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Abstract

We present an interactive algorithm to compute discretized
3D Euclidean distance fields. Given a set of piecewise linear
geometric primitives, our algorithm computes the distance
field for each slice of a uniform spatial grid. We express the
non-linear distance function of each primitive as a dot prod-
uct of linear factors. The linear terms are efficiently com-
puted using texture mapping hardware. We also improve
the performance by using culling techniques that reduce the
number of distance function evaluations using bounds on
Voronoi regions of the primitives. Our algorithm involves no
preprocessing and is able to handle complex deforming mod-
els at interactive rates. We have implemented our algorithm
on a PC with NVIDIA GeForce 7800 GPU and applied it to
models composed of thousands of triangles. We demonstrate
its application to medial axis approximation and proximity
computations between rigid and deformable models. In prac-
tice, our algorithm is more accurate and almost one order of
magnitude faster as compared to previous distance compu-
tation algorithms that use graphics hardware.

Keywords: distance field, generalized Voronoi diagram,
graphics hardware, texture mapping, collision detection,
medial-axis transform

1 Introduction

Given a set of geometric primitives, the distance field at a
point is the minimum distance from the point to the clos-
est primitive. Distance fields are used for shape represen-
tation, proximity computations, morphing, boolean opera-
tions, path planning, scientific visualization, etc. In this
paper, we address the problem of interactive computation
of discretized distance field along a uniform grid. The geo-
metric primitives may correspond to open or close objects,
polygonal models or point primitives.

Distance fields are closely related to the concept of Voronoi
diagrams. Given a set of primitives, a Voronoi diagram par-
titions the space into regions, where each region consists
of all points that are closer to one primitive than to any
other. Many algorithms have been proposed to compute
discretized Voronoi diagrams and distance fields along a grid
using graphics rasterization hardware [Woo et al. 1997; Hoff

et al. 1999; Sigg et al. 2003; Sud et al. 2004]. These al-
gorithms rasterize the distance functions of the geometric
primitives and use the depth buffer hardware to compute an
approximation of the lower envelope of the distance func-
tions. The algorithms for general polygonal primitives ap-
proximate the non-linear distance functions using a distance
mesh. This can be expensive for complex models and the
accuracy of the overall approach is governed by the tessel-
lation error. As a result, previous techniques are unable to
compute 3D distance fields of complex models at interactive
rates.

Main Results: In this paper, we present a new algorithm
for fast computation of 3D discretized distance fields of a set
of convex polygonal primitives using texture mapping hard-
ware. Our algorithm computes the distance field on a 2D
slice by rasterizing the distance vectors from the points on
the slice to the primitives. We present an elegant geometric
formulation to represent the distance vectors at any point on
a polygon as bilinear interpolation of the distance vectors of
the polygon vertices. This linear factorization of distance
vectors maps well to the bilinear interpolation capabilities
of the texturing hardware. We compute polygons on the
2D slice bounding the Voronoi region for each primitive and
express the distance vectors of the polygon vertices using
the texture coordinates. We compute the magnitude of the
distance vector using a fragment program. We have imple-
mented our algorithm on a Pentium IV PC with a NVIDIA
GeForce 7800 GTX GPU and use it for medial axis approx-
imation and proximity queries between deformable models.
We have observed up to one order of magnitude performance
improvement over earlier methods. In practice, our algo-
rithm is able to compute 3D distance fields of complex mod-
els composed of thousands of triangles at interactive rates.

Our approach is simple to implement and has many advan-
tages:

Generality: Our algorithm involves no precomputa-
tion and is directly applicable to models undergoing
non-rigid motion. Moreover, we do not make any as-
sumptions about the shape or mesh topology and our
algorithm is applicable to polygon soup models.

Accuracy: The linear factorization framework is ro-
bust and can compute the distance field up to 32-bit
floating point precision on current GPUs. Furthermore,
we provide tight bounds on accuracy of the discrete
Voronoi diagram.

Efficiency: The distance vectors are computed using
the bilinear interpolation capabilities of GPUs. As a re-
sult, we are able to compute distance fields of complex
models consisting of thousands of polygons at interac-
tive rates.

Organization: The rest of the paper is organized as follows.
We describe the related work on distance field computations



in Section 2. Section 3 gives an overview of linear factoriza-
tion and distance vector evaluation. We present conserva-
tive bounds on the Voronoi regions of primitives in Section
4 and describe our GPU based distance field computation
algorithm in Section 5. We describe its implementation and
highlight its performance on medial axis approximation and
proximity queries in Section 6. Finally, we analyze our al-
gorithm and compare its performance with prior techniques
in Section 7.

2 Related Work

In this section, we briefly survey prior work on distance field
computations and GPU-based algorithms to evaluate non-
linear functions.

2.1 Distance Fields

Distance field algorithms can be broadly classified based on
the model representations such as images, volumes or polyg-
onal representations. For an overview of these algorithms,
refer to the surveys [Cuisenaire 1999; Aurenhammer 1991].

Algorithms for image-based data sets perform exact or ap-
proximate computations in a local neighborhood of the vox-
els. Danielsson [1980] used a 2D scanning approach based
on the similarity between neighboring pixels. Sethian [1999]
proposed the fast marching method to propagate a contour
and compute distance transformations. Exact algorithms for
handling 2-D and k-D images in different metrics have also
been proposed [Breu et al. 1995; Maurer et al. 2003].

There is extensive work in computing the exact Voronoi dia-
gram of a set of points. A good survey of these algorithms is
given in [Aurenhammer 1991]. For geometric models repre-
sented using polygonal or higher order surfaces in 3D, many
algorithms compute an approximation to the Voronoi dia-
gram by computing distance fields on a uniform grid or an
adaptive grid. A key issue is the underlying sampling rate
used for adaptive subdivision [Vleugels and Overmars 1998;
Teichmann and Teller 1997; Etzion and Rappoport 2002].
Many adaptive refinement strategies use trilinear interpola-
tion or curvature information to generate an octree spatial
decomposition [Shekhar et al. 1996; Frisken et al. 2000; Perry
and Frisken 2001; Varadhan et al. 2003].

The computation of a discrete Voronoi diagram on a uniform
grid can be performed efficiently using parallel algorithms
implemented on graphics hardware. Hoff et al. [1999] ren-
dered a polygonal approximation of the distance function on
depth-buffered graphics hardware and computed the gener-
alized Voronoi Diagrams in two and three dimensions. An
efficient extension of the 2-D algorithm for point primitives is
proposed in [Denny 2003]. Sud et al. [2004; 2005] presented
an approach for efficiently computing k-D Voronoi diagrams
of polygonal primitives by culling primitives which do not
contribute to the final Voronoi diagram within each slice.
A class of exact distance computation and collision detec-
tion algorithms based on external Voronoi diagrams are de-
scribed in [Lin 1993]. A scan-conversion method to compute
the 3-D Euclidean distance field in a narrow band around
manifold triangle meshes (CSC algorithm) was presented by
Mauch [2003]. The CSC algorithm uses the connectivity of
the mesh to compute polyhedral bounding volumes for the

Voronoi cells. The distance function for each site is evalu-
ated only for the voxels lying inside this polyhedral bounding
volume. Sigg et al. [2003] described an efficient GPU based
implementation of the CSC algorithm.

2.2 GPU-Based Non-linear Computations

Many algorithms have been proposed to exploit the pro-
grammability features of GPUs to evaluate and render higher
order functions or surfaces. Bolz and Schroder [?] used frag-
ment programs to evaluate the Catmull-Clark subdivision
surfaces. Their approach represented the control points in
texture memory and used a fragment program to compute
bicubic B-spline surfaces. Purcell et al. [2003] presented ray-
tracing algorithms by using fragment programs to evaluate
ray-primitive intersections. Kanai and Yashui [2004] pre-
sented an improved algorithm to compute per-pixel normals
on subdivision surfaces. Elegant algorithms to directly ren-
der curves and parametric surfaces such as NURBS and T-
spline surfaces have also been proposed [Guthe et al. 2005;
Loop and Blinn 2005; Shiue et al. 2005]. In contrast with
these approaches, our algorithm explicitly decomposes the
distance functions into linear factors and uses bilinear in-
terpolation capabilities of the texture mapping hardware to
evaluate these functions on a planar domain.

3 Distance Fields

In this section, we give an overview of our approach to com-
pute distance fields using texture mapping hardware. Given
a collection of convex polygonal primitives, our algorithm
computes the minimum distance along a 3D grid to these
geometric primitives. The geometric primitives are classified
into points, lines, or triangles and are known as sites. In or-
der to compute the distance fields, we define the Euclidean
distance functions of these sites. More specifically, the dis-
tance function computes the minimum distance of points to
a given site. Formally, given a point p and a site o;, the
distance function d(p,0;) = mingeo, d(p,q). The distance
between the points is computed using the Euclidean metric.
Given a set of sites P = {01,02,...,0,}, the 3D distance
field at a point p is given by D(p,P) = min,,ep d(p,0:).

We compute distance fields on a 3D grid of points. The
3D distance field is computed by sweeping along the Z axis.
For each plane perpendicular to the Z axis, the distance
field is computed using the distance from the sites to the
plane [Hoff et al. 1999; Sigg et al. 2003; Sud et al. 2004].
The underlying distance function is a degree two function
(i.e. a quadric surface in 3D). For example, the Euclidean
distance function of a point site to a plane is one sheet of the
hyperboloid, and of a line to a plane is an elliptical cone [Hoff
et al. 1999].

Given a complex model with tens of thousands of sites, eval-
uating the non-linear distance function for each site can be
expensive. Hoff et al. [1999] computed a piece-wise linear ap-
proximation of the distance function using a polygonal dis-
tance mesh. However, the linear approximation introduces
tessellation error. Moreover, the overhead of computing the
polygonal approximation can be high for interactive applica-
tions. Sigg et al. [2003] used the programmable capabilities
of GPUs to evaluate the non-linear distance function at each
point (or pixel) on the plane. They briefly mention use of



bilinear interpolation, and present an approach which uses
several instructions per fragment to compute the distance
function. Detailed comparisons with their approach is pre-
sented in Section 7.

Our Approach: In contrast to earlier approaches, we com-
pute the distance function for each site by evaluating the
distance vector field on the GPU. A distance vector field
consists of vectors from the 3D points to the closest point
on the site. The magnitude of the distance vector provides
the value of the distance function of the site at a grid point.
We first present a formulation to compute the distance vec-
tor at any point on a planar polygon by using the distance
vectors of the polygon vertices to the site. Next, we present
techniques to compute these planar polygons which bound a
site’s Voronoi region on a slice. Finally, we map the problem
of distance vector computation to texture mapping hardware
on the GPU.

3.1 Linear Factorization

(b) Line Segment
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Figure 1: Distance vector computation: This figure illus-
trates the distance vector computation at any point on a
plane. The distance vector at an interior point is a bilin-
ear interpolant of the distance vectors at the vertices.

We use linear factorization of distance vectors to evaluate
the distance functions. Formally speaking, the linear fac-
torization expresses the distance vector at each point inside
the polygon in terms of bilinear interpolation of the distance
vectors of the polygon vertices. Given a convex polygon P
with vertices (v1,...,vx), the linear factorization expresses
the distance vector at any interior point p of the polygon as
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We present three key properties of distance vector computa-
tion at a point on a plane to point sites, line segment sites,
and triangular sites. These properties are used to evaluate
the distance functions efficiently. We first highlight the prop-
erty to perform linear factorization of the distance vector of
a point on a line to a point site.

Property 1. Given two points a and b on a plane and a
point site p. Let da and dp, denote the distance vectors of a
and b to p respectively. Then, the distance vector dx of any
point x = aa+(1—a)b,0 < a < 1 is the linear combination
of distance vectors of a and b, and dyx = ada + (1 — a)dp.

Property 1 indicates that given the distance vectors of the
vertices of any planar primitive to a point site, the distance
vector of any interior point can be computed using a bilinear
interpolation of the distance vectors of vertices.

The distance vector of a point x that projects orthogonally
to the interior of a line segment is a vector perpendicular
to the line. We use the following property to perform linear
factorization of the distance vector of a point that projects
onto a line segment.

Property 2. Given two points a and b on a plane and a

line segment 1 with end points e and f. Let da=e—a and

—

dp = f — b denote the distance vectors of a and b to the
site 1 respectively. Then, the distance vector dx of any point
x =caa+ (1 —a)b,0 < a <1 isthe linear combination of
distance vectors of a and b, and d_; = ad_; +(1- a)d_;g.

We use property 2 to compute the distance vector of any
point that projects onto 1. This property indicates that given
the vertices of a convex polygon whose projection lies within
1, the distance vector of any interior point in the convex
polygon is the bilinear interpolation of the distance vectors
of the convex polygon vertices to L.

We extend Property 1 and Property 2 to compute the dis-
tance vector of a point x that projects interior to a triangu-
lar site. It can be seen that the distance vector of x is the
normal to the triangle.

Property 3. Given three points a, b and ¢ on a plane and
a triangular site t with vertices e, f and g. Let da=e— a,
dyp =f—b andd. = g—c denote the distance vectors of a, b
and c to the site t respectively. Then, the distance vector dx
of any point x = ara+azb+(1—a1—a2)b,0 < az,a2 <1
is the linear combination of distance vectors of a,b, and c
and d; = ald_;. + ozzd:) +(1—a1— ag)d_;.

Property 3 indicates that given the vertices of a convex poly-
gon projecting onto t, the distance vector of any interior
point is the bilinear interpolation of the distance vectors of
the polygon vertices. Furthermore, the distance vectors of
the polygon vertices are normal to the triangular site.
Lemma 1. There exists a linear factorization to compute
the distance vector of any point to a planar site.

Proof. Trivial. Based on properties 1, 2, and 3. (I

4 Domain Computation

In the previous section we showed that the distance vector
from a point in the interior of a convex polygon to a site
can be expressed as a bilinear interpolant of the distance
vectors at the polygon vertices. In this section, we define the
convex domain on a slice for which the distance function of
a site is computed. We also present an approach to compute
conservative bounds on the domain.



The region where the distance function of a site contributes
to the distance field is exactly its Voronoi region. However,
it is non-trivial to compute the exact Voronoi regions for
higher order sites (i.e. lines, polygons) [Culver et al. 1998].
Moreover, the Voronoi regions are not necessarily convex.
Instead of computing the exact Voronoi region, we compute a
convex polygonal domain ; x on the slice s, which bounds
the intersection of the Voronoi region of site o; with slice s.

We present separate algorithms for manifold and non-
manifold sites. We first present an algorithm to compute the
Qi for non-manifold sites. Later, we present an improved
algorithm for manifold sites that exploits the connectivity to
compute tighter convex polygonal domain.

Non-Manifold Sites We present the algorithm for a trian-
gle and it can be easily extended to a convex polygon. For a
triangle ¢; with vertices p1, p2, ps and unit normal ng, con-
sider the three (open) half-spaces given by planes through
the three edges and perpendicular to the plane of the trian-
gle. The half-spaces are given as H; = (x — p;) - n; > 0,7 €
{1,2,3}, where n; satisfies (pi — pi+1) - ni = 0,n¢ - n; = 0.
Any point in the intersection of these halfspaces is closer to
the interior of the triangle, and any point not contained in
the intersection Hy N Hy N Hs is closer to one of the sites on
the boundary of the triangle. The convex polygonal domain
Qj,x is the intersection of the three half-spaces with slice sy.

Given a line segment e; with end points p1 and p2, consider
the two (open) halfspaces defined by planes perpendicular to
the line through the end points, H1 = (p2—p1)-(x—p1) >0
and Hy = (p1 — p2) - (x — p2) > 0. Any point x in the
intersection of the two half spaces is closer to the interior of
the line segment e, and a point not in the intersection will be
closer to one of the end points. Thus, the convex polygonal
domain Q;,x is the intersection of the two half spaces H1, Ho
with the slice sj.

Finally, given a point pj, the domain @ is the entire slice
Sk

Manifold Sites For a manifold site, we exploit the neigh-
borhood information to compute a convex polytope G; which
bounds the Voronoi region of a site o; [Culver 2000; Mauch
2003; Sigg et al. 2003]. For a particular slice si, the domain
of computation of a site o; is given by the intersection of the
polytope with the slice, Qi x = G N sk. For a triangle site,
the bounding polytope is given by a triangular prism defined
by intersection of three half spaces (as described above).

For an edge e incident on two triangles with normals nj,
n2, the convex polytope is a wedge obtained by the inter-
section of four half-spaces. Two of the half-spaces are de-
fined by parallel planes through the end vertices of the edge
as shown above. The other two half-spaces are defined by
planes containing the edge e and have normals n; and nas.

For a point site p, with n incident edges ei, ..., e,, the poly-
tope Gp is given by intersection of half-spaces corresponding
to planes through the point q and orthogonal to each inci-
dent edge e;, i.e. Gp =), c;<,, His Hi = (x—p)-e; > 0. In-
stead of exactly computing the half-space intersection, with
time complexity O(nlogn), we present a simple algorithm
to compute a conservative approximation of the bounding
polytope Gp for a point site p in O(n) time.

A point site is defined as convex iff all edges incident on the
point have an internal dihedral angle less than 7. Let p be
a convex point, with incident edges e;, 1 < ¢ < n in order.

Then edges of the convex polytope Gy are given by p + Anj,
where n; = e€; X ;41 (modulo n) and n; is the normal of the
triangle ¢; containing edges e; and e;41.

This construction does not work for hyperbolic points [Peik-
ert and Sigg 2005]. Previous approaches expand the bound-
ing polytopes of adjacent triangles to handle hyperbolic
points, however this results in a complex fragment program
to compute the distance functions [Sigg et al. 2003]. We
present an efficient algorithm to compute a bounding poly-
tope Gp for a hyperbolic point p (see figure 2(a)). Let na be
the average of the normals of all incident triangles. Let n;
be the normal which maximizes 6(i) = \ﬁiigh vi=1,...,n.
We consider the case when 6(i) < 7/2. Let C be a right
circular cone with axis n, and opening angle 26(j). We now
prove that the bounding polytope Gp, is a subset of cone C.

Theorem 1. Let p be a manifold point, and C be a cone
constructed as above. Then the convex polytope Gp bounding
the Voronoi region of p is a subset of C'.

Proof. If Gp = 0, then the result trivially holds. It is suffi-
cient to show that Gp N7, C C' N7y for any plane 7. Con-
sider a plane 7 orthogonal to na, and let @ be the convex
polygon obtained by intersection of Gp with 7, Q@ = Gp N.
Let x; be the intersection of the ray from p along direction
n;. Gp N is the convex region given by the intersection of
2D half spaces, each half space is given by the line through
x; and Xjy1 (modulo n) (see figure 2(b)). For any point
y € m, let r = max;=1,...» d(xi,y). By construction, a circle
¢ with center y and radius r will contain Q. Taking y = Xa,
we get c=CNmand Gp C C. O

Figure 2: Bounding polytope computation for a hyperbolic
point: p is hyperbolic point with 5 incident edges e;, i =
1,...,5. (a) The polytope Gp bounds the Voronoi region of
p. Gp is bounded by a cone C. (b) Intersection of Gp with
plane m, showing construction of C.

Theorem 1 implies that any convex polytope containing the
cone C' will bound the bounding polytope Gp of a hyper-
bolic point p. We use a square pyramid to approximate the
bounding polytope as shown in figure. If (i) > 7/2, then
we treat the hyperbolic point as non-manifold.

5 Distance Field Computation using GPUs

In this section, we present our algorithm for distance com-
putation on the GPU using linear factorization. Given a
site and a slice, the convex domain is computed as described



in Section 4. The distance vector to the site is computed
at each vertex of the convex polygon. The distance vector
is encoded as a 3D texture coordinate, and the polygon is
rasterized on the GPU.

Graphics processors (GPUs) have many specialized hard-
ware units to perform bilinear interpolation on the attributes
of vertices of polygons. These vertex attributes consist
of the color, position, normal, or texture co-ordinates of
the vertices. These attributes are 4-D vectors of the form
(Vz, vy, Uz, V) and transformations are applied to the at-
tributes in the vertex processing unit. The transformed ver-
tices are bilinearly interpolated by the rasterization hard-
ware and the interpolated vectors at each fragment are used
for lighting computations using Gouraud or Phong shading,
or environment mapping applications. In order to achieve
higher performance, the rasterization hardware consists of
multiple vector units to compute the interpolated vectors.

We use the fast bilinear interpolation capabilities of GPUs
for distance vector computation. Based on the linear fac-
torization formulation, we map the distance vector compu-
tation to the GPUs using vertex attributes of the polygons.
We use orthographic transformations and perform a one-
to-one mapping between the points on the plane and the
pixels on the screen. The bilinear interpolation of the vertex
attributes is used for distance vector computation at each
point on the plane.

The interpolation units in current GPUs can perform compu-
tations on different vector representations. For example, the
vectors can be represented using 8-bit, 16-bit or 32-bit float-
ing point values and the vector components may be signed or
unsigned. Since the components of the distance vectors are
signed and represented in 32-bit floating point precision, we
use the 3D texture co-ordinates of the vertices to represent
the distance vectors of vertices. The interpolated texture co-
ordinates are used in a single instruction fragment program
to compute the magnitude of the distance vector. The dis-
tance field is updated to compute the minimum either using
the MIN instruction in the fragment program or by using
the depth test functionality.

We now present the expressions for computing the distance
vectors from a convex polygon vertex to a point, an edge
and a triangle. These are:

Point: Given a point site p and a vertex v, the distance
vector from v to p is d(p,v) = p — v.

Edge: For an edge e with end points p1 and p2, the
distance vector from a vertex v to e is d(e,v) = (p1 —

v) +)\(p2*p1) where \ = (y=p1)-(P2—pP1)

[P2—pP1l’ [P2—P1]| ’
Triangle: Given a triangle ¢ with a unit normal 1,
the distance vector from a vertex v to ¢ is given as

d(t,v) = [(pi — v) - i) &, where p; is one of the three
vertices of the ¢.

The pseudocode for computing the distance field for a
slice s is presented in Algorithm 1. The function
ComputePolygon(o;,s1) computes the convex polygonal do-
main bounding the Voronoi region of site o; on slice sj.

The algorithm for computing the distance field in the en-
tire domain M is presented in Algorithm 2. The function
SetOrthoProjection(M) sets up the projection matrix to be
the bounds of the (axis-aligned) domain of computation M.
NormProgram() is a single instruction fragment program

Input: slice s, site set P
Output: distance field D(sy,P)

foreach site 0; € P do
Qi,x — ComputePolygon(o;, s)
foreach vertex v € Q;,, do
Compute distance vector d (o, v)
Assign texture coordinates of v,
(T7 S, t) - a(oiy V)
end
Draw textured polygon Q; i at depth z =0
end

Algorithm 1: ComputeSlice(sk, P): This algorithm
computes the distance field for si for a set of primi-
tives P

that computes the Euclidean norm of the 3D texture co-
ordinate at a pixel and writes it out the value to the depth
buffer. The functions StartSlice(sy) and EndSlice(sy) setup
the rendering state at the beginning and end of computation
of a given slice si. The state setup involves enabling a float-
ing point rendering buffer, clearing the buffer and reading it
back to the CPU after computation.

Input: site set P, domain M, number of slices m
Output: distance field D(M,P)

Enable depth test
Set depth test function to less than
SetOrthoProjection (M)
Enable fragment program NormProgram
foreach slice sy, k=1,...,m do
StartSlice (si)
ComputeSlice (sx,P)
EndSlice (sk)
end
Disable fragment program NormProgram
Algorithm 2: Compute3D(P, M, m): Computes
the 3D discretized distance field on a uniform grid
M with m slices.

6 Implementation and Applications

In this section, we describe our implementation and highlight
its application to medial axis approximation and proximity
queries between deformable models.

6.1 Implementation

We have implemented our algorithm on a PC with a 3.2
GHz Pentium IV CPU with 2 GB memorywith an NVIDIA
GeForce 7800 GPU connected via 16x PCI Express bus and
running Windows XP operating system. We used OpenGL
as the graphics API and used ARB_fragment_program for
implementing the fragment program. The fragment program
is used to compute the magnitude of the distance vector.
We computed the distance field using a tiled render texture
with 32-bit floating point precision. Our run-time algorithm
computed the distance vectors for the vertices of the con-
vex polygon associated with each site. The polygons are
rasterized onto the rendertexture. We incorporated the op-
timizations to improve the performance of our algorithm on



Model Polygon Distance Field HAVOC Lin.Fac.
Count Resolution Time (in sec) | Time (in sec)
Triceratops 5.6K 256 x 112 x 84 3.87 0.768
Head 22K 78 x 105 x 128 17.47 0.846 \
Gargoyle 11K 256 x 103 x 91 10.2 0.625 S
Bunny 1.5K 256 x 252 x 196 4.8 0.772 o
Shell Charge 4.5K 126 x 128 x 126 2.8 0.276 e

Table 1: This table highlights the performance of our algorithm (Lin.Fac.) and ) . . )
HAVOC [Hoff et al. 1999] on different polygonal models. We observe 5 — 10 Figure 3: Separation Distance Computation
times speedup times on a Pentium IV PC with NVIDIA GeForce 7800 GPU. between deforming bunnies: Average query

manifold objects. There are no precomputations and the al-
gorithm is directly applicable to deforming models and dy-
namic environments. The performance of our system varies
as a function of model complexity and grid resolution.

Our approach takes a fraction of a second to compute the
distance field of a model with thousands of polygons on a
256 x 256 x 256 grid. The performance of our algorithm
to compute the global distance field for various models is
highlighted in Table 1. We analyzed our implementation us-
ing Intel’s vTune benchmarking software. The time spent
on computation of the bounding convex polygons was ap-
proximately 12% of the total time. The observed maximum
number of triangles sent to GPU was 3MTris/s; maximum
number of pixels rendered was 1.6Gpixels/s and estimated
memory bandwidth achieved was 26GB/s.

6.2 Proximity Computation

We have applied our algorithm to compute proximity in-
formation among deformable models. These include differ-
ent proximity queries including collision detection, separa-
tion distance and penetration depth estimation, and contact
normals computation. The penetration distance is defined
as the minimum translation distance required to separate
two overlapping objects. We first compute the distance field
in the localized region of overlap between two oriented ob-
jects, O1 and Oz. Next, we use the stencil test to compute
the points on O; interior to Oz. These computations are
performed on each slice of the distance field, and the maxi-
mum stored value at these interior points on the slices of the
distance field is used to approximate the penetration depth.
This test is repeated by swapping O and Oz. The separa-
tion distance between two objects is the minimum Euclidean
distance from the points on one object to the other object.
Given two objects, we first compute the closest point P; on
01 using the distance field of Oz, and the closest point P»
on Oz by using the distance field of O;. Our algorithm com-
putes the separation distance as the distance between P, and
Ps.

Our overall proximity computation algorithm is based on
PIVOT [Hoff et al. 2001] that uses a combination of object
space location and distance field computation along a grid.
We compute the collision response between the overlapping
objects based on a constraint-based approach.

We used our algorithm for interactive proximity query on a
sequence of deforming bunnies as shown in Figure C.1 (color
plate). Each bunny consists of 2K triangles and undergoes
deformation based on a mass-spring system. At each frame,
we perform proximity queries using a grid resolution of 2563.
The distance computation is only performed on the localized

time=120ms, grid resolution= 256°.

regions computed using bounding box of each bunny. The
average time to perform each proximity query is 120ms. As
compared to HAVOC and PIVOT [Hoff et al. 2001], our new
distance computation algorithm results in a speedup of 7—12
times (as shown in Figure 4).

6.3 Medial Axis Approximation

We use discretized distance fields to compute an approxi-
mate medial axis. Given the polygonal boundary of a solid
model, we compute the distance field and its gradient, and
use them to extract the simplified medial axis [Foskey et al.
2003]. Our algorithm computes a neighbor direction field of
the object and applies a user-specified separation angle cri-
terion. The separation angle criterion acts like a low-pass
filter and is used to eliminate noisy features in the medial
axis. Our algorithm traverses through the voxels and uses
the neighbor direction field to decide which voxels lie on the
medial axis. The selection operation is also performed us-
ing a fragment program and the gradient field is stored in
the texture memory. In Figure C.2 (color plate), we demon-
strate an application of our algorithm to compute the ap-
proximate medial axis of the Gargoyle model with 11K tri-
angles on a 256 x 103 x 91 grid. Moreover, we observed 16
times speedup over HAVOC-based medial axis approxima-
tion algorithm [Foskey et al. 2003].

7 Comparison and Limitations

We have used our algorithm to compute distance fields of
complex models consisting of thousands of polygons. Our
algorithm is able to compute 3D discretized fields at inter-
active rates (i.e. 3 — 12 frames per second) for 256° grid on
complex models. Our initial benchmarks indicate that our
algorithm is almost one order of magnitude faster as com-
pared to earlier algorithms including HAVOC [Hoff et al.
1999], DiFi [Sud et al. 2004] We present qualitative compar-
isons with HAVOC and DiFi, and and GPU-based imple-
mentation of CSC algorithm [Sigg et al. 2003].

HAVOC and DiFi: These approaches compute a polyg-
onal approximation of the non-linear distance function of
each site. For large models, the distance mesh approxima-
tion step becomes a bottleneck. Furthermore, all the trian-
gles are sent from the CPU to the GPU during each frame
for rasterization. In contrast, our algorithm only computes
the distance vector at the vertices of the convex polygons
and uses the bilinear interpolation capabilities of the tex-
ture mapping hardware. Our distance computation algo-
rithm has much lower CPU-GPU bandwidth requirements
as we only transmit the distance vectors at the vertices of
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Figure 4: This graph compares the performance of our
algorithm (Lin.Fac.) with HAVOC [Hoff et al. 1999] for
proximity computation. We observe a speedup of 7-12
times on the deforming bunny simulation.

(a) (b)

Figure 6: Improved accuracy of our algorithm: This figure
highlights the error in computing the distance field and dis-
crete Voronoi diagram using (a) HAVOC and (b) our algo-
rithm. The exact Voronot boundary is indicated by the dotted
blue line. HAVOC introduces tessellation error due to poly-
gonization of distance functions.

the convex polygon of each site. Our bounds on the con-
vex polygonal domain also reduce the fill overhead during
rasterization.

GPU-based CSC algorithm: Sigg et al. [2003] also men-
tioned the idea of using bilinear interpolation and dot prod-
ucts. However, they do not provide any details on their
derivation or implementation. Instead they present an ap-
proach which reduces the number of polyhedra that are scan
converted. The fragment program used by [Sigg et al. 2003]
is more complex and increases the load on the fragment
processor. Moreover, Sigg et al.’s algorithm is restricted
to inputs that are closed manifolds. Further, it does not
provide the complete generalized Voronoi diagram. Overall,
their approach is useful for very highly tessellated models
and distance field computations with low-grid resolutions
and narrow band sizes. In these cases, each polyhedron can
become smaller than a few voxels. The polygon transform
can become a bottleneck, and reducing number of polyhedra
scan-converted provides speedups.

In contrast, we provide a formal presentation of the linear
factorization and the necessary details to implement it. Our
algorithm is applicable to general polygonal models. Fur-
thermore, our approach computes a pixel accurate discrete
generalized Voronoi diagram (as demonstrated in Figure 6).
Our fragment program is much simpler. For large grid reso-
lutions and global computations, the distance computation
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Figure 5: This log-log graph demonstrates the perfor-
mance of our distance computation algorithm as a func-
tion of grid resolution. As the grid resolution increases,
the running time is nearly a linear function.

on the fragment processor becomes the bottleneck and our
approach is more efficient that [Sigg et al. 2003]. This has
been verified by our benchmarks. The cost of slicing the
polyhedra is small and the observed triangle transfer rates
are significantly less than the theoretical peak. Further, our
approach makes efficient use of the fragment processor.

Limitations: Our approach has some limitations. Firstly,
the accuracy of the algorithm is governed by that of the
graphics hardware. For example, the current hardware pro-
vides support for 32-bit floating point representation and it is
not fully compatible with the IEEE floating-point standard.
Secondly, our algorithm involves a readback from the GPU
back to the CPU, which can have additional overhead for
high resolution distance fields. Our algorithm is only useful
for computing discretized distance fields and the resulting al-
gorithms for proximity queries and medial-axis computation
only perform approximate computations (up to grid reso-
lution). For narrow bands, and highly tessellated models,
polygon transformation can become a bottleneck.

8 Conclusions and Future Work

We present a new algorithm to compute discretized 3D dis-
tance fields for polygonal models. Our algorithm decom-
poses the distance function of each primitive into linear fac-
tors and evaluates the linear terms using bilinear interpo-
lation capabilities of texture mapping hardware. We also
present techniques to bound the Voronoi region of each prim-
itive and evaluate the distance field within the bounded re-
gion. The accuracy of our algorithm is governed by that
of the bilinear interpolation hardware, i.e. 32-bit floating
point on current GPUs. In practice, our algorithm is able
to compute distance fields of models composed of thousands
of polygons at 3 — 10 frames a second on a 256 grid. We
have used distance field computation for collision and pen-
etration depth computation and medial axis approximation
of deforming models.

There are many avenues for future work. Our current work
is limited to Euclidean distance functions and it would be
useful to extend it to other distance metrics, (e.g. Li norm).
We would like to incorporate other culling techniques that



utilize spatial coherence between successive slices to compute
the bounding regions for each site. The linear factorization
based formulation could also be extended to higher order
primitives including splines or algebraic surfaces. More-
over, we would like to perform distance field computation
on adaptive grids and use our algorithm for other applica-
tions including morphing, motion planning and navigation,
and simulation.
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Figure C.1: Proximity Computations on Deforming Models: We use our interactive distance field computation for separation
and penetration distance for dynamic simulation of deforming bunnies. Each bunny consists of 2K triangles and we compute
localized distance fields on a 256° grid for the simulation shown in this sequence. The average distance field and prozimity
query takes 120ms on a 3.2 GHz Pentium IV PC with NVIDIA GeForce 7800 GPU.

Figure C.2: Medial Axis Approximation: The left image shows the
11K Gargoyle model. The right image shows its simplified medial axis
using our distance field algorithm. We use a grid of size 256 x 103 x 91
and the distance field computation takes around 625 ms on a 3.2 GHz
Pentium IV PC with an NVIDIA GeForce 7800 GPU.

Figure C.83: Contact Normal Computation for de-
forming bunnies: The average query takes 120ms
on a 3.2GHz Pentium IV PC with NVIDIA
GeForce 7800 GPU.



