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ABSTRACT

Accurate rendering of 3D spatial audio for interactive virtual audi-
tory displays requires the use of personalized head-related transfer
functions (HRTFs). We present a new approach to compute per-
sonalized HRTFs for any individual using a method that combines
state-of-the-art image-based 3D modeling with an efficient numer-
ical simulation pipeline. Our 3D modeling framework enables cap-
ture of the listener’s head and torso using consumer-grade digital
cameras to estimate a high-resolution non-parametric surface rep-
resentation of the head, including the extended vicinity of the lis-
tener’s ear. We leverage sparse structure from motion and dense
surface reconstruction techniques to generate a 3D mesh. This mesh
is used as input to a numeric sound propagation solver, which uses
acoustic reciprocity and Kirchhoff surface integral representation to
efficiently compute an individual’s personalized HRTF. The overall
computation takes tens of minutes on multi-core desktop machine.
‘We have used our approach to compute the personalized HRTFs of
few individuals, and we present our preliminary evaluation here.
To the best of our knowledge, this is the first commodity technique
that can be used to compute personalized HRTFs in a lab or home
setting.

1 INTRODUCTION

The recent interest in the development of low-cost head-mounted
displays (HMDs) has sparked consumer and commercial interest in
production of immersive virtual reality (VR) experiences. While
most of the developments in virtual and augmented reality have fo-
cused on the visual modality, the developers of these HMDs and
content developers have also been emphasizing the importance of
spatial sound and high-quality acoustic effects to increase the user’s
sense of presence in virtual environments. This is backed by studies
that have demonstrated that sound is important in the formation of
presence percepts [25], and that rendering of spatial sound through
headphones increases presence in virtual environments [6, 47].
Head-related transfer functions (HRTFs) are commonly used in
spatial sound rendering to model the acoustic filtering of sound by
the human head and body. These functions are known to provide
important spatial cues to the human auditory system [6, 53]. Sound
filtered through HRTFs, when presented over headphones, can be
used to simulate free-field (anechoic) listening for users, enabling
perception of sound source location [50]. However, HRTFs depend
on the geometry of the outer ears (pinnae), head, and torso, mean-
ing that HRTFs vary between individuals. This variation is sig-
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nificant; use of generic or non-personalized HRTFs in spatial sound
rendering can lead to localization errors, lateralization artifacts, and
unconvincing spatial impressions [25, 49]. However, most VR sys-
tems or game engines use a generic HRTF for all users. This is
because traditional measurement-based techniques to obtain indi-
vidual HRTFs involve specialized, expensive equipment and set-
tings [5, 54], and it is both difficult and expensive to compute per-
sonalized HRTFs for each user.

This has motivated the development of alternative approaches to
obtaining personalized HRTFs. One approach is to compute per-
sonalized HRTFs by using the 3-D mesh of the head and torso
as input to a numerical sound simulation technique to reproduce
the HRTF measurement process. These numerical techniques are
known to generate HRTFs that match well with measurements.
However, they take tens of hours or days to compute an individ-
ual’s HRTF using a desktop machine.

Generating personalized HRTFs using numerical sound simula-
tion techniques has a key problem: the need for accurate 3D meshes
of users or subjects. Traditionally, such meshes are obtained using
laser scanners or MRIs, which can be expensive or time-consuming.
Image-based 3D modeling, the reconstruction of dense 3D geom-
etry from a set of photographs, offers a passive and cost-effective
mechanism for obtaining object mesh models. Given the rapid de-
velopment of image-based dense modeling techniques in computer
vision [46, 21], one can robustly reconstruct a dense 3D object mesh
for input images using automated techniques. In particular, it is not
uncommon to have commodity cameras (e.g. in smartphones) with
10-20 megapixel resolution, which can be used to generate the in-
put images for our technique. Moreover, the cameras can be easily
moved around the object of interest and significantly reduce the
intricacies of input capture setup. Accordingly, image-based mod-
eling offers a favorable trade-off between ease of use and modeling
accuracy. Many state-of-the-art methods attain very high recon-
struction accuracy that are comparable to laser range sensors [46].
In this paper, we explore the use of image-based 3D modeling as a
means to streamline the customization of HRTF’s for specific sub-
jects.

Main results We present an efficient personalized HRTF com-
putation pipeline that combines a state-of-the-art image-based 3D
modeling technique with an efficient numerical simulation pipeline
based on the adaptive rectangular decomposition technique [42,
29]. The underlying image-based 3D modeling technique reduces
the cost of acquiring 3-D meshes of individuals while generating
meshes with good accuracy. These meshes are used by our nu-
merical simulation pipeline which combines the principle of acous-
tic reciprocity with the adaptive rectangular decomposition-based
numerical solver; it efficiently computes the full HRTF in tens
of minutes on a multi-core desktop PC. In order to evaluate our
pipeline, we use it to generate personalized HRTFs of five subjects
and use them for spatial sound rendering in a virtual experience de-
livered through the Oculus Rift HMD and headphones. We present
a preliminary evaluation of these personalized HRTFs by compar-
ing them with the commonly used measured HRTF of the KEMAR
dummy head. Overall, our HRTF computation pipeline can gener-
ate personalized HRTFs in a relatively small amount of time with-



out using expensive or specialized equipment. To the best of our
knowledge, this is the first commodity solution to compute person-
alized HRTFs for spatial sound rendering.

2 BACKGROUND

In this section, we provide some background on spatial hearing,
sound localization, HRTFs, and their role in rendering spatial
sound.

2.1 Spatial Hearing and Sound Localization

Spatial hearing refers to the ability of the human hearing system to
perceive spatial aspects of our acoustic environment. This includes
sound localization, our ability to associate a spatial position to a
sound event or a sound source [6]. Multiple experiments performed
to understand the nature of sound localization have related this
ability to the presence of spatial cues present in sound signals
reaching the ears [8]. We discuss some of these cues.

Interaural Differences

Lord Rayleigh’s early work associated sound localization with
interaural differences present between the signals received by the
two ears [45]. Broadly, interaural time difference (ITD) is defined
as the time delay between the arrival of a signal at each of the two
eardrums, while interaural intensity difference (IID) is defined as
the difference in total signal intensity at the two eardrums within a
specific time period or within a particular frequency band. While
ITD and IID values vary with source direction relative to the head,
multiple source directions can correspond to the same ITD or
IID value. As a result, depending solely on ITD and IID values
for sound localization can lead to ambiguities such as front-back
confusions [51]. Furthermore, the use of ITD and IID alone for
spatial sound rendering does not provide the spectral cues that
the pinnae produce; these cues are known to play a major role in
elevation perception [4].

Spectral Filtering Due to the Pinnae

The pinnae (outer ears) are known to cause direction-dependent
modification of the frequency spectrum of the sound signal received
at the eardrum. This leads to spectral changes that depend on the
relative direction of the source with respect to the head. These
changes are known to play a role in sound localization [24]. Note
that while ITD and IID are binaural cues that rely on difference be-
tween the signals received at the two ears, pinna modification of
sound is a monaural cue that depends on the sound received at a
single ear. There is evidence that monaural spectral cues are the
major cues for determining vertical location of sound sources [33].

2.2 Head-Related Transfer Functions

The aforementioned cues can be thought of as consequences of the
sound source’s position relative to the listener as well as modifica-
tion of the sound signal due to the human body before it reaches the
ear drum. The head related transfer function (HRTF) represents the
acoustic filtering, in free-field (anechoic) conditions, of the sound
signal from a single source due to the human body (particularly the
pinnae, head and torso) as measured at the entrance of the listener’s
ear canals. Since this acoustic filtering varies with source position
and with the geometry of the listener’s body, HRTFs are functions
of source position and listener’s geometry, along with frequency.
Usually the dependence on listener geometry is left implicit, and
HRTFs are represented only as functions of source positions and
frequency. Furthermore, the dependence on source distance from
the listener’s head is also ignored as for relatively distant sources
(1 m or greater), HRTFs are virtually independent of distance com-
pared to direction [9]. For this reason, most HRTF measurements
are reported for specific source distance from the head, usually 1 m.

Mathematically, assume that the listener’s head is centered at
the origin oriented along the positive X-axis, with the interaural
axis (the line joining the two ear canals entrances) aligned with the
Y-axis and the top of the head pointing along the positive Z-axis.
Assuming free-field conditions, let X, (0,¢,®) and Xg(6, ¢, ®) be
the Fourier transforms of the signals received at the entrance of the
listener’s left and right blocked ear canals, respectively, due to a
source 1 m away at at azimuth 6 and elevation ¢. Let X-(6, ¢, ®)
be the Fourier transform of the signal received at the origin due
to the same source in the absence of the listener, also in free-field
conditions. Then the left-ear and right-ear HRTFs can be defined
as:
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respectively [56]. The time-domain analogue of the HRTF is called
the Head-Related Impulse Response (HRIR), and is the inverse
Fourier Transform of the corresponding HRTF.

HRTFs and 3-D Audio Systems
Presentation of sound filtered through HRTFs preserves spatial
hearing cues, allowing the auditory system to attach spatial at-
tributes to auditory events, just like in natural free-field listen-
ing [50]. This is based on the idea that a sound signal filtered with
HRTFs, presented through headphones, mimics the free-field trans-
mission of a sound signal from a source to the ears.
Mathematically, let x(r) be the signal played by a sound source
at azimuth 0 and elevation ¢. The left- and right-ear headphone
signals, y;(¢) and y,.(¢), respectively, after HRTF filtering can be
expressed as:

YI(I) :hl(ev(])ft)*x(t)a yr(t) = hr(ev(l)vt) *x(l)v 2)

respectively, where * represents the convolution operation, and
hi(0,¢,t) and h,(6,¢,) are the left- and right- ear HRIRs corre-
sponding to the source direction (6, ¢).

Because they are so useful in rendering sound with spatial
hearing cues, HRTFs are often used as central components in 3-D
audio systems [6].

HRTF Variation and Personalized 3-D Audio

As mentioned above, HRTFs vary from person to person, as the fea-
tures of the head and the pinnae vary across people. This variation
is significant; psychoacoustical experiments have demonstrated that
using HRTFs other than a person’s own leads to incorrect percep-
tion and to localization errors [49]. In other words, it is important to
use the personalized HRTFs for a listener to generate high quality
spatial sound.

3 PRIOR WORK

In this section, we give a brief overview of prior work in HRTF
personalization and in 3D mesh acquisition using image-based 3D
modeling.

HRTF Measurements

Physical measurement is commonly used to obtain individual
HRTFs in psychoacoustic research [50, 5, 54]. Typically, HRTF
measurements are conducted in a large anechoic chamber. A set of
high-quality speakers is arranged in a spherical pattern at a fixed
distance from a point near the center of the room, with the speakers
pointing towards the center. The user is seated so that the center of
the line joining his/her ear canals (the inter-aural axis) coincides
with the center of the sphere of speakers, and the inter-aural axis
is horizontal with the user facing a specific forward direction. A
high-quality probe microphone is inserted into each of the user’s
ears, either inside the ear canal or at the entrance of blocked ear
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Figure 1: Block diagram showing an overview of our pipeline, with details of our mesh-acquisition technique and our numerical sound simulation

technique.

canals. The user must sit still for the duration of the measurements
(usually 30 minutes to an hour) during which a specific signal
(such as Golay-coded signals) is played one by one from speakers
at different directions around the head. The signals arriving at
the microphone are recorded and stored. Next, these signals are
post-processed to remove the effects of the room, speaker and
microphone responses, leaving only the head-related impulse
responses, which are then converted into head-related frequency
responses by using a Fourier transform. Overall, the focus of most
HRTF measurement methods is accuracy. They involve expensive
and specialized equipment along with tedious procedures during
which user must sit still. As a result, such measurements are
conducted mainly for research purposes, and their widespread use
is limited.

HRTF Computation Using Analytical Solutions

Over the last century, many researchers have derived exact math-
ematical solutions of the wave equation for acoustic scattering for
shapes that approximate the head and torso. Lord Rayleigh derived
the exact solution for the acoustic scattering of a plane wave by
a completely rigid sphere [45]. Duda and Martens extended this
solution to allow the source to be at variable distance from the
sphere [10]. Jo et al. used the solution of acoustic scattering for
spheroids, allowing variation of height and radius of the head [22].
Algazi et al. provided solutions for a “snowman” model where
both the head and torso were represented by spheres [4]. Given
measurements of head radius, head height and torso radius, these
models can compute personalized HRTFs very quickly. However,
because they approximate the complex geometries of the human
body, these techniques generate HRTFs that only match measured

HRTFs at low frequencies, missing detailed spectral features at
high frequencies, especially due to the pinnae.

HRTF Computation Using Anthropometric Measurements

An alternate approach to generating personalized HRTFs is
based on the idea that an individual’s HRTF can be correlated
to anthropometric measurements, such as head width, pinna
height, pinna angles, torso width, etc. These techniques rely on a
database of measured HRTFs that also provides anthropometric
measurements of subjects. Zotkin et al.’s method uses anthro-
pometric measurements to match a user to a subject in a HRTF
database whose measurements are closest to the user’s based on a
distance metric. The subject’s measured HRTF is then used for the
user [55]. Another set of techniques computes new HRTFs for each
user based on the correlation established between anthropometric
measurements and HRTFs. Hu et al. use a back-propagation
artificial neural network, trained using an HRTF database, to
generate an individual’s HRTF [20]. A very recent approach due
to Bilinski et al. treats HRTF computation as a problem of finding
a sparse representation of a subject’s anthropometric features,
based on a database containing anthropometric measurements and
HRTF measurements. The database was newly generated by the
authors, and for the purposes of anthropometric measurements
they relied mostly on automatic computation from 3D models of
the subjects. A new subject’s measurements are used to generate a
sparse representation which in turn is used to compute the HRTF
for that subject [7].

HRTF Computation Using Numerical Simulation
Numerical sound simulation techniques have been used as an



approach for computing individual HRTFs. This approach re-
quires as input the accurate 3-D mesh of an individual’s body, in
particular the head and torso. The simulation mimics the HRTF
measurement process described above; the resultant pressure
signals are then processed to compute the HRTFs. Kahana et al.
used the boundary element method (BEM) to compute HRTFs of
the KEMAR dummy head with six different pinna models as well
as for an individual [23]. Gumerov et al. described a parallel fast
multipole accelerated boundary element method (FMM-BEM)
based technique to compute HRTFs [17]. They used the technique
to compute HRTFs for the Fritz and KEMAR dummy heads
and presented qualitative comparisons between the measured
HRTFs and the computed HRTFs. This technique required tens of
hours on a desktop machine. Mokhtari et al. presented an HRTF
computation technique that combined the finite difference time
domain (FDTD) method with the Kirchhoff-Helmholtz integral
equation (KHIE); they used this technique to compute HRTFs for
the KEMAR dummy head [35] as well as human subjects [34].
They presented qualitative as well as quantitative comparisons of
the computed and measured HRTFs.

Mesh Acquisition

Computer vision 3D reconstruction is the process of mapping a set
of input images to a 3D representation (e.g a 3D mesh) of their
contents. The process by which this mapping is achieved is gener-
ally divided into two stages: structure from motion and dense shape
estimation. Structure from motion (SfM) takes a set of images as
input in order to estimate a scene 3D reference system, the view-
ing parameters of the cameras capturing the images (i.e. relative
poses, individual focal length, etc.) as well as a sparse (feature-
based) representation of the scene. Detailed reviews of the under-
lying mechanisms in SfM techniques can be found in [18, 27, 11].
Most state-of-the-art SM systems [48, 52, 2, 12] share a common
processing pipeline: 1) detect and match features between input
images to construct 2D tracks; 2) incrementally estimate the set of
viewing parameters and the structure that best explain the image
measurements; 3) perform global model refinement through non-
linear bundle adjustment optimization. In this work we use an SftM
framework in the spirit of [52] and achieve highly accurate local
registrations of the cameras around the user’s head.

Dense reconstruction using multi-view stereo assumes a known
camera registration to estimate the depth of the scene for every pixel
in each image of the image set. The attained image-specific depth-
fields are integrated into a single reference coordinate system and
fused to generate a surface model. In our proposed method, we
use the estimated 3D mesh representation to generate personalized
HRTFs. There are a wide variety of dense multi-view stereo meth-
ods available from real-time multi-view stereo [14, 30] that perform
high-accuracy offline stereo estimation [46]. In practice, depthmaps
estimation commonly achieves accuracies within 2% of the scene’s
depth. In the case of our close-up additional sampling ( 10cm for
the ear), this means our method will consistently provide estimates
within 2mm of the ground truth. A detailed discussion pertaining
the relationship between depth error, camera baseline and image
resolution for stereo can be found in the work of Gallup et al. [13].
To overcome the noise in any particular depth map, a range of local
stereo fusion methods have been developed for improved model-
ing [31, 15]. Given that we aim for a globally optimal solution of
the 3D mesh used to compute the user’s HRTFs, we leverage the
global stereo fusion method of Jancosek and Pajdla [21] for pro-
ducing a dense 3D mesh model of the head.

Overall, for the purposes of 3D reconstruction, our technique re-
lies on a set of camera images which capture the user’s head densely
all around. These images are utilized by SfM, followed by dense re-
construction. Note that while in general we could use any 3D mod-
eling technique that provides high fidelity 3D models with sufficient

accuracy, there were some considerations that guided our choices.
We highlight these considerations by discussing some recent ap-
proaches. The Dense Tracking and Mapping in real time (DTAM)
technique by Newcombe et al. [37] is one such approach. DTAM
inherently uses the redundancy of video data, which would require
a significantly higher spatial sampling of the user’s head resulting
in at least an order of magnitude higher number of frames. As we
demonstrated in our experiments, to achieve high quality meshes a
much higher resolution (> 6 MB) than HD video resolution (2MB)
is required to obtain accurate meshes. While the DTAM paper did
not evaluate the quality of the estimated 3D model, the resolution
and accuracy relation will be similar. Another recent approach is
Monofusion, by Pradeep et al. [40]. Monofusion is similar to our
method (in terms of leveraging depth fusion) but it also leverages
video data, requiring an order of magnitude more frames. As the
authors point out, their method is optimized for speed rather than
robustness. We opted for a robust global approach as the achieved
model quality is critical and there is no real-time requirement for
our approach.

4 EFFICIENT HRTF COMPUTATION

Figure 1 provides a broad overview of our HRTF computation
pipeline, showing its various components along with details of our
mesh acquisition and numerical sound simulation techniques. In
this section we provide descriptions of these components and their
roles in the pipeline.

4.1 Mesh Acquisition Technique

To generate personalized HRTFs, it is critical to obtain accurate
head and ear geometry of the user. To allow easy acquisition and
a highly accurate model, we propose the use of commodity digital
cameras for the acquisition of the head and ear geometry of the
user. In all our experiments, we used images captured by an off-
the-shelf digital SLR camera (Canon 60D) with image resolution
(3456 x2304). This allowed us to observe details of the skin texture,
which were leveraged by multi-view stereo estimation modules to
determine reliable dense correspondences.

To model the area of the head behind the ear, a critical area for
computation of personalized HRTFs, the user wears a swim cap
to hide his or her during the data capture. For precise modeling,
the user’s head was densely captured all around with samples at
roughly every 15 degrees (see Figure 2). The selected angular sep-
aration between captures gives us at least three samples within a 30
degree range, which enables both robust feature matching and pre-
cise geometric triangulation. Moreover, this sampling provides us
with sufficient overlap between the views to enable high-accuracy
multi-view stereo estimation. Empirically, we found that sampling
intervals larger than 15 degrees introduced severe aberrations into
the resulting 3D model. To increase the model resolution around
the ear, we specifically captured 20+ convergent close-up shots for
each ear. Figure 3 depicts the effects of additional close-up redun-
dant sampling to enhance the level of detail. From the captured
images we calculated and matched SIFT features [26] for each im-
age with its top K appearance nearest neighbors, as measured by the
GIST descriptor [38]. Using these matches, we leverage a structure
from motion algorithm in the spirit of VisualSFM [52] to perform
the incremental structure from motion and bundle adjustment using
the cameras internal calibration as provided by the EXIF data of
the images. This step provides us the camera registration needed
for the dense modeling of the scene.

Next, we perform the dense modeling of the user’s head to obtain
the desired mesh model required to compute personalized HRTFs.
We opt for using a two tier computation that first estimates two-
view depths maps [19]. Besides limited accuracy from two view
depth maps, highlights on the users skin occur naturally. These are
then eliminated by the next step the depth map fusion [21], which



Figure 2: (a) Input example photos from different viewpoints and (b) their calculated relative dense depthmaps; (c) Registered camera trajectory
and sparse 3D point clouds; (d) Visualization of resulting dense head mesh; (e),(f) Close-ups of pinna part from our two tested users.

Figure 3: Effect of sampling configuration on the level of detail of the
attained 3D model. Left: Detail of ear structure using uniform sam-
pling. Right: Detail of enhanced ear structure attained with additional
convergent close-up sampling over the ear region.

rejects the erroneous geometry resulting from highlights. To exe-
cute this two tier modeling, we leveraged the software of Jancosek
and Pajdla [21]. The resulting mesh is then produced by applying
a 3D Delaunay triangulation of dense point clouds and the con-
struction of a graph based on the tetrahedrons from the Delaunay
triangulation with weights set according to camera-vertex ray visi-
bility. Then it further refines the graph’s t-edge weights and obtains
a water-tight dense surface mesh by using a graph-cut based label-
ing optimization to label each tetrahedron as inside or outside.

Before the generated surface mesh is used for the next step in
our pipeline, we perform some mesh cleanup steps. First, since the
generated mesh may not be to scale with the subject, we collect
the subject’s head width and head depth (anthropometric measure-
ments x; and x3 as described in [S]) and use it to scale the generated
mesh. Next, we remove stray vertices and triangles from the main
head mesh. Following this, we perform hole-filling using standard
techniques to cover the holes in the mesh. Finally, we align and ori-
ent the mesh to match the alignment of the head during HRTF mea-
surements (as described in section 2.2) and place the head mesh at
the center of a cubical simulation domain. The cubical simulation
domain is used as input for our next step.

4.2 Adaptive Rectangular Decomposition (ARD)

In the next step of our pipeline, we use an efficient numerical sound
simulation technique called ARD [43] to compute the scattering
of sound waves due to the mesh obtained at the end of the previ-
ous step. A related work describing the use of ARD for efficient
HRTF computation for dummy heads using their scanned 3D mod-
els can be found in [32]. In the following sections we provide a
brief overview of this sound simulation pipeline.

ARD performs sound propagation simulation by solving the
acoustic wave equation. Like finite difference based methods, ARD
divides the simulation domain into grid cells and computes sound
wave pressure at each of those grid cells at each time step. However,
compared to finite difference based methods, ARD has much less
numerical dispersion error and is two orders of magnitude faster
for homogeneous media. The principle behind ARD’s efficiency
and accuracy is the use of the exact numerical solution of the wave
equation within rectangular (cuboidal) domains consisting of an
isotropic, homogeneous, dissipation-free medium. As this solution
is composed of cosines, ARD uses efficient Fast Fourier Transform
(FFT) algorithms to compute propagation within the rectangular re-
gion. Note that for the purposes of computing HRTFs, the medium
requirement is met as HRTFs are defined in free-field conditions
with air as the medium.

The ARD block in Figure 1 shows the different stages of the
ARD technique. In the preprocessing stage (left column in the
ARD block in figure 1), ARD simulation generates a rectangular
(cuboidal in 3D) decomposition of the computation domain. This
decomposition is generated in a series of steps. First, the domain
is voxelized to generate a grid of voxels. Next, the voxels contain-
ing the isotropic, homogeneous, dissipation-free medium (air) are
grouped together to form rectangular regions called air partitions.
Finally, absorbing boundary conditions are applied by using per-
fectly matched layer (PML) partitions at the boundary to simulate
free-field conditions, as required by the HRTF definition. The sim-
ulation stage (right column in the ARD block in figure 1) consists
of two updates: interface handling and mode update. The interface
handling step is used to propagate sound across two adjacent parti-
tions, which can be either air-air or air-PML partitions. These in-
terface updates are based on finite difference stencils, as discussed
in [43, 29]. The mode update step propagates sound within each air
partition by updating FFT mode coefficients, using an update equa-
tion derived from the acoustic wave equation. Recently, a parallel
version of ARD designed for large CPU clusters has been devel-
oped [36].



While ARD simulation can be used to achieve an exact replica-
tion of HRTF measurement (as described in section 2.1), this ap-
proach can result in large computational costs, requiring days to
compute full HRTFs. We next describe the reasons for these costs
and how we reduce them.

4.2.1 Acoustic Reciprocity

HRTFs are functions of source position, requiring multiple separate
recordings of the signal at the ears due to different sound sources
placed around the listener. Replicating this process through sim-
ulation requires multiple separate simulations, one for each source
position (usually in the hundreds). We avoid this cost by making use
of the acoustic reciprocity principle, which states that the acoustic
response remains the same if we reverse the sense of source and
receiver [39]. We therefore place sources at the receiver positions,
inside the ears, and place receivers at the various source positions
used in HRTF measurement. This reduces the required number of
simulations to only two, one for each ear.

4.2.2 Kirchhoff Surface Integral Representation

As mentioned in section 2.2, HRTFs are measured at a distance
of around 1 m, which is much greater than the typical size of the
head. To compute pressure values at this distance, direct simulation
requires a large, mostly-empty simulation domain. As the compu-
tational cost of ARD simulation increases cubically with simulation
domain size, reducing the size of this simulation domain would re-
sult in significantly lower costs. We do this by making use of the
Kirchoff surface integral representation (KSIR), which can be used
to compute the pressure value at a point outside a simulation do-
main using pressure values on a cuboidal surface closely fitting the
mesh [44]. Only pressure values at this surface need to be com-
puted by ARD, thus significantly reducing the size of the domain
as well as the computational cost.

4.3 Signal Processing

Since we use Gaussian impulse sources in our ARD simulations,
the output of the KSIR calculation is a set of responses that
correspond to the head mesh’s scattering of Gaussian impulse
sound. In order to convert these Gaussian impulse responses to
HRIRs, we use a digital signal processing script that implements
equation 1. Specifically, the frequency response of the Gaussian
impulse signal at the center of the head in the absence of the head
(Xc (0,9, ) in equation 1) is removed from the head responses by
this script in the frequency domain, and the HRIR is obtained by
performing an inverse Fourier transform.

4.4 Spatial Sound Rendering

In order to perform spatial sound rendering using HRTFs, three
steps need to be performed: (a) compute direction of incoming
sound field at listener position; (b) model scattering of sound
around the listeners head using HRTFs; (c) incorporate listeners
head orientation. To compute the direction of the incoming sound
field at the listener position, we use the plane wave-decomposition
approach proposed by Mehra et al. [28]. This approach uses high-
order derivatives of the pressure field at the listener position to com-
pute the plane wave-decomposition of the sound field at interactive
rates. This plane wave-decomposition is further represented in the
spherical harmonic basis as discussed in their work. Scattering of
sound around the head is modeled using the personalized HRTFs
computed by our technique. Similar to Rafaely et al. [41], we also
convert our HRTFs into spherical harmonic basis. By doing this,
the listeners head rotation can be easily modeled using standard
spherical harmonic rotation techniques [16]. Finally, as described
in Rafaely et al. [41], the spatial sound for each ear can be com-
puted as a simple dot product of the spherical harmonic coefficients

of the plane-wave decomposition and the HRTF. This enables us to
generate spatial sound at interactive rates.

We have integrated our spatial sound rendering pipeline with the
Oculus Rift HMD and the Source SDK game engine. Our system
uses the head orientation provided by the HMD to generate spatial
sound and renders it over the headphones. The users position is
controlled through an XBox 360 wireless controller. Figure 4 shows
a typical use-case scenario of our system. Therefore, our system
allows a user to play the VR game with 3D spatial sound, rendered
using personalized HRTFs.

5 [EVALUATION

In this section we present a preliminary qualitative evaluation of
personalized HRTFs computed by our pipeline. We compare the
HRTFs computed for five subjects with the measured HRTF of KE-
MAR, a dummy head whose HRTFs are commonly used in spatial
sound rendering. Before we present these results, we discuss some
pertinent parameters used to generate the HRTFs presented in this
evaluation.

5.1 Pipeline Parameters and Details

The images used by our image-based 3D modeling technique were
taken using a Canon 60D DSLR camera with an image resolution
of 3456 x 2304. Subjects were asked to wear a swimming cap to
cover their hair. This was done to avoid problems in the 3D mesh
due to hair, especially near the ears. Head width and head depth
were measured for the subjects, and these measurements were used
to scale the meshes. Table 5.1 presents the head dimensions of the
five subjects, along with the number of images captured to generate
their 3D meshes and the complexity of the generated meshes (given
in number of triangles).

Once computed, the meshes were manually processed to remove
the torso portion below the neck. This step was performed because
torso data was often incomplete; the focus of our images was the
subject’s head and ears.

ARD simulations were run with a grid cell size of 2 mm, which
was chosen to adequately represent the curves of the pinna and the
head after voxelization. The absorption coefficient of the mesh sur-
face was set to 0.02 to correspond to that of the human skin, as
reported by Ackerman et al. [1]. The simulations were run to gen-
erate impulse responses of 4.5 ms duration to match the duration of
the measured KEMAR HRTFs used as part of our test [5].

Timing results are as follows. Image capture of a subject’s head
requires 2 — 3 minutes, while camera pose estimation requires 5 —
10 minutes and dense 3-D reconstruction & mesh generation takes
about 2 hours on a single core machine.

In terms of our sound simulation pipeline, the simulation time
for computing the HRTF for all subjects was about 20 minutes on a
desktop machine with an 8 core, 3.40 GHz CPU.

5.2 Qualitative Comparison

Figure 5 presents a qualitative comparison, within the horizontal
plane, between the measured left-ear HRTF of the KEMAR dummy
head and the computed left-ear HRTFs of the 5 subjects. This com-
parison is presented in the frequency range of 700 Hz - 14 kHz, as
outside this range the measured data is considered unreliable [17].
At low frequencies, the wavelength of sound waves is compara-
ble to the overall size of the head, and only the broad spheroidal
shape of the head is responsible for the acoustic scattering char-
acterized by the HRTF; the effects of the pinnae start occurring at
around 3 kHz [3]. This results in similar features in HRTFs at low
frequencies, as individual differences in head geometry, which are
at a smaller scale, don’t contribute. This effect can be observed in
the HRTFs computed by our pipeline in the approximate frequency
range of 700 Hz - 3 kHz in figure 5. Note that the finger-like pro-
jections between the azimuth range of 40 to 145 degrees are found



Figure 4: Typical use-case scenario for the personalized HRTFs computed by our pipeline. The user is being delivered a virtual experience
through the HMD and through spatial sound, rendered using the personalized HRTF computed for them by our technique.

in the measured HRTF of KEMAR and in the HRTFs computed by
our technique.

At high frequencies, individual differences in pinna geometry
and in head geometry start contributing to acoustic scattering, re-
sulting in wider variation of HRTF features. This is also reflected
in our computed HRTFs. Especially above 8 — 9 kHz, significant
variation between individual HRTFs can be observed.

Overall, the qualitative comparison in figure 5 shows that the
HRTFs computed by our pipeline fall into ranges similar to those
of a commonly used measured HRTF, showing expected matches at
low frequencies and expected variation at high frequency.

6 CONCLUSION AND FUTURE WORK

We presented a pipeline that efficiently computes personalized
HRTFs. Our pipeline uses a set of images captured using a com-
modity camera to generate high-quality meshes to be used for per-
sonalized HRTF computation. Furthermore, our approach takes
tens of minutes of simulation, on contrast to the tens of hours or
days required by previous simulation-based techniques.

We also presented a preliminary evaluation of personalized
HRTFs computed using our method for five subjects. At low fre-
quencies, we observed expected feature matches with a commonly
used measured HRTF. However, this comparison does not present
an evaluation of the high-frequency components of the computed
HRTFs. Evaluation of high-frequency components of the com-
puted HRTFs would require measured HRTFs of the same subjects.
Therefore, our first goal for future work is to use our pipeline to
compute HRTFs for subjects whose measurements are available,
thereby enabling a more thorough evaluation of our approach.

Furthermore, as one of the primary goals of personalized HRTFs
is to render spatial sound, another future direction for our pipeline
involves conducting a user study to surveys qualitative as well as

quantitative responses of subjects to spatial sound rendered through
the personalized HRTFs generated for them by our pipeline.

ACKNOWLEDGEMENTS

This research was supported by Link Foundation Fellowship in Ad-
vanced Simulation and Training, ARO Contracts W911NF-10-1-
0506, WO11NF-12-1-0430, W911NF-13-C-0037, and the National
Science Foundation grants 0917040, 1320644, and 1349074.

REFERENCES

[1] E. Ackerman and F. Oda. Acoustic absorption coefficients of human
body surfaces. Technical report, DTIC Document, 1962.

[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. Seitz,
and R. Szeliski. Building Rome in a Day. Comm. ACM, 2011.

[3] V.R. Algazi, C. Avendano, and R. O. Duda. Elevation localization and
head-related transfer function analysis at low frequencies. The Journal
of the Acoustical Society of America, 109(3):1110-1122, 2001.

[4] V. R. Algazi, R. O. Duda, R. Duraiswami, N. A. Gumerov, and
Z. Tang. Approximating the head-related transfer function using sim-
ple geometric models of the head and torso. The Journal of the Acous-
tical Society of America, 112:2053, 2002.

[5] V.R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano. The
CIPIC HRTF database. In Applications of Signal Processing to Au-
dio and Acoustics, 2001 IEEE Workshop on the, pages 99—102. IEEE,
2001.

[6] D.R. Begault. 3-D Sound for Virtual Reality and Multimedia. Aca-
demic Press, 2000.

[7] P. Bilinski, J. Ahrens, M. R. Thomas, I. J. Tashev, and J. C. Platt.
HRTF magnitude synthesis via sparse representation of anthropomet-
ric features. ICASSP, 2014.

[8] J. Blauert. Spatial hearing: the psychophysics of human sound local-
ization. MIT press, 1997.



KEMAR (Measured)

Subject 1 (Computed)

9.7 12.

| | |
SR 2w o
o 0 o u o

i
S
o

Azimuth (degrees)
=

~ [ee)

o o

-165

-140
-100

7 0.

| | |
SR 2w o
o 0 o u o

i
S
o

Azimuth (degrees)
=

~ [ee]

o o

-165

-140
-100

Subject 2 (computed)

3.7 6.7 9.7
Frequency (kHz)
Subject 5 (Computed)

9.7

12.

-80
-35
~-10
o
¢ 15
5
o 40
el
~ 80
3
5 145
£
o 170
S
-165
-140
-100
0.7 3.7 6.7 9.7 12.7 0.7 3.7 6.7
Frequency (kHz) Frequency (kHz)
Subject 3 (Computed) Subject 4 (Computed)
-80 -80
-35 -35
~-10 | —~-10
o o
3 15 8 15
g 40 § 40
~ 80 80
g 5
5 145 5 145
5170 ‘5 170
-165 -165
-140 -140
-100 -100
0.7 3.7 6.7 9.7 12.7 0.7 3.7 6.7
Frequency (kHz) Frequency (kHz)

7 0.7 3.7

6.7

Frequency

9.7
(kHz)

12.

12.

7

7

dB

-60

=70

-80

-90

Figure 5: Plots showing the measured left-ear HRTF of KEMAR as well as the computed left-ear HRTFs of five subjects at 50 azimuths in the
horizontal plane. 0 degree azimuth is in front of the listener, with positive azimuth to the right, and negative azimuth to the left of the listener.
At low frequencies, HRTFs generally have similar features as individual differences in head and pinna geometry are at a smaller scale, which
primarily affect high frequencies. This is observed in the HRTFs generated by our technique where features at low frequencies (below 3 kHz),
such as the finger-like projections around 80 degree azimuth, can be observed in all computed HRTFs as well as the measured HRTF of KEMAR.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

D. S. Brungart and W. M. Rabinowitz. Auditory localization of nearby
sources. head-related transfer functions. The Journal of the Acoustical
Society of America, 106:1465, 1999.

R. O. Duda and W. L. Martens. Range dependence of the response
of a spherical head model. The Journal of the Acoustical Society of
America, 104:3048, 1998.

D. A. Forsyth and J. Ponce. Computer vision: a modern approach.
Prentice Hall Professional Technical Reference, 2002.

J. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu,
Y. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys. Building
rome on a cloudless day. ECCV, 2010.

D. Gallup, J.-M. Frahm, P. Mordohai, and M. Pollefeys. Variable
baseline/resolution stereo. In Computer Vision and Pattern Recogni-
tion, 2008. CVPR 2008. IEEE Conference on, pages 1-8. IEEE, 2008.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys.
Real-time plane-sweeping stereo with multiple sweeping directions.
In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pages 1-8. IEEE, 2007.

D. Gallup, M. Pollefeys, and J.-M. Frahm. 3d reconstruction using
an n-layer heightmap. In Pattern Recognition, pages 1-10. Springer,
2010.

R. Green. Spherical Harmonic Lighting: The Gritty Details. Archives
of the Game Developers Conference, Mar. 2003.

N. A. Gumerov, A. E. ODonovan, R. Duraiswami, and D. N. Zotkin.
Computation of the head-related transfer function via the fast multi-
pole accelerated boundary element method and its spherical harmonic
representation. The Journal of the Acoustical Society of America,
127:370, 2010.

R. Hartley and A. Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

H. Hirschmuller. Stereo processing by semiglobal matching and mu-
tual information. Pattern Analysis and Machine Intelligence, IEEE

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

Transactions on, 30(2):328-341, Feb 2008.

H. Hu, L. Zhou, H. Ma, and Z. Wu. HRTF personalization based on
artificial neural network in individual virtual auditory space. Applied
Acoustics, 69(2):163-172, 2008.

M. Jancosek and T. Pajdla. Multi-view reconstruction preserving
weakly-supported surfaces. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

H. Jo and Y. S. Park. Signal processing: Aproximation of head re-
lated transfer function using prolate spheroidal head model. Pro-
ceedings of the 15th International Congress on Sound and Vibration,
2008(1):2963-2970, 2008.

Y. Kahana and P. A. Nelson. Boundary element simulations of the
transfer function of human heads and baffled pinnae using accurate
geometric models. Journal of sound and vibration, 300(3):552-579,
2007.

E. H. Langendijk and A. W. Bronkhorst. Contribution of spectral cues
to human sound localization. The Journal of the Acoustical Society of
America, 112:1583, 2002.

P. Larsson, A. Viljamde, D. Vistfjdll, A. Tajadura-Jiménez, and
M. Kleiner. Auditory-induced presence in mixed reality environments
and related technology. In The Engineering of Mixed Reality Systems,
pages 143-163. Springer, 2010.

D. G. Lowe. Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vision, 60(2):91-110, Nov. 2004.

Y. Ma. An invitation to 3-d vision: from images to geometric models,
volume 26. springer, 2004.

R. Mehra, L. Antani, S. Kim, and D. Manocha. Source and listener
directivity for interactive wave-based sound propagation. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 20(4):495-503,
April 2014.

R. Mehra, N. Raghuvanshi, L. Savioja, M. C. Lin, and D. Manocha.
An efficient GPU-based time domain solver for the acoustic wave



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Subject No.  Head Head Depth No. of Im- No. of Triangles in
Width (x;) in mm(x3) ages Used Generated Mesh
in mm in Estimated
Dense Model
1 148 178 115 3,105,365
2 164 196 95 6,935,830
3 170 179 108 3,671,849
4 153 196 129 5,256,111
5 135 176 85 4,006,730

Table 1: Relevant parameters used for generating head meshes for numerical sound simulation for five subjects.

equation. Applied Acoustics, 73(2):83-94, 2012.

X. Mei, X. Sun, M. Zhou, H. Wang, X. Zhang, et al. On building
an accurate stereo matching system on graphics hardware. In Com-
puter Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pages 467-474. IEEE, 2011.

P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm,
R. Yang, D. Nistér, and M. Pollefeys. Real-time visibility-based fu-
sion of depth maps. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1-8. IEEE, 2007.

A. Meshram, R. Mehra, and D. Manocha. Efcient HRTF computation
using adaptive rectangular decomposition. In Audio Engineering Soci-
ety Conference: 55th International Conference: Spatial Audio. Audio
Engineering Society, to appear.

J. C. Middlebrooks and D. M. Green. Sound localization by human
listeners. Annual review of psychology, 42(1):135-159, 1991.

P. Mokhtari, H. Takemoto, R. Nishimura, and H. Kato. Computer
simulation of HRTFs for personalization of 3d audio. In Universal
Communication, 2008. ISUC’08. Second International Symposium on,
pages 435-440. IEEE, 2008.

P. Mokhtari, H. Takemoto, R. Nishimura, and H. Kato. Computer sim-
ulation of KEMAR’s head-related transfer functions: verification with
measurements and acoustic effects of modifying head shape and pinna
concavity. Principles and Applications of Spatial Hearing, pages 179—
194, 2010.

N. Morales, R. Mehra, and D. Manocha. MPARD: A parallel ARD-
based wave simulator for distributed memory architectures. Technical
report, Department of Computer Science, UNC Chapel Hill, 2014.

R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense
tracking and mapping in real-time. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 2320-2327. IEEE, 2011.
A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. International journal of com-
puter vision, 42(3):145-175, 2001.

A. D. Pierce. Acoustics: An Introduction to Its Physical Principles
and Applications. Acoustical Society of America, 1989.

V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer, and
S. Bathiche. MonoFusion: Real-time 3d reconstruction of small
scenes with a single web camera. In Mixed and Augmented Real-
ity (ISMAR), 2013 IEEE International Symposium on, pages 83—88.
IEEE, 2013.

B. Rafaely and A. Avni. Interaural cross correlation in a sound field
represented by spherical harmonics. The Journal of the Acoustical
Society of America, 127(2):823-828, 2010.

N. Raghuvanshi, R. Narain, and M. C. Lin. Efficient and Ac-
curate Sound Propagation Using Adaptive Rectangular Decomposi-
tion. [EEE Transactions on Visualization and Computer Graphics,
15(5):789-801, 2009.

N. Raghuvanshi, R. Narain, and M. C. Lin. Efficient and accurate
sound propagation using adaptive rectangular decomposition. Visu-
alization and Computer Graphics, IEEE Transactions on, 15(5):789—
801, 2009.

O. M. Ramahi. Near-and far-field calculations in FDTD simulations
using kirchhoff surface integral representation. Antennas and Propa-
gation, IEEE Transactions on, 45(5):753-759, 1997.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
(53]

[54]

[55]

[56]

L. Rayleigh. XII. On our perception of sound direction. The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 13(74):214-232, 1907.

S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A com-
parison and evaluation of multi-view stereo reconstruction algorithms.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 1, pages 519-528, June 2006.

R. D. Shilling and B. Shinn-Cunningham. Virtual auditory displays.
Technical report, DTIC Document, 2000.

N. Snavely. Bundler: Structure from motion (sfm) for unordered im-
age collections. http://www.cs.cornell.edu/ snavely/bundler.

E. M. Wenzel, M. Arruda, D. J. Kistler, and F. L. Wightman. Local-
ization using nonindividualized head-related transfer functions. The
Journal of the Acoustical Society of America, 94:111, 1993.

F. L. Wightman and D. J. Kistler. Headphone simulation of free-field
listening. I: Stimulus synthesis. The Journal of the Acoustical Society
of America, 85:858, 1989.

F. L. Wightman and D. J. Kistler. Resolution of front-back ambiguity
in spatial hearing by listener and source movement. The Journal of
the Acoustical Society of America, 105:2841, 1999.

C. Wu.  Visualsfm: A visual structure from motion system.
http://ccwu.me/vsfm/, 2011.

B. Xie. Head-related transfer function and virtual auditory display.
Plantation, FL: J. Ross Publishing, 2013.

B. Xie, X. Zhong, D. Rao, and Z. Liang. Head-related transfer func-
tion database and its analyses. Science in China Series G: Physics,
Mechanics and Astronomy, 50(3):267-280, 2007.

D. Zotkin, J. Hwang, R. Duraiswaini, and L. S. Davis. HRTF per-
sonalization using anthropometric measurements. In Applications of
Signal Processing to Audio and Acoustics, 2003 IEEE Workshop on.,
pages 157-160. Ieee, 2003.

D. N. Zotkin, R. Duraiswami, and L. S. Davis. Rendering localized
spatial audio in a virtual auditory space. Multimedia, IEEE Transac-
tions on, 6(4):553-564, 2004.



