound source [6]. Multiple experiments performed

to understand the nature of sound localization have related this
ability to the presence of spatial cues present in sound signals

reaching the ears [8]. We discuss some of these cues.

Interaural Differences
Lord Rayleigh's early work associated sound localization with

interaural differences present between the signals received by '[heh

two ears [45]. Broadly, interaural time difference (ITD) is de ned
as the time delay between the arrival of a signal at each of the two
eardrums, while interaural intensity difference (IID) is de ned as
the difference in total signal intensity at the two eardrums within a
speci ¢ time period or within a particular frequency band. While
ITD and IID values vary with source direction relative to the head,
multiple source directions can correspond to the same ITD or

Mathematically, assume that the listener's head is centered at
the origin oriented along the positive X-axis, with the interaural
axis (the line joining the two ear canals entrances) aligned with the
Y-axis and the top of the head pointing along the positive Z-axis.
Assuming free- eld conditions, leX; (g;f ;w) andXr(q;f ; w) be
the Fourier transforms of the signals received at the entrance of the
listener's left and right blocked ear canals, respectively, due to a
source 1 m away at at azimuthand elevatiorf . Let Xc(q; f;w)
be the Fourier transform of the signal received at the origin due
to the same source in the absence of the listener, also in free- eld
conditions. Then the left-ear and right-ear HRTFs can be de ned
as:

X (qg;fiw) .

Xc(q;fiw)’ Xc(q; f;w);

respectively [56]. The time-domain analogue of the HRTF is called
the Head-Related Impulse Response (HRI&)d is the inverse
Fourier Transform of the corresponding HRTF.

XR(q;f;w)

HL(q:f;w) = Hr(q; fiw) = 1)

HRTFs and 3-D Audio Systems
Presentation of sound ltered through HRTFs preserves spatial
earing cues, allowing the auditory system to attach spatial at-
tributes to auditory events, just like in natural free- eld listen-
ing [50]. This is based on the idea that a sound signal ltered with
HRTFs, presented through headphones, mimics the free- eld trans-
mission of a sound signal from a source to the ears.
Mathematically, let(t) be the signal played by a sound source
at azimuthg and elevationf. The left- and right-ear headphone
signals,y;(t) andy;(t), respectively, after HRTF Itering can be

1ID value. As a result, depending solely on ITD and IID values
for sound localization can lead to ambiguities such as front-bac
confusions [51]. Furthermore, the use of ITD and IID alone for
spatial sound rendering does not provide the spectral cues that
the pinnae produce; these cues are known to play a major role in
elevation perception [4].

K expressed as:
i) = h(g;f:t) xt); yr(t)=h(q;f;t) xt); (2

respectively, where represents the convolution operation, and
h(q;f;t) andh;(q;f;t) are the left- and right- ear HRIRs corre-
I . sponding to the source directidqg;f).

Spectral Filtering Due to the Pinnae Because they are so useful in rendering sound with spatial

The pinnae (outer ears) are known to cause direction-dependentyearing cues, HRTFs are often used as central components in 3-D
modi cation of the frequency spectrum of the sound signal received 5 4io systems [6].

at the eardrum. This leads to spectral changes that depend on the
relative direction of the source with respect to the head. These 4RrTE variation and Personalized 3-D Audio

changes are known to play a role in sound localization [24]. Note g mentioned above, HRTFs vary from person to person, as the fea-
that while ITD and 11D are binaural cues that rely on difference be- ,res of the head and the pinnaé vary across people. This variation
tween the signals received at the two ears, pinna modi cation of s gjgnj cant; psychoacoustical experiments have demonstrated that
sound is a monaural cue that depends on the sound received at @gjng HRTFs other than a person's own leads to incorrect percep-
single ear. There is evidence that monaural spectral cues are thgjon and to localization errors [49]. In other words, it is important to

major cues for determining vertical location of sound sources [33]. |,se the personalized HRTFs for a listener to generate high quality

) spatial sound.
2.2 Head-Related Transfer Functions

The aforementioned cues can be thought of as consequences of thd PRIOR WORK

sound source's position relative to the listener as well as modi ca- In this section, we give a brief overview of prior work in HRTF
tion of the sound signal due to the human body before it reaches thepersonalization and in 3D mesh acquisition using image-based 3D
ear drum. Théead related transfer functioffRTF) represents the ~ modeling.

acoustic ltering, in free- eld (anechoic) conditions, of the sound

signal from a single source due to the human body (particularly the HRTF Measurements

pinnae, head and torso) as measured at the entrance of the listener®hysical measurement is commonly used to obtain individual
ear canals. Since this acoustic ltering varies with source position HRTFs in psychoacoustic research [50, 5, 54]. Typically, HRTF
and with the geometry of the listener's body, HRTFs are functions measurements are conducted in a large anechoic chamber. A set of
of source position and listener's geometry, along with frequency. high-quality speakers is arranged in a spherical pattern at a xed
Usually the dependence on listener geometry is left implicit, and distance from a point near the center of the room, with the speakers
HRTFs are represented only as functions of source positions andpointing towards the center. The user is seated so that the center of
frequency. Furthermore, the dependence on source distance fronthe line joining his/her ear canals (the inter-aural axis) coincides
the listener's head is also ignored as for relatively distant sources with the center of the sphere of speakers, and the inter-aural axis
(1 m or greater), HRTFs are virtually independent of distance com- is horizontal with the user facing a speci c forward direction. A
pared to direction [9]. For this reason, most HRTF measurements high-quality probe microphone is inserted into each of the user's
are reported for speci ¢ source distance from the head, usually 1 m. ears, either inside the ear canal or at the entrance of blocked ear



Interfac$s . \
: - Kirchhoff
£ 1 Surface Integral
=< B
PML Partition .
3. Rectangular Decomposition i i Slgna.l
Head Width (x,) ) 9 P i. Current Field (t) Processing
k—
Head Depth(x;)| ‘
HRTF / HRIR
) o 2. Voxelization ii. Interface Handling & DCT
Subject
1. Domain iii. IDCT & Modal Update (t+dt) S ial S d‘
Smoothened Mesh Preprocessing Simulation patial Soun
— - — Rendered over
Mesh Acquisition Adaptive Rectangular Decomposition Headphones
& Processing Solver

Figure 1: Block diagram showing an overview of our pipeline, with details of our mesh-acquisition technique and our numerical sound simulation
technique.

canals. The user must sit still for the duration of the measurementsHRTFs at low frequencies, missing detailed spectral features at
(usually 30 minutes to an hour) during which a specic signal high frequencies, especially due to the pinnae.
(such as Golay-coded signals) is played one by one from speakers
at different directions around the head. The signals arriving at yrTE Computation Using Anthropometric Measurements
the microphone are recorded and stored. Next, these signals arey, ajternate approach to generating personalized HRTFs is
post-processed to remove the effects of the room, speaker andyaseq on the idea that an individual's HRTF can be correlated
microphone responses, leaving only the head-related impulsey, anthropometric measurements, such as head width, pinna
responses, which are then converted into head-related frequenc;height’ pinna angles, torso width, etc. These techniques rely on a
responses by using a Fourier transform. Overall, the focus of most y5tapase of measured HRTFs that also provides anthropometric
HRTF measurement methods is accuracy. They involve expensiveeasyrements of subjects. Zotkin et al's method uses anthro-
and specialized equipment along with tedious procedures during pometric measurements to match a user to a subject in a HRTF
which user must sit still. As a result, such measurements are yatapase whose measurements are closest to the user's based on a
conducted mainly for research purposes, and their widespread Usgjistance metric. The subject's measured HRTF is then used for the
is limited. user [55]. Another set of techniques computes new HRTFs for each
user based on the correlation established between anthropometric
HRTF Computation Using Analytical Solutions measurements and HRTFs. Hu et al. use a back-propagation
Over the last century, many researchers have derived exact math&ti cial neural network, trained using an HRTF database, to
ematical solutions of the wave equation for acoustic scattering for 9€nerate an individual's HRTF [20]. A very recent approach due
shapes that approximate the head and torso. Lord Rayleigh derived© Bilinski et al. treats HRTF computation as a problem of nding
the exact solution for the acoustic scattering of a plane wave by & SParse representation of a subjects anthropometric features,
a completely rigid sphere [45]. Duda and Martens extended this based on a database containing anthropometric measurements and
solution to allow the source to be at variable distance from the HRTF measurements. The database was newly generated by the
sphere [10]. Jo et al. used the solution of acoustic scattering for 2uthors, and for the purposes of anthropometric measurements
spheroids, allowing variation of height and radius of the head [22]. they relied mostly on automatic computation from 3D models of
Algazi et al. provided solutions for a “snowman” model where the subjects. A new subjelctslmeasu.rements are used to generate a
both the head and torso were represented by spheres [4]. GiversParse representation which in turn is used to compute the HRTF
measurements of head radius, head height and torso radius, thestor that subject [7].
models can compute personalized HRTFs very quickly. However,
because they approximate the complex geometries of the humanHRTF Computation Using Numerical Simulation
body, these techniques generate HRTFs that only match measuredNumerical sound simulation techniques have been used as an



approach for computing individual HRTFs. This approach re- accuracy, there were some considerations that guided our choices.
quires as input the accurate 3-D mesh of an individual's body, in We highlight these considerations by discussing some recent ap-
particular the head and torso. The simulation mimics the HRTF proaches. The Dense Tracking and Mapping in real time (DTAM)
measurement process described above; the resultant pressurtechnique by Newcombe et al. [37] is one such approach. DTAM
signals are then processed to compute the HRTFs. Kahana et alinherently uses the redundancy of video data, which would require
used the boundary element method (BEM) to compute HRTFs of a signi cantly higher spatial sampling of the user's head resulting
the KEMAR dummy head with six different pinna models as well in at least an order of magnitude higher number of frames. As we
as for an individual [23]. Gumerov et al. described a parallel fast demonstrated in our experiments, to achieve high quality meshes a
multipole accelerated boundary element method (FMM-BEM) much higher resolutior( 6 MB) than HD video resolution (2MB)
based technique to compute HRTFs [17]. They used the techniqueis required to obtain accurate meshes. While the DTAM paper did
to compute HRTFs for the Fritz and KEMAR dummy heads not evaluate the quality of the estimated 3D model, the resolution
and presented qualitative comparisons between the measuredind accuracy relation will be similar. Another recent approach is
HRTFs and the computed HRTFs. This technique required tens of Monofusion, by Pradeep et al. [40]. Monofusion is similar to our
hours on a desktop machine. Mokhtari et al. presented an HRTF method (in terms of leveraging depth fusion) but it also leverages
computation technique that combined the nite difference time video data, requiring an order of magnitude more frames. As the
domain (FDTD) method with the Kirchhoff-Helmholtz integral authors point out, their method is optimized for speed rather than
equation (KHIE); they used this technique to compute HRTFs for robustness. We opted for a robust global approach as the achieved
the KEMAR dummy head [35] as well as human subjects [34]. model quality is critical and there is no real-time requirement for
They presented qualitative as well as quantitative comparisons of our approach.
the computed and measured HRTFs.

4 EFFICIENT HRTF COMPUTATION

Mesh Acquisition o _ Figure 1 provides a broad overview of our HRTF computation
Computer vision 3D reconstruction is the process of mapping a set pipeline, showing its various components along with details of our
of input images to a 3D representation (e.g a 3D mesh) of their mesh acquisition and numerical sound simulation techniques. In

contents. The process by which this mapping is achieved is gener-this section we provide descriptions of these components and their
ally divided into two stages: structure from motion and dense shape roles in the pipeline.

estimation. Structure from motion (SfM) takes a set of images as
input in order to estimate a scene 3D reference system, the view-4.1 Mesh Acquisition Technique

ing parameters of the cameras capturing the images (i.e. relatlveTO generate personalized HRTFs, it is critical to obtain accurate

poses, individual focal length, etc.) as well as a sparse (feature- 2
based) representation of the scene. Detailed reviews of the under-head and ear geometry of the user. To allow easy acquisition and

- > X : . a highly accurate model, we propose the use of commaodity digital
lying mechanisms in SfM techniques can be found in [18, 27, 11]. s
Most state-of-the-art SfM systems [48, 52, 2, 12] share a common cameras for the acquisition of the head and ear geometry of the

processing pipeline: 1) detect and match features between inputuser' In all our experiments, we used images captured by an off-
images to construct 2D tracks; 2) incrementally estimate the set of the-shelf digital SLR camera (Canon 60D) with image resolution

99 . ; (3456 2304). This allowed us to observe details of the skin texture,
viewing parameters and the structure that best explain the IMagey hich were leveraged by multi-view stereo estimation modules to
measurements; 3) perform global model re nement through non-

linear bundle adjustment optimization. In this work we use an SfM determine reliable dense correspondences.

framework in the spirit of [52] and achieve highly accurate local co;o {Rgﬁg:]tgfe aé??o(r)l;}igeegel—?gTbFeshIrt]gethuesg?:;vgacrgtgﬂvaﬁac?r
registrations of the cameras around the user's head. P P ’ P

) i o to hide his or her during the data capture. For precise modeling,
Dense reconstruction USIng multl'V|eW stereo assumes a knOWnthe user's head was dense|y Captured a” around Wlth samp|es at
camera registration to estimate the depth .of thg scene for every piX9|rough|y every 15 degrees (see Figure 2). The selected angular sep-
in each image of the image set. The attained image-speci ¢ depth- aration between captures gives us at least three samples within a 30
elds are integrated into a single reference coordinate system and degree range, which enables both robust feature matching and pre-
fused to generate a surface model. In our proposed method, Wegjse geometric triangulation. Moreover, this sampling provides us
use the estimated 3D mesh representation to generate personalizegith suf cient overlap between the views to enable high-accuracy
HRTFs. There are a wide variety of dense multi-view stereo meth- my|ti-view stereo estimation. Empirically, we found that sampling
ods available from real-time multi-view stereo [14, 30] that perform intervals larger than 15 degrees introduced severe aberrations into
high-accuracy of ine stereo estimation [46]. In practice, depthmaps the resulting 3D model. To increase the model resolution around
depth. In the case of our close-up additional sampling ( 10cm for each ear. Figure 3 depicts the effects of additional close-up redun-
the ear), this means our method will consistently provide estimates gant sampling to enhance the level of detail. From the captured
within 2mm of the ground truth. A detailed discussion pertaining jmages we calculated and matched SIFT features [26] for each im-
the relationship between depth error, camera baseline and imageyge with its top K appearance nearest neighbors, as measured by the
resolution for stereo can be found in the work of Gallup et al. [13]. G|ST descriptor [38]. Using these matches, we leverage a structure
To overcome the noise in any particular depth map, a range of local from motion algorithm in the spirit of VisualSEM [52] to perform
stereo fusion methods have been developed for improved model-the incremental structure from motion and bundle adjustment using
ing [31, 15]. Given that we aim for a globally optimal solution of  the cameras internal calibration as provided by the EXIF data of
the 3D mesh used to compute the user's HRTFs, we leverage thethe images. This step provides us the camera registration needed
global stereo fusion method of Jancosek and Pajdla [21] for pro- for the dense modeling of the scene.
ducing a dense 3D mesh model of the head. Next, we perform the dense modeling of the user's head to obtain
Overall, for the purposes of 3D reconstruction, our technique re- the desired mesh model required to compute personalized HRTFs.
lies on a set of camera images which capture the user's head denselyVe opt for using a two tier computation that rst estimates two-
all around. These images are utilized by SfM, followed by dense re- view depths maps [19]. Besides limited accuracy from two view
construction. Note that while in general we could use any 3D mod- depth maps, highlights on the users skin occur naturally. These are
eling technique that provides high delity 3D models with suf cient  then eliminated by the next step the depth map fusion [21], which



Figure 2: (a) Input example photos from different viewpoints and (b) their calculated relative dense depthmaps; (c) Registered camera trajectory
and sparse 3D point clouds; (d) Visualization of resulting dense head mesh; (e),(f) Close-ups of pinna part from our two tested users.

4.2 Adaptive Rectangular Decomposition (ARD)

In the next step of our pipeline, we use an ef cient numerical sound
simulation technique called ARD [43] to compute the scattering
of sound waves due to the mesh obtained at the end of the previ-
ous step. A related work describing the use of ARD for ef cient
HRTF computation for dummy heads using their scanned 3D mod-
els can be found in [32]. In the following sections we provide a
brief overview of this sound simulation pipeline.

ARD performs sound propagation simulation by solving the
acoustic wave equation. Like nite difference based methods, ARD
divides the simulation domain into grid cells and computes sound
wave pressure at each of those grid cells at each time step. However,
compared to nite difference based methods, ARD has much less
numerical dispersion error and is two orders of magnitude faster
for homogeneous media. The principle behind ARD's ef ciency
and accuracy is the use of the exact numerical solution of the wave
equation within rectangular (cuboidal) domains consisting of an
isotropic, homogeneous, dissipation-free medium. As this solution
is composed of cosines, ARD uses ef cient Fast Fourier Transform
(FFT) algorithms to compute propagation within the rectangular re-
gion. Note that for the purposes of computing HRTFs, the medium
requirement is met as HRTFs are de ned in free- eld conditions
rejects the erroneous geometry resulting from highlights. To exe- with air as the medium.
cute this two tier modeling, we leveraged the software of Jancosek  The ARD block in Figure 1 shows the different stages of the
and Pajdla [21]. The resulting mesh is then produced by applying ARD technique. In the preprocessing stage (left column in the
a 3D Delaunay triangulation of dense point clouds and the con- ARD block in gure 1), ARD simulation generates a rectangular
struction of a graph based on the tetrahedrons from the Delaunay(cuboidal in 3D) decomposition of the computation domain. This
triangulation with weights set according to camera-vertex ray visi- decomposition is generated in a series of steps. First, the domain
bility. Then it further re nes the graph's t-edge weights and obtains s voxelized to generate a grid of voxels. Next, the voxels contain-
a water-tight dense surface mesh by using a graph-cut based labeling the isotropic, homogeneous, dissipation-free medium (air) are
ing optimization to label each tetrahedron as inside or outside. grouped together to form rectangular regions called air partitions.

Finally, absorbing boundary conditions are applied by using per-

Before the generated surface mesh is used for the next step infectly matched layer (PML) partitions at the boundary to simulate
our pipeline, we perform some mesh cleanup steps. First, since thefree- eld conditions, as required by the HRTF de nition. The sim-
generated mesh may not be to scale with the subject, we collectulation stage (right column in the ARD block in gure 1) consists
the subject's head width and head depth (anthropometric measure-of two updates: interface handling and mode update. The interface
mentsx; andxz as described in [5]) and use it to scale the generated handling step is used to propagate sound across two adjacent parti-
mesh. Next, we remove stray vertices and triangles from the main tions, which can be either air-air or air-PML partitions. These in-
head mesh. Following this, we perform hole- lling using standard terface updates are based on nite difference stencils, as discussed
techniques to cover the holes in the mesh. Finally, we align and ori- in [43, 29]. The mode update step propagates sound within each air
ent the mesh to match the alignment of the head during HRTF mea- partition by updating FFT mode coef cients, using an update equa-
surements (as described in section 2.2) and place the head mesh dton derived from the acoustic wave equation. Recently, a parallel
the center of a cubical simulation domain. The cubical simulation version of ARD designed for large CPU clusters has been devel-
domain is used as input for our next step. oped [36].

Figure 3: Effect of sampling con guration on the level of det ail of the
attained 3D model. Left: Detail of ear structure using uniform sam-
pling. Right: Detail of enhanced ear structure attained with additional
convergent close-up sampling over the ear region.



While ARD simulation can be used to achieve an exact replica- of the plane-wave decomposition and the HRTF. This enables us to
tion of HRTF measurement (as described in section 2.1), this ap- generate spatial sound at interactive rates.
proach can result in large computational costs, requiring days to  We have integrated our spatial sound rendering pipeline with the
compute full HRTFs. We next describe the reasons for these costsOculus Rift HMD and the Source SDK game engine. Our system

and how we reduce them. uses the head orientation provided by the HMD to generate spatial
] ) ) sound and renders it over the headphones. The users position is
4.2.1 Acoustic Reciprocity controlled through an XBox 360 wireless controller. Figure 4 shows

HRTFs are functions of source position, requiring multiple separate @ typical use-case scenario of our system. Therefore, our system

recordings of the signal at the ears due to different sound sourcesallows a user to play the VR game with 3D spatial sound, rendered

placed around the listener. Replicating this process through sim- Using personalized HRTFs.

ulation requires multiple separate simulations, one for each source

position (usually in the hundreds). We avoid this cost by making use ® EVALUATION

of the acoustic reciprocity principle, which states that the acoustic In this section we present a preliminary qualitative evaluation of

response remains the same if we reverse the sense of source angersonalized HRTFs computed by our pipeline. We compare the

receiver [39]. We therefore plas®urcesat the receiver positions,  HRTFs computed for ve subjects with the measured HRTF of KE-

inside the ears, and placeceiversat the various source positions MAR, a dummy head whose HRTFs are commonly used in spatial

used in HRTF measurement. This reduces the required number ofsound rendering. Before we present these results, we discuss some

simulations to only two, one for each ear. pertinent parameters used to generate the HRTFs presented in this
) ) evaluation.

4.2.2 Kirchhoff Surface Integral Representation

As mentioned in section 2.2, HRTFs are measured at a distance®-1 Pipeline Parameters and Details

of around 1 m, which is much greater than the typical size of the The images used by our image-based 3D modeling technique were

head. To compute pressure values at this distance, direct simulationtaken using a Canon 60D DSLR camera with an image resolution

requires a large, mostly-empty simulation domain. As the compu- of 3456 2304. Subjects were asked to wear a swimming cap to

tational cost of ARD simulation increases cubically with simulation cover their hair. This was done to avoid problems in the 3D mesh

domain size, reducing the size of this simulation domain would re- due to hair, especially near the ears. Head width and head depth

sult in signi cantly lower costs. We do this by making use of the were measured for the subjects, and these measurements were used

Kirchoff surface integral representation (KSIR), which can be used to scale the meshes. Table 5.1 presents the head dimensions of the

to compute the pressure value at a point outside a simulation do- ve subjects, along with the number of images captured to generate

main using pressure values on a cuboidal surface closely tting the their 3D meshes and the complexity of the generated meshes (given

mesh [44]. Only pressure values at this surface need to be com-in number of triangles).

puted by ARD, thus signi cantly reducing the size of the domain Once computed, the meshes were manually processed to remove

as well as the computational cost. the torso portion below the neck. This step was performed because
) . torso data was often incomplete; the focus of our images was the
4.3 Signal Processing subject's head and ears.

Since we use Gaussian impulse sources in our ARD simulations, ARD simulations were run with a grid cell size of 2 mm, which
the output of the KSIR calculation is a set of responses that was chosen to adequately represent the curves of the pinna and the
correspond to the head mesh's scattering of Gaussian impulsehead after voxelization. The absorption coef cient of the mesh sur-
sound. In order to convert these Gaussian impulse responses tdace was set t0:02 to correspond to that of the human skin, as
HRIRs, we use a digital signal processing script that implements reported by Ackerman et al. [1]. The simulations were run to gen-
equation 1. Speci cally, the frequency response of the Gaussian erate impulse responses 0b4ns duration to match the duration of
impulse signal at the center of the head in the absence of the headhe measured KEMAR HRTFs used as part of our test [5].
(Xc(g; f;w) in equation 1) is removed from the head responses by  Timing results are as follows. Image capture of a subject's head
this script in the frequency domain, and the HRIR is obtained by requires 2 3 minutes, while camera pose estimation requires 5
performing an inverse Fourier transform. 10 minutes and dense 3-D reconstruction & mesh generation takes
about 2 hours on a single core machine.

In terms of our sound simulation pipeline, the simulation time

4.4 Spatial Sound Rendering for computing the HRTF for all subjects was about 20 minutes on a

In order to perform spatial sound rendering using HRTFs, three desktop machine with an 8 core, 3.40 GHz CPU.
steps need to be performed: (a) compute direction of incoming
sound eld at listener position; (b) model scattering of sound
around the listeners head using HRTFs; (c) incorporate listenersFigure 5 presents a qualitative comparison, within the horizontal
head orientation. To compute the direction of the incoming sound plane, between the measured left-ear HRTF of the KEMAR dummy
eld at the listener position, we use the plane wave-decomposition head and the computed left-ear HRTFs of the 5 subjects. This com-
approach proposed by Mehra et al. [28]. This approach uses high-parison is presented in the frequency range of 700 Hz - 14 kHz, as
order derivatives of the pressure eld at the listener position to com- outside this range the measured data is considered unreliable [17].
pute the plane wave-decomposition of the sound eld at interactive At low frequencies, the wavelength of sound waves is compara-
rates. This plane wave-decomposition is further represented in theble to the overall size of the head, and only the broad spheroidal
spherical harmonic basis as discussed in their work. Scattering ofshape of the head is responsible for the acoustic scattering char-
sound around the head is modeled using the personalized HRTFsacterized by the HRTF; the effects of the pinnae start occurring at
computed by our technique. Similar to Rafaely et al. [41], we also around 3 kHz [3]. This results in similar features in HRTFs at low
convert our HRTFs into spherical harmonic basis. By doing this, frequencies, as individual differences in head geometry, which are
the listeners head rotation can be easily modeled using standardat a smaller scale, don't contribute. This effect can be observed in
spherical harmonic rotation techniques [16]. Finally, as described the HRTFs computed by our pipeline in the approximate frequency
in Rafaely et al. [41], the spatial sound for each ear can be com- range of 700 Hz - 3 kHz in gure 5. Note that the nger-like pro-
puted as a simple dot product of the spherical harmonic coef cients jections between the azimuth range of 40 to 145 degrees are found

5.2 Qualitative Comparison



Figure 4: Typical use-case scenario for the personalized HRTFs computed by our pipeline. The user is being delivered a virtual experience
through the HMD and through spatial sound, rendered using the personalized HRTF computed for them by our technique.

in the measured HRTF of KEMAR and in the HRTFs computed by quantitative responses of subjects to spatial sound rendered through
our technique. the personalized HRTFs generated for them by our pipeline.
At high frequencies, individual differences in pinna geometry
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