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Abstract

An efficient algorithm for time-domain solution of the acoustic wave equation for the purpose of room acoustics is presented.
It is based on adaptive rectangular decomposition of the scene and uses analytical solutions within the partitions that rely on
spatially invariant speed of sound. This technique is suitable for auralizations and sound field visualizations, even on coarse
meshes approaching the Nyquist limit. It is demonstrated that by carefully mapping all components of the algorithm to match
the parallel processing capabilities of graphics processors (GPUs), significant improvement in performance is gained compared to
the corresponding CPU-based solver, while maintaining the numerical accuracy. Substantial performance gain over a high-order
finite-difference time-domain method is observed. Using this technique, a 1 second long simulation can be performed on scenes
of air volume 7500 m3 till 1650 Hz within 18 minutes compared to the corresponding CPU-based solver that takes around 5 hours
and a high-order finite-difference time-domain solver that could take up to three weeks on a desktop computer. To the best of the
authors’ knowledge, this is the fastest time-domain solver for modeling the room acoustics of large, complex-shaped 3D scenes that
generates accurate results for both auralization and visualization.
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1. Introduction

Computational methods in room acoustics have been an ac-
tive area of research and developed in conjunction with diverse
fields, such as seismology, geophysics, meteorology, for almost
half a century. The goal of computational acoustic methods in
games and interactive applications, in room acoustics computa-
tion, is auralization: generating audio that, when played, mim-
ics the aural experience of actually being in the space. Nev-
ertheless, achieving good acoustics in large complex structures
remains a major computational challenge [1]. Since numeri-
cal acoustic computations are usually not possible in real-time,
especially for frequencies in the kilohertz range, auralization
is usually a two-stage process: precomputation of impulse re-
sponses from the space and real-time convolution of the im-
pulse responses with dry (i.e. anechoically recorded or synthet-
ically generated) source signals. The impulse response com-
putation requires an accurate calculation of wave propagation
for modeling the time-varying spatial sound field. Another
important goal in room acoustic modeling is visualization of
this sound field. The ability to visualize and animate transient
acoustic phenomena is extremely helpful in intuitively under-
standing physically complex acoustic effects such as diffrac-
tion, scattering and interference [2] and forms an effective tool
for educational purposes. In future, it could even be used for
practical engineering applications like noise control and archi-
tectural acoustics, by helping engineers to quickly locate the
geometric features responsible for acoustical defects.

1.1. Acoustic wave equation
The physics of room acoustics, as well as many other areas,

is described by the well known time-domain formulation of the

1Author to whom correspondence should be addressed. Electronic mail:
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wave equation –

∂2 p
∂t2 − c2∇2 p = f (x, t) . (1)

The wave equation models sound waves as a time-varying pres-
sure field, p (x, t). While the speed of sound in air (denoted
c) exhibits slight fluctuations within a room due to variations
in temperature and humidity, we ignore the acoustic effects of
such small fluctuations in this paper i.e. we assume uniform
media. We chose a value of c = 340ms−1 corresponding to dry
air at 20 degrees centigrade. Volume sound sources in the scene
are modeled by the forcing field denoted f (x, t) on the right
hand side in the Equation 1. The operator ∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

is the Laplacian in 3D. The wave equation succinctly captures
wave phenomena such as interference and diffraction that are
observed in reality. Both the goals of acoustic auralization and
visualization, can be fulfilled by time-domain solvers for the
acoustic wave equation.

1.2. Computational challenges

One of the key challenges in time-domain wave-based acous-
tic simulation is the computational and memory requirements of
an accurate solver. Finite difference solvers, in order to main-
tain low errors, require the spatial discretization to contain 6−10
samples per wavelength for the highest usable frequency of in-
terest [3, 4, 5]. Errors manifest themselves as numerical disper-
sion, where higher frequencies travel slower on the numerical
grid than lower frequencies, leading to phase errors [5]. To
give a quick example of the resulting requirements, if the entire
frequency range of human hearing needs be simulated (i.e. up
to 22 kHz), then the spacing between the nodes would have to
be 1.5 − 2.5 mm. As a result, a cubic meter of acoustic space
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needs to be filled with 64− 300 million grid cells, and the com-
plexity increases proportionally with the volume of the acoustic
space. Due to this, prior numerical solvers for the acoustic wave
equation have very high computational demands, especially for
broadband simulations extending into the kilohertz range, re-
quiring a cluster of machines for execution. Thus, traditional
room acoustic simulation systems have largely relied on geo-
metric acoustic techniques. But these techniques are accurate
only for higher frequencies and early reflections, and face con-
siderable difficulties for modeling wave diffraction effects.

Our formulation is based on the adaptive rectangular decom-
position (ARD) technique proposed by Raghuvanshi et al. [6].
ARD results in little numerical dispersion error as compared
to finite difference methods, allowing for execution on a very
coarse grid, approaching the Nyquist limit. This leads to sub-
stantial speedups [6]. The ARD technique assumes an isotropic,
homogeneous, dissipation-free medium. The assumptions of
isotropy and homogeneity are critical for the speedup and ac-
curacy of the technique. It has been demonstrated recently that
impulse responses computed using ARD can be used for per-
ceptually plausible auralizations in interactive applications such
as computer games [7]. These reasons, along with the fact that it
has been demonstrated to work for both auralization [7, 8] and
visualization purposes [6], motivated our choice of this tech-
nique. For auralization and visualization videos, please check-
out the supplementary materials or the link [9].

1.3. GPU computing

Over the last decade, Graphics Processing Units or GPUs
or graphics processors have evolved from fixed-function pro-
cessors specialized for 3D graphics operations to a fully pro-
grammable computing platform for a wide variety of computa-
tionally demanding applications. Current GPUs are massively
data-parallel throughput-oriented many-core processors capa-
ble of providing teraFLOPS of computing power and extremely
high memory bandwidth compared to a high-end CPU. On the
other hand, due to their distinctive and peculiar architecture,
developing a fast and efficient algorithm that extracts the maxi-
mum performance from the GPU, is a challenging task. Tradi-
tional algorithms designed for scalar architectures (e.g. CPU)
do not translate naturally to parallel architectures (e.g. GPU).
In this paper, we present a fast and efficient parallel algorithm
based on ARD for numerically solving the acoustic wave equa-
tion in the time-domain, entirely on the GPU.

1.4. Main results

Our main contribution is the utilization of GPU architecture
in combination with an efficient parallel technique, to allow for
numerical wave simulation in the medium to high frequency
range that was earlier extremely slow on a desktop computer.
We exploit different levels of parallelism exhibited by ARD,
prevent any host-device data transfer bottleneck in our algo-
rithm design and perform a novel computationally optimal rect-
angular decomposition, resulting in an extremely fast and effi-
cient solver for the wave equation. We demonstrate that it is
possible to effectively parallelize all steps of our simulator on

current GPU architectures and exploit the computational power
of the high number of GPU processors. Running on current
generation GPUs, our algorithm can yield a speedup of up to
25 times over the optimized CPU-based ARD solver. Our GPU-
based solver is more than three orders of magnitude faster com-
pared to a high-order CPU-based finite-difference time-domain
(FDTD) solver. We show that the performance of our technique
scales linearly with the number of GPU processors. In partic-
ular, ours is the first solver that can run a 1 second long band-
limited simulation of 1650 Hz for both auralization and visual-
ization purposes, on scenes with realistically complex geometry
and air volume in the range of 7, 500 m3 within 18 minutes on
a desktop computer. The single-threaded optimized CPU-based
ARD solver presented by Raghuvanshi et al. [6] takes 4 hours
40 minutes and the CPU-based high-order FDTD solver based
upon Sakamoto et al. [4] takes 20 days to run the same simula-
tion on a desktop machine2.

2. Related Work

2.1. Numerical solvers for the wave equation
Accurate high-frequency wave propagation is a very chal-

lenging computational problem because the smallest wave-
length governs the grid resolution of the numerical methods
and the scene can be thousands of wavelengths long in each
dimension. There is a large body of existing work on solv-
ing the wave equation developed over the past few decades.
These methods may be roughly classified into finite element
method (FEM) [10], boundary element method (BEM) [11],
finite-difference time-domain (FDTD) [5] and spectral meth-
ods [12].

Finite element method (FEM) solves for the pressure field on
a volumetric mesh composed of discrete simplical cells. One
of the strengths of FEM is the capability of using unstructured
meshes with cells of different shapes, thus allowing the (poten-
tially complex) boundary of the domain to be represented with
much more accuracy. However, “skinny” cells can lead to in-
accurate and/or unstable simulations. Generating good quality
meshes in 3D for arbitrary domains is a tough problem and a
central concern for FEM methods. Boundary element method
(BEM) utilizes a boundary integral formulation that assumes
a homogeneous medium and expresses field values throughout
the domain in terms of values only on the boundary. Thus, BEM
only requires a discretization of the boundary of the domain.
Unfortunately, the resultant linear system is dense as all the sur-
face values interact strongly with all the others. Both FEM and
BEM are usually employed mainly for the steady-state wave
(Helmholtz) equation, as opposed to the full time-domain wave
equation, with FEM applied mainly to interior and BEM to ex-
terior scattering problems.

Recent work on the fast multipole accelerated frequency-
domain BEM [13] has obtained very promising results, show-
ing that an asymptotic performance gain can be achieved for

2We use NVIDIA GTX 480 as the GPU and Intel Xeon X5560 (8M Cache,
2.80 GHz) as the CPU.
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frequency domain solution of acoustic problems, yielding per-
formance that scales linearly with the surface area of the scene,
instead of its volume, as in FEM/FDTD. The combination of
BEM and Fast Multipole Method (FMM), represented as BEM-
FMM, is an attractive research direction, since it would allow
handling acoustic spaces or models that are much larger than
those handled by the current approaches [13]. Assuming that
further research makes BEM-FMM applicable for large, com-
plex scenes, applying this frequency-domain method for time-
domain acoustics still requires a large number of frequency-
domain simulations.

The Finite Difference Time Domain (FDTD) method was ex-
plicitly designed for solving the time-domain wave equation by
Yee [14], although in the context of electromagnetic simula-
tion [5]. The FDTD method for room acoustics solves for the
time-dependent pressure field on a Cartesian grid by making
discrete approximations of the spatial derivative operators and
using an explicit time-stepping scheme. Assume that the space
has been discretized into a uniform Cartesian grid with spatial
spacing h and the time-step is ∆t. We denote the pressure value
p (ih, jh, kh) at time n∆t by p(n)

i, j,k. In the absence of a superscript,
it is assumed to be n . The spatial derivative is approximated in
finite-difference approaches by applying a constant linear sten-
cil, β, for some chosen integral value of d as –

∇2 p =
d∑

l=−d

βl

(
pi+l, j,k + pi, j+l,k + pi, j,k+l

)
+ O(h2d) (2)

The spatial differentiation error is ϵs = O(h2d). The stencil
has a compact support of 2d + 1. For most FDTD implemen-
tations, d = 1, yielding second-order spatial accuracy, with
β = 1

h2 {1,−2, 1}. The same analysis can be applied for the time
derivative as well. It is typical in time-domain solvers to use
second-order accurate time-stepping –

∂2 p
∂t2

(n)

=
1
h2

(
p(n+1) − 2p(n) + p(n−1)

)
+ O(h2). (3)

Standard von Neumann analysis can be used to show that
the spatio-temporal errors in FDTD appears as frequency-
dependent phase velocity, known as numerical dispersion – as
waves propagate, their shape is gradually destroyed due to loss
of phase-coherence. For comparison in this paper, we have
chosen a sixth-order accurate solver with d = 3 and β =

1
180h2 {2,−27, 270,−490, 270,−27, 2}, since it has smaller nu-
merical dispersion error than a second-order accurate scheme.

Recently, FDTD has been applied to medium-sized scenes in
3D for room acoustic computations by Sakamoto et al. [3, 4].
The authors calculated typical room acoustic parameters and
compared the calculated parameters with the actual measured
values in the scene. The implementation can take days of com-
putation on a small cluster. A very recent technique proposed
by Savioja [15] can allow for real-time auralizations till a usable
frequency of roughly 500 Hz on geometries with large volume
using the Interpolated Wideband (IWB) FDTD scheme running
on GPUs. The IWB-FDTD scheme [16] uses optimized com-
pact stencils for reducing numerical dispersion while keeping

the computational expenditure low. This results in schemes that
can run on spatial sampling as low as with ARD, thus allow-
ing for competitive performance as presented here. However,
the results presented in Savioja’s work [15] assume a high nu-
merical dispersion threshold of 10%, for reducing computation
times. Whether this numerical dispersion is tolerable for au-
ralization and computation of room acoustic parameters is an
open research problem. Once such thresholds have been es-
tablished through listening tests, a direct comparison between
IWB-FDTD, FDTD based upon work of Sakamoto et al. [4]
and ARD, would become possible. For this paper, our compar-
isons are restricted to FDTD based upon Sakamoto et al. [4] and
ARD.

Spectral techniques achieve much higher accuracy than
FEM/BEM/FDTD by expanding the field in terms of global
basis functions. Typically, the basis set is chosen to be the
Fourier basis or Chebyshev polynomials [12] as the fast fourier
transform (FFT) can be employed for the basis transformation.
The Fourier Pseudo-Spectral Time Domain (PSTD) method is a
spectral method proposed by Liu [17] for underwater acoustics
as an alternative to FDTD to control its numerical dispersion
artifacts. The key difference in PSTD compared to FDTD is to
utilize spectral approximations for the spatial derivative [17] –

∇2 p ≈ F −1
(
−k2F (p)

)
, k2

i, j,k = 4π2
 i2l2x + j2

l2y
+

k2

l2z

 (4)

where Discrete Fourier Transform is denoted by F . The spatial
error shows geometric convergence ϵs = O(hn),∀n > 0, n ∈ Z.
This allows meshes with samples per wavelength approaching
2, the Nyquist limit, and still allowing vanishingly small dis-
persion errors in the spatial derivative. However, this holds
only if the pressure field is periodic which is not commonly
the case. Errors in ensuring periodicity appear as wrap-around
effects where waves exiting from one end of the domain enter
from the opposite end. Time update is done using a second-
order explicit scheme, as in Equation (3). Therefore, although
spatial errors are controlled in PSTD, errors due to temporal
derivative approximation are still present and are of a similar
magnitude as FDTD.

2.2. Geometric methods for the wave equation
In the limit of infinite frequency, the wave equation reduces

to the geometric approximation – expressing wave propaga-
tion as rays of energy quanta. The history of geometric meth-
ods for acoustics goes back roughly four decades [18]. Most
present-day room acoustics software packages use geometric
methods [19]. Recent work such as AD-FRUSTA [20], edge-
diffraction [21], beam tracing [22, 23], are able to acceler-
ate these methods using ray and volume tracing. There has
also been work on accelerating geometric techniques on the
GPU [24, 25]

2.3. GPU architecture
GPU architecture (see Figure 2) consists of a scalable array

of streaming multiprocessors (SMs), each of which consists
of a group of streaming processors (SPs), a fast (but small)

3



(a) Preprocessing (b) Simulation

Figure 1: Stages of ARD: a) In the preprocessing stage, the input domain is voxelized into grid cells and adaptively decomposed into rectangular partitions.
Artificial interfaces and PML absorbing layers are created between neighboring partitions and on the scene boundary respectively. b) During the simulation stage,
we start with the current field and perform interface handling between neighboring partitions to compute forcing terms. We then transform the forcing terms to the
cosine spectral basis through DCT. These are then used to update the spectral coefficients to propagate waves within each partition. Lastly, the field is transformed
back from spectral to spatial domain using IDCT to yield the updated field.

on-chip shared memory and a SIMT control unit. All the mul-
tiprocessors are connected to a large off-chip global memory
via a interconnection network. In order to effectively solve a
problem on a GPU, first it has to be partitioned into coarse sub-
problems that can be solved independently in parallel by blocks
of threads. These thread blocks are enumerated and distributed
to the available SMs. Each sub-problem is further partitioned
in smaller sub-sub-problems that can be solved on SPs coop-
eratively in parallel by all the threads within the block. The
SM schedules and executes these threads in groups of paral-
lel threads (typically 32) called warps. All the threads of a
warp execute a single common instruction at a time. The first or
the second half of a warp is called a half-warp. GPU memory
access pattern is based on half-warps. A parallel task is exe-
cuted on the GPU by writing functions called kernels which are
launched by the host-CPU and execute in parallel on the GPU.
GPU API provides the ability to create local and global thread
barriers. In a local thread barrier, all the threads in a block
must wait until every thread of the block has finished execution
whereas in a global thread barrier all the threads on the GPU
must wait until every thread has finished execution. The use
of these barriers to synchronize the threads is called as thread
synchronization [26]. For more details on parallel computing
on GPUs, please read [27, 28, 29].

Figure 2: The graphics processing unit (GPU) architecture (image c⃝
Savioja [15]): Current generation GPUs have many streaming multiproces-
sors(SMs), each containing several streaming processors(SPs), a fast on-chip
shared memory and a single-instruction multiple-thread (SIMT) control unit.
All the multiprocessors are connected to each other and to a larger off-chip
global memory via a fast interconnection network.

3. Adaptive Rectangular Decomposition

In this section, we give an overview of adaptive rectangu-
lar decomposition (ARD) solver [6] and highlight its benefits
over prior solvers for the acoustic wave equation for uniform
medium. Our GPU-based wave equation solver is built upon
the ARD solver.

3.1. ARD Computation Pipeline

ARD has two primary stages, Preprocessing and Simula-
tion. In the preprocessing stage, the input scene is voxelized
into grid cells at grid resolution h determined by the relation
h = λmin/s = c/νmaxs where λmin is the minimum simulation
wavelength, s is number of samples per wavelength, c is the
speed of sound and νmax is the maximum usable simulation fre-
quency3. This is followed by a rectangular decomposition step
in which grid cells generated during voxelization are grouped
into rectangles (see Figure 1(a)). We call these rectangles air
partitions. Partitions created for the perfectly matched layer
(PML) absorbing layer are referred to as PML partitions. PML
absorbing layers are created to model both partially absorbing
surfaces as well as complete absorption in open scenes. Both air
and PML partitions have the same grid resolution h. Next, we
create artificial interfaces between adjacent air-air and air-PML
partitions. This one-time pre-computation step takes 1-2 min-
utes for most scenes. During the simulation stage, the global
acoustic field is computed with a time-marching scheme. The
computation at each time-step is as follows (see Figure 1(b)):
1. For all interfaces: Interface handling to compute force f
within each partition (Equation 12).
2. For all air partitions:

(a) Discrete Cosine Transform (DCT) of force f to spec-
tral domain f̃ (Equation 7).

(b) Mode update for spectral coefficients p̃ (Equation 9).

3By maximum usable frequency of X Hz, we mean that our simulation re-
sults have no dispersion error and minimal other numerical errors till X Hz.
Therefore, they can be directly used to compute impulse response for auraliza-
tion and produce sound field visualization. So νmax = X kHz means that the
useful range of the result is from 0 Hz till X kHz and the excitation is broad-
band, containing frequencies from 0 to X kHz
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(c) Inverse Discrete Cosine Transform (IDCT) of p̃ to pres-
sure p (Equation 7).

(d) Normalize pressure p by multiplying it with a normal-
ization constant.
3. For all PML partitions: Update pressure field.

During step 1, the coupling between adjacent partitions (air-
air and air-PML) is computed to produce forcing values. In
steps 2 and 3, these forcing values are used to update the pres-
sure fields within the air and PML partitions respectively. While
air partitions are updated in the spectral domain, transforming
to and from spatial domain using IDCT and DCT, PML parti-
tions employ a finite-difference implementation of a fictitious,
highly dissipative wave equation [30] to perform absorption.
DCT and IDCT steps are implemented using a generalized 3D
FFT.

3.2. Accuracy and computational aspects
A direct performance comparison of FDTD and ARD for the

same amount of error is difficult since both techniques intro-
duce different kinds of errors. Since the final goal in room
acoustics is to auralize the sounds to a human listener, it is natu-
ral to set these error tolerances based on their auditory perceiv-
ability. This is complicated by the absence of systematic lis-
tening tests for perceivable errors with both, FDTD and ARD.
However, it is possible to compare them by assuming conser-
vatively low errors with both the techniques. We briefly discuss
how we set the parameters in both techniques for keeping the
errors conservatively low and then present a theoretical com-
parison to motivate why ARD is more compute and memory
efficient than FDTD.

In recent work, Sakamoto et al. [4] show that FDTD cal-
culations of room-acoustic impulse responses on a grid with
s = 6 − 10 agree well with measured values on a real hall in
terms of room acoustic parameters such as reverberation time.
Remember that grid size h = λmin/s. This mesh resolution
is also commonly used with the finite difference method ap-
plied to electromagnetic wave propagation to control phase er-
rors resulting from numerical dispersion [5] . Motivated from
these applications, we set the mesh resolution conservatively
at s = 10 for FDTD throughout this paper, assuming that this
safely ensures that numerical dispersion errors are inaudible in
auralizations. ARD results in fictitious reflection errors at the
artificial interfaces. As shown by Raghuvanshi et al. [6], using
s = 2.6 with ARD, the fictitious reflection errors can be kept at
a low level of −40 dB average over the whole usable frequency
range by employing a sixth-order finite difference transmission
operator. This means that for a complex scene with many inter-
faces, the global errors stay 40 dB below the level of the ambi-
ent sound field, rendering them imperceptible as demonstrated
in the auralizations [6, 8, 7]. Therefore, we assume sampling of
s = 2.6 for ARD.

Table 1 shows the performance and memory comparison
of FDTD and ARD. The update cost for sixth-order accurate
FDTD in 3D is about 55 FLOP per cell per step including the
cost of PML boundary treatment for a stencil width of 7. The
total cost for ARD per step can be broken down as: DCT and
IDCT (assuming a DCT and IDCT take 2N log2 N FLOP count

each) = 4N log2 N, mode update = 9N, interface handling
= (300 × 6N2/3) and PML boundary treatment = (390 × 6N2/3)
(the 6N2/3 term approximates the surface area of the scene by
that of a cube with equivalent volume. Due to the cartesian
grid, this estimate is the lower bound of the surface area). PML
boundary treatment cost per cell is the same for both FDTD and
ARD. As can be seen in the table, theoretically ARD is nearly
100 times more compute efficient and 50 times more memory
efficient than FDTD. In practice, the CPU-based ARD is 50−75
times faster than FDTD implementation, as discussed in detail
in Section 5. Since ARD is highly memory efficient, an order
of magnitude more than FDTD, this makes it possible to per-
form simulations on much larger scenes than FDTD without
overflowing main memory or GPU memory. GPUs can easily
become memory-bound, in which case the performance is dic-
tated by memory bandwidth rather than the FLOP numbers. In
these cases as well, ARD, on account of being more memory
efficient, is more suitable for the GPUs.

3.3. Mathematical Background

ARD achieves high accuracy for both spatial and temporal
derivatives within rectangular volumes, nearly eliminating nu-
merical dispersion. This is done by employing the eigendecom-
position for the wave equation on rectangular domains, which,
assuming spatially constant speed of sound, can be computed
analytically, incurring no numerical computation or error, as
follows –

∇2Φi, j,k = −k2
i, j,kΦi, j,k,

Φi, j,k = cos
(
π i

lx
x
)

cos
(
π j

ly
y
)

cos
(
π k

lz
z
)
,

k2
i, j,k = π2

(
i2

l2x
+

j2

l2y
+ k2

l2z

)
.

(5)

Note that the eigen-functions, Φi, j,k, coincide with the basis
functions for the 3D Discrete Cosine Transform. This follows
from assuming sound-hard boundary conditions for the volume.
The result is that to transform to and from the spectral basis,
one can leverage memory and compute-efficient Discrete Co-
sine Transform (DCT) and inverse Discrete Cosine Transform
(iDCT) implementations. The pressure and forcing fields are
expressed in this basis as –

p (x, y, z, t) =
∑
i, j,k

p̃i, j,k (t)Φi, j,k (x, y, z) ,

f (x, y, z, t) =
∑
i, j,k

f̃i, j,k (t)Φi, j,k (x, y, z) . (6)

The above equations are equivalent to –

p̃i, j,k(t) = DCT (p (x, y, z, t)),
f̃i, j,k(t) = DCT ( f (x, y, z, t)),
p (x, y, z, t) = IDCT (p̃i, j,k(t)),
f (x, y, z, t) = IDCT ( f̃i, j,k(t)).

(7)

Substituting equation (6) into the wave equation (1) leads to
a independent set of Ordinary Differential Equations –

d2 p̃i, j,k

dt2 + ω2
i, j,k p̃i, j,k = f̃i, j,k, where ωi, j,k = cki, j,k. (8)
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s # cells # steps FLOP count Total FLOP FLOP
N = V/h3 S = t/∆t (TeraFLOP) count per cell

(TeraFLOP) per step
FDTD 10 254 M 17000 FDTD : 221.55, PML : 15.95 ∼237 55
ARD 2.6 4.5 M 4500 Interface : 0.22, DCT+IDCT : 1.79, ∼2.5 120

Mode update : 0.18, PML : 0.29

Table 1: Floating-point operation (FLOP) count comparison of FDTD vs ARD on a scene of volume V = 10, 000m3 with maximum usable frequency νmax = 1
kHz (minimum wavelength λmin = c/νmax = 34cm) for the simulation of duration t = 1 sec. The number of cells (in Millions M) with either technique is given by
N = V/h3 where h = λmin/s is the grid size and s is number of samples per wavelength. The simulation time-step is restricted by the CFL condition ∆t ≤ h/c

√
3

with smaller cell sizes requiring proportionally smaller time-steps. Theoretically, ARD which uses s = 2.6 is nearly hundred times more compute efficient and 50
times more memory efficient than FDTD (s = 10) on account of using a much coarser grid. “FLOP per cell per step” is defined as the ratio of the total FLOP count
and the total number of cells N times the number of steps S .

By recognizing that the above is the equation of a forced sim-
ple harmonic oscillator having solutions of the form, p̃(t) =
αeiωt + ᾱe−iωt and assuming f is constant over a time-step, the
following update rule is obtained (subscripts have been sup-
pressed and are (i,j,k) for all terms) –

p̃(n+1) = 2 p̃(n) cos (ω∆t) − p̃(n−1) +
2 f̃ (n)

ω2 (1 − cos (ω∆t)) . (9)

The above update rule is derived from the analytical solution
by requiring time-symmetry and reversibility. In the absence of
forcing terms, this scheme incurs no numerical errors.

Interface Handling: For handling non-rectangular scenes
with ARD, the scene’s air volume is decomposed into a disjoint
set of coordinate axis-aligned rectangular partitions that touch
each other at artificial interfaces, as illustrated in Figure 1. In-
terface handling is used to ensure sound propagation between
the partitions. Although we don’t present the detailed mathe-
matical derivation here, we highlight the conceptual motivation
behind interface handling, as well as the interface operator we
use. For more details, please refer to [6, 31].

Consider two partitions in 1D, [−∞, 0] and [0,∞], with an
interface lying on the origin. This analysis extends straightfor-
wardly to 3D since all the partition boundaries, and thus inter-
faces, are axis aligned. The boundary condition assumed for
the internal solution within each partition is ∂p

∂x

∣∣∣∣
x=0
= 0 (sound-

hard boundary condition assumption), which results in full re-
flections from the origin. Consider the right partition: the local
solution corresponds to a discrete differential operator, ∇2

local,
that satisfies the mentioned boundary condition. Representing
the global (correct) operator by ∇2

global, equation (1) can be re-
written as –

∂2 p
∂t2 − c2∇2

global p = f (x, t) ,
∂2 p
∂t2 − c2∇2

local p = f (x, t) + fI (x, t) ,
fI (x, t) = c2

(
∇2

global − ∇2
local

)
p = c2∇2

res p.
(10)

In this way, the actual global operator ∇2
global is expressed as the

sum of an operator local to the partition ∇2
local and a residual

operator ∇2
res =

(
∇2

global − ∇2
local

)
. The latter is accounted for in

the forcing term on the RHS. At each step, the forcing term is
computed as in the equation above as the sum of source terms
f (x, t) and interface contributions fI (x, t), and the remaining
computation is identical to what was described in equations (5)
through (9). All that remains is the form of the interface op-
erator discussed above. Denoting xi =

(
i + 1

2

)
h, where h is

the cell size for the Cartesian grid, the forcing terms (denote
fI(x j, t) with fI(x j)) for the right partition for perfect, error-free
interfacing is given by –

fI(x j) =
−1∑

i=−∞
p(xi)s[ j − i] −

∞∑
i=0

p(xi)s[ j + i + 1]

where j ∈ [0,∞),

s[i] = sinc′′(ih) = 1
h2 ×
{ −π2

3 i = 0
(−1)i−1 2

i2 i , 0, i ∈ Z

sinc(x) =

 sin( πh x)
( πh x) x , 0

1 x = 0

(11)

This exact operator is highly compute-intensive owing to its
non-compact support. For partitions with N cells, its compu-
tational complexity is O(N2). Therefore, approximate interface
handling is performed by using the following stencil derived
by assuming that the discrete operator ∇2

global corresponds to a
sixth-order accurate finite-difference scheme. This leads to a
compact operator, thus allowing faster computation, which is
given as follows –

fI(x j) =
−1∑

i= j−3
p(xi)s[ j − i] −

2− j∑
i=0

p(xi)s[i + j + 1]

where j ∈ [0, 1, 2],
fI(x j) = 0, j > 2,
s[−3...3] = 1

180h2 {2,−27, 270,−490, 270,−27, 2}.

(12)

Its computational complexity depends on the number of cells
lying on the interface a) 1D : O(1) b) 2D : O(N1/2) c) 3D :
O(N2/3) (as discussed in Section 3.2). This approximate oper-
ator results in low-amplitude fictitious reflections from the in-
terface. However, these errors are roughly 40 dB below the
incident sound-field, thus making them inaudible [6]. Lower
errors could be obtained by optimized compact finite difference
schemes, or even directly using the exact operator described
above.

The ARD technique is quite similar to PSTD in that it allows
similar spectral accuracy and thus, similarly coarse mesh while
calculating the spatial derivatives. The crucial difference lies
in how temporal derivatives are handled. PSTD uses a second-
order accurate explicit time-stepping scheme. This means that
numerical dispersion errors are still introduced due to errors in
the time derivative. On the other hand, ARD which is based on
partitioning the domain into rectangles and assuming sound-
hard walls for the partitions, handles the temporal derivative
with spectral accuracy by using the analytical solution to the
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wave equation for rectangular spaces. Thus, numerical disper-
sion is completely eliminated with ARD for propagation within
rectangular partitions. Some dispersive error is still introduced
for waves propagating across partition interfaces, but this error
is much smaller than with FDTD or even PSTD, where waves
accumulate dispersive errors of similar magnitude at each time-
step.

4. GPU-based acoustic solver

In previous sections, we discussed the computational effi-
ciency and mathematical background of ARD. In this section,
we describe our parallel GPU-based acoustic wave equation
solver built on top of ARD. We discuss key features of our ap-
proach and some of the issues that arise in parallelizing it on
many-core GPU architecture.

4.1. Our GPU approach

Two levels of parallelism. The ARD technique exhibits two
levels of parallelism (a) a coarse-grained and (b) a fine-grained.
Coarse grained parallelism is due to the fact that each of the par-
titions (air or PML) solves the wave equation independently of
each other. Therefore, each partition can be solved in parallel
at the same time. Fine grained parallelism is achieved because
within each partition all the grid cells are independent of each
other with regards to solving the wave equation at a particular
time-step. For solving the wave equation at the current time-
step, a grid cell may use p, f , p̃, f̃ values of its neighboring cells
computed at previous time-step but is completely independent
of their p, f , p̃, f̃ values at the current time-step. In other words,
because ARD uses explicit time-stepping, there is no need for
solving a linear system. Therefore within each partition, all
the grid cells can run in parallel exhibiting fine grained paral-
lelism. Our GPU-based acoustic solver exploits both these lev-
els of parallelism. We launch as many tasks in parallel as there
are partitions. Each task is responsible for solving the wave
equation for a particular partition. Within each task, each grid
cell corresponds to a thread and we create as many threads as
the number of grid cells in that partition. All these threads are
grouped into blocks and scheduled by the runtime environment
on the GPU.

Avoiding host-device data transfer bottleneck. The host-
device data link between CPU and GPU via PCI express or In-
finiband, is a precious resource that has a limited bandwidth.
Many prior GPU-based numerical solvers were based upon
the hybrid CPU-GPU design. This design suffers from data-
transfer bottleneck as it has to transfer large amounts of data
between host (CPU) and device (GPU) at each simulation step.
We have designed our GPU-based solver to ensure that the data-
transfer between the CPU-host and GPU-device is minimal. In
our case, we avoid the hybrid CPU-GPU approach and instead
parallelize the entire ARD technique on the GPU. The only
host-device data transfer that is required is to store the pressure
grid p after each simulation step. Recent work on interactive
auralization has shown that storing and processing the results

of simulation on a spatial grid subsampled by retaining every
fourth, eighth or sixteenth sample, can be used for convincing
auralizations for moving sources and listener, after careful in-
terpolation [7]. This results in a memory reduction by a factor
of 1/43, 1/83, 1/163 of the original size respectively, resulting
in negligible overall cost for transferring the simulation results
from GPU to CPU.

To provide an intuition of host-device data transfer, consider
a room of air volume 10, 000m3 for which we solve the wave
equation at νmax = 2 kHz. We consider a hybrid CPU-GPU sys-
tem of Raghuvanshi et al. [8] where only the DCT/IDCT steps
of the technique are parallelized on GPU. In this case, at each
time-step the grid f is transferred from CPU to GPU for DCT,
f̃ is returned back by the GPU, p̃ is transferred from CPU to
GPU for IDCT and the final pressure p is returned to the CPU.
An important point to note here is that the p, f , p̃, f̃ grids cannot
be subsampled and transferred in this hybrid CPU-GPU sys-
tem because the steps of the algorithm that reside on the CPU
and GPU require the values on the complete grid to solve wave
equation. Since the size of p, f , p̃, f̃ is equal to number of grid
cells, the total data transfer cost per time-step is 4 x # grid cells
x sizeof(float) = 4V

(
sνmax

c

)3
x 4 bytes = 4x10000x

(
2.6x2000

340

)3
x

4 bytes = 145 MB. On the other hand, in our technique since all
the computational steps are performed on the GPU, we do not
need to transfer the p, f , p̃, f̃ grids to the CPU for the purpose of
the simulation. The only transfer that is required is of the sub-
sampled pressure grid p from GPU to CPU for storage on the
disk, perhaps for auralization later. For visualization applica-
tions, one might not need to perform any transfer at all because
the data is already present on the GPU and can be displayed
directly to the screen. As explained above, for the purpose of
auralization, the subsampling of pressure grid is usually done at
a lower resolution (1/83). Thus our data transfer per time-step
= 1/83 x # grid cells x 4 bytes = 3 kB. For such a small size,
data-transfer is almost immediate(< 1 msec).

Computationally optimal decomposition. Rectangular de-
composition proposed by Raghuvanshi et al. [6] uses a greedy
heuristic to decompose the voxelized scene into rectangular par-
titions. Specifically, they place a random seed in the scene and
try to find the largest fitting rectangle that can be grown from
that location. This is repeated until all the free cells of the scene
are exhausted. The cost of DCT and IDCT steps implemented
using FFT depends on the number of grid cells in each parti-
tion. FFT operations are known to be extremely efficient if the
number of grid cells are powers of 2. The proposed heuristic
may produce partitions with irregular number of grid cells (not
necessarily powers of 2) significantly increasing the cost of the
DCT and IDCT operations.

We propose a new approach to perform the rectangular de-
composition that takes into account the computational expen-
diture of FFTs and its efficiency with powers of 2. Specifi-
cally, while performing rectangular decomposition, we impose
the constraint that the number of grid cells in each partition
should be a power of 2. Similar to the original approach, we
try to fill the largest possible rectangle that could fit within the
remaining air volume of the scene. But instead of directly using
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it we shrink its size in each dimension to the nearest power of 2
and declare the remaining cells as free. We repeat this step until
all the free cells of the scene are exhausted. This increases the
efficiency of the FFT computations and results in a speedup of
3 times in the running time of DCT and IDCT steps. For typ-
ical scenes, our rectangular decomposition approach produces
higher number (2 − 3 times) of rectangular partitions, but since
the total number of grid cells in the entire volume of domain re-
mains constant (N = V/h3), it does not increase the total FLOP
count except the interface handling step. Since more partitions
result in larger interface area, the interface handling cost in-
creases by 25-30%. But since on the CPU, DCT and IDCT
are the most time-consuming steps of the ARD technique com-
pared to the cost of interface handling (Figure 5(a) : CPU time),
the gain achieved by faster powers-of-two DCT and IDCT far
outweighs this increased interface handling cost.

4.2. Details

Among ARD’s two main stages, the pre-processing is per-
formed only once in the beginning and its contribution to the
total running time is negligible (1− 2 minutes) compared to the
cost of the simulation step. Therefore, we keep this stage on
the CPU itself and parallelize the simulation stage on the GPU.
Thus, the voxelization and rectangular decomposition is per-
formed on the CPU. Once we have the rectangular partitions,
we create the pressure p, force f , spectral pressure p̃ and spec-
tral force f̃ data-structures on the GPU. The simulation stage
has 6 main steps (see Section 3.1) and each of them is per-
formed in sequential order. We now discuss the parallelization
of all these steps on the GPU in detail.

Interface handling. This step is responsible for computing
forcing terms f at the artificial interfaces between air-air and
air-PML partitions. These forces account for the sound propa-
gation between partitions by applying a finite-difference stencil
given in Equation 12. The overall procedure consists of iter-
ating over all interfaces, applying the finite difference stencils
to compute forcing values and additively accumulating them at
the affected cells. This step is data parallel – to compute the
forcing term at a cell, only values in its spatial neighborhood
are read. Thus, all interfaces could potentially be processed in
parallel as long as there are no collisions and no two interfaces
update the forcing value at the same cell. This can happen at
corners (as shown below).

Figure 3: (Color online) Interfaces 1 and 2 update forcing values of cells lying
in their neighboring partitions. There is a Concurrent Write (CW) hazard in the
hatched corner region (labeled “Collision ”).

Interfaces 1 and 2 both update the forcing values 3-cells deep
of their shared partitions. However, for partition P, cells lying

in the hatched region (marked “Collision”) are updated by both
interfaces 1 and 2. These corner cases need to be addressed to
avoid race conditions and concurrent memory writes. The GPU
and its runtime environment places the burden of avoiding con-
current write (CW) hazards on the programmer. Fortunately,
collisions can be avoided completely by using a conceptually
simple technique. All interfaces are grouped into 3 batches con-
sisting of interfaces with their normals in the X, Y and Z direc-
tions respectively. Since all partitions are axis-aligned rectan-
gles, every interface has to fall into one of these batches. By
processing all interfaces within each batch in parallel and sep-
arating batches by a synchronization across all threads, all col-
lisions in the corners are avoided completely. Our approach is
more general and well-supported on all GPUs.

DCT( f ) . The DCT step converts the force f from the spatial
domain to the spectral domain f̃ . DCTs are efficiently com-
puted using FFTs. Typical FFT libraries running on GPU are
an order of magnitude faster than optimized CPU implementa-
tions [32]. Since DCT and IDCT steps are among the slowest
steps of the ARD technique (see Figure 5(a)), parallelization of
these steps results in a great improvement in the performance
of the entire technique.

Mode update p̃ . The Mode update step uses the pressure
and force in the spectral domain p̃, f̃ of the previous time-step
to calculate p̃ at the current time-step. This step consists of
linear combinations of p̃, f̃ terms (see Equation 9) and is highly
parallelizable4.

Pressure normalize p. This step multiplies a constant value
to the pressure p, which is also highly parallelizable.

IDCT( p̃). This step converts the pressure in the spectral do-
main p̃ back to pressure in spatial domain p. Similar to DCTs,
the IDCTs are also efficiently computed using FFTs on GPU.

PML absorption layer. The PML absorbing layer is respon-
sible for sound wave absorption by the surfaces and walls of
the 3D environment. It is applied on a 5-10 cell thick partition
depending on the desired accuracy [30, 6]. We use a 4th order
finite-difference stencil (5 cell thickness) for PML computation
(see Equation 2). Based upon the distance of the grid cell from
the interface, PML performs different computations for differ-
ent grid cells. Due to this, there are a lot of inherent conditionals
in the algorithm. An efficient implementation of PML depends
on minimizing the effect of these conditionals, as discussed in
the next section.

4.3. Optimization

The performance of the GPU-based ARD algorithm de-
scribed above can be improved by means of following optimiza-
tions.

4By highly parallelizable, we mean that there should be no dependence be-
tween the threads, each thread has a very local and small memory access pattern
and all of them can be computed in parallel.
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Batch processing. Interface handling, DCT, IDCT, Mode up-
date and Pressure normalize steps form the main components of
our GPU-based solver, where each step corresponds to a GPU-
function called kernel. Kernels are functions that are executed
in parallel on the GPU (see Section 2.3). To run these steps on
all the partitions and interfaces, one possible way is to launch a
new kernel for each individual air partition, PML partition and
interface. In typical scenes, there are thousands of partitions
and interfaces (see Table 2). Since each kernel launch has an
associated overhead, launching thousands of kernels can have a
drastic impact on the overall runtime. To avoid this overhead,
we group together partitions and interfaces into independent
groups (also called batches) and launch a kernel for each batch.
We call this batch processing. Therefore, instead of launching
P + I kernels where P is the number of partitions and I is the
number of interfaces, we launch as many kernels as there are the
number of batches. This grouping of partitions into batches de-
pends on the number of independent groups that can be formed.
If all the partitions are independent, they can grouped into a sin-
gle batch. For DCT and IDCT kernels, partitions are grouped
into batches by using the BATCH FFT scheme of the GPU-FFT
library [32]. Mode update and Pressure normalize steps have no
dependency between different partitions, and are grouped in a
single batch resulting in just one kernel launch each. For PML
step also, we can group all the PML partitions into a single
batch and launch a single kernel. But to minimize the effect
of conditionals, we launch more than one kernel, as discussed
later. For interface handling, we group the interfaces into 3 sep-
arate independent batches as discussed in Section 4.2. A kernel
launch for each batch is followed by a call to synchronize all
the threads.

Maximizing coalesced memory access. The global mem-
ory access pattern of the GPU can have a significant impact
on its bandwidth. GPU accesses memory in group of threads
called a half-warp (see Section 2.3). Global memory accesses
are most efficient when memory accesses of all the threads of
a half-warp can be coalesced in a single memory access. Our
p, f , p̃, f̃ data-structures and their memory access patterns for
the Mode update and Pressure normalize kernels are organized
in a way such that each thread of index i accesses these data-
structures at position i itself. Thus the memory access pattern
of a half-warp is perfectly coalesced. DCT and IDCT kernels
based upon FFT library [32] use memory coalescing as well.
Our PML handling kernel for thread i accesses memory at lo-
cations α + i where α is constant. This type of access results in
a coalesced memory access on current generation GPUs [27].
The interface handling step can access p, f from many parti-
tions and therefore achieving coalesced memory access for this
kernel is difficult.

Minimizing path divergence . The impact of conditionals
(if/else statements) on the performance of a GPU kernel can be
very severe. The PML absorbing layer steps have conditionals
that are based upon the distance of the grid cells from the inter-
face and special cases like outer edges and corners. In our im-
plementation, we take specific care in minimizing the effect of

Scene Air/Total νmax # partitions # cells
Volume (m3) Hz (air+pml) (air+pml)

L-shaped room 6998/13520 1875 424+352 (22+5)M
Cathedral 7381/15120 1650 6130+12110 (16+6)M
Walkway 6411/9000 1875 937+882 (20+6)M

Train station 15000/83640 1350 3824+4945 (17+8)M
Living room 5684/7392 1875 3228+4518 (18+5)M
Small room 124/162 7000 3778+5245 (20+5)M

Table 2: “Total volume” is volume of the bounding box of the scene whereas
“Air volume” is volume of the air medium in which we perform the simula-
tion. νmax is the maximum usable simulation frequency. Number of partitions
counted are generated using our computationally optimal decomposition. Num-
ber of pressure values updated at each time-step is equal to the number of grid
cells (in millions M).

conditional branching. Instead of launching a single kernel with
conditional branching, we launch separate small kernels corre-
sponding to different execution paths of the code. The number
of different execution paths is limited and can be reformatted in
2-3 unique paths. Thus, the increase in the number of kernel
launches is minimal (2 or 3). These additional kernel launches
do not adversely impact the performance.

5. Implementation and Results

The original CPU-based ARD solver used a serial version of
FFTW library for computing DCT and IDCT steps. The CPU
code uses two separate threads - one for air partitions and other
for PML partitions, and performs both these computations in
parallel. For simplicity of comparison with our GPU-based im-
plementation, we measure the sequential performance of the
CPU-based solver by using only a single thread. The CPU-
based ARD code has been demonstrated to be sufficiently accu-
rate in single precision [8, 6]. Since the calculations performed
in our GPU-based approach are the same as the CPU-based ap-
proach, the results of the GPU-based solver match the CPU-
based solver up to single-precision accuracy. We implemented
our GPU-based wave equation solver using NVIDIA’s parallel
computing API, CUDA 3.0 with minimum compute capability
1.0. The following compiler and optimization options are used
for our GPU code –

nvcc CUDA v3.0 : Maximize Speed (/O2).

Our DCT and IDCT kernels are based upon the FFT library
developed by Govindaraju et al. [32]. We use CUDA routine
cudaThreadSynchronize() for synchronizing threads.

We compare our GPU-based acoustic wave equation solver
with the well-optimized CPU implementation provided by the
authors of ARD [6]. We use NVIDIA Geforce GTX 480 graph-
ics card with a core clock speed of 700 MHz, graphics memory
of 1.5 GB with 480 CUDA processors (also called cores). CPU
timings are reported for an Intel Xeon X5560 (8M Cache, 2.80
GHz) machine. We employ only a single core for the CPU-
based implementation. Timings are reported by running the
simulation over 100 time-steps and taking the average. We use
5 benchmark scenes varying in both size and complexity (see
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(a) (b)

(c) (d)
Figure 4: We investigate the performance of ARD solver on varying νmax and scene volume. a) Simulation time per time-step of CPU-based and GPU-based ARD
solver with varying νmax for the L-shaped room scene. Note that the GPU-based solver is 24 times faster at highest νmax. b) Speedup (=CPU time/GPU time)
achieved by our GPU-based ARD solver over the CPU-based solver with varying νmax for the different test scenes. For higher νmax, we achieve a speedup of 15−25
times. c) Simulation time per time-step of both ARD solvers with varying scene volume for L-shaped room scene. We scale the original volume of the test scenes
by the Scaling Factor. Note that the GPU-based solver is 25 times faster at highest scaling factor. d) Speedup (=CPU time/GPU time) achieved by our GPU-based
ARD solver over the CPU-based solver with varying scene volume for the different test scenes. As the scene volume increases, we achieve a higher speedup. For
64 times the original volume, the speedup becomes 12 − 25 times.

Table 2 and Figure 6). Please listen to the videos in the sup-
plementary materials or at the link [9] for auralization re-
sults on these benchmarks.

In Figure 4(a), we compare the performance of the CPU-
based solver with our GPU-based solver on L-shaped room
benchmark with varying νmax . Figure 4(b) shows the speedup
achieved by our GPU-based solver on different benchmarks.
For smaller frequencies, the amount of work available is con-
siderably less resulting in under-utilization of GPU and nominal
speedup. But for higher frequencies5, all the cores of the GPU
are fully utilized. Our GPU-based solver becomes a lot faster
and outperforms its CPU counterpart by a factor of 15 − 25
times on different scenes. We also analyze the performance of
our solver with varying scene volume. We take our benchmark
scenes and scale their volume uniformly in the range of 1 − 64
times. In Figure 4(c), we observe again that as the amount of
work increases with increasing scene volume, the performance
of GPU-based solver scales better. Speedup achieved by our
GPU-based solver for varying scene volume also shows a simi-
lar behavior (see Figure 4(d)). As the scaling factor reaches 64
times, we achieve a speedup of 12−25 times on different scenes.

5The amount of work increases with increasing frequency (number of grid
cells N ∝ νmax

3).

For simple scenes like L-shaped room, rectangular decomposi-
tion gives fewer air partitions (see Table 2 column 4) resulting
in fewer DCT and IDCT batches. Since each batch corresponds
to a kernel call, fewer batches mean fewer kernel calls reducing
the total overhead of kernel launches. Fewer batches also mean
that individual batch is of larger size. For each batch, the GPU
gets fully utiliized and the DCT and IDCT kernels based on
GPU-FFT are much more efficient resulting in higher speedups
for simpler scenes.

Figure 5(a) shows the breakdown of the time spent on var-
ious steps of the simulation stage. In the original CPU-based
ARD solver, the DCT/IDCT and the PML steps heavily domi-
nate the computation time. But for the GPU-based solver, as
can be seen, all the steps of the simulator are more or less
balanced except Mode update, Pressure normalize and PML,
whose costs become negligible compared to other steps. Our
DCT and IDCT kernels implemented using FFT library [32],
give us a speedup of 14 times on the GPU. PML boundary treat-
ment, Mode update and Pressure normalize achieve a higher
speedup of 30 times, 28 times and 16 times respectively. The
last stage of ARD, interface handling, involves a lots of unco-
alesced memory accesses resulting in a nominal speedup of 3
times. But since the contribution of interface handling to the
overall running time is far less than DCT/IDCT steps, it does
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(a) (b)

(c) (d)
Figure 5: a) Simulation steps - Interface handling, DCT, Mode update, IDCT, Pressure normalize and PML, and the corresponding time spent in the CPU-based
and GPU-based ARD solver for the Walkway scene. Speedups achieved by individual steps of the GPU-based ARD over the CPU-based simulator - PML(30
times), Mode update(28 times), Pressure normalize(16 times), DCT(14 times), IDCT(14 times) and interface handling(3 times). b) We plot speedup achieved by
CPU-based and our GPU-based ARD solver over CPU-based finite-difference time-domain (FDTD) solver with varying νmax for the small room benchmark scene.
Our CPU-based FDTD solver is based upon the work proposed by Sakamoto et al. [4]. The CPU-based ARD solver achieves a maximum speedup of 75 times over
CPU-based FDTD whereas our GPU-based ARD solver achieves a maximum speedup of 1100 times. c & d) We run simulations on 4 different NVIDIA GPU’s
with different number of CUDA processors (also called cores) - GeForce 9600M GT (32 cores), GeForce 8800GTX (128 cores), Quadro FX 5800 (240 cores) and
Geforce GTX 480 (480 cores). Speedup on GPU with X cores = (Simulation time on 32-cores GPU)/(Simulation time on X-cores GPU). We achieve linear scaling
in performance at higher values of νmax.

not become a bottleneck.

We performed scalability analysis of our solver on four dif-
ferent NVIDIA GPUs with different number of CUDA cores
: GeForce 9600M GT, GeForce 8800GTX, Quadro FX 5800
and Geforce GTX 480, each with 32, 128, 240 and 480 CUDA
cores respectively. Figure 5(c) and 5(d) shows the performance
of our solver on the cathedral and the small room scene as the
number of CUDA cores increase. As can be seen, our GPU-
based solver scales linearly with the number of cores. Increas-
ing the number of CUDA cores 4 times from 32 to 128 results
in a speedup of 3 − 4 times, from 32 cores to 240 cores (7.5
times) gives 7 − 7.5 times speedup and from 32 to 480 cores
(15 times) we get a speedup of 14 − 15 times. As the amount
of work increases with increasing νmax, the performance scal-
ing becomes perfectly linear. This shows that our GPU-based
ARD solver is compute-bound rather than limited by memory
bandwidth. In future, as GPU’s continue their super-Moore’s
law growth [33, 34], our GPU-based solver will exhibit super-
exponential performance improvement.

We also perform a performance comparison of CPU-based
FDTD solver, CPU-based ARD solver and our GPU-based
ARD solver with varying νmax. Our CPU-based FDTD solver

is based upon the FDTD work proposed by Sakamoto et al. [4].
As can be seen in Figure 5(b), CPU-based ARD-solver achieves
a maximum speedup of 50 − 75 times over the CPU-based
FDTD solver. Our GPU-based ARD solver achieves a speedup
of over 1100 times over CPU-based FDTD solver for the same
scene. Since FDTD runs out of memory for νmax > 3750Hz,
we use the timings below 3750Hz and the fact that simulation
time varies as fourth power of νmax, to calculate the projected
timings for FDTD above 3750Hz.

6. Conclusion and Future Work

In this paper, we have presented an efficient GPU-based time-
domain solver for the acoustic wave equation. We observe more
than three orders of magnitude improvement over prior solvers
based on FDTD. Moreover, the use of GPUs can accelerate
the computation by more than an order of magnitude as com-
pared to the CPU-based ARD solver. We also show that our
technique scales linearly with the number of GPU processors.
Our approach has some limitations. Our current implementa-
tion assumes that the entire spatial decomposition fits into GPU
memory and is based on single precision arithmetic. In terms
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of future work, given a reformulation of the BEM-FMM so-
lution technique in time-domain, a very interesting possibility
would be to combine our ARD approach with BEM-FMM –
utilizing FMM based solutions for partitions with large volume
and our current domain-based ARD method for smaller parti-
tions. Comparing detailed impulse response measurements of
full-sized 3D concert halls against wave-based numerical simu-
lation is a very new and exciting method of investigation, which
has opened up because of the increased computational power
and memory on today’s computers. Our present work opens up
the possibility of doing such detailed comparisons on a desk-
top computer in the mid-high frequency range(1−4 kHz) in the
near future, along with visualizations of the propagating wave-
fronts. It would also be interesting to apply our approach to
more complex acoustic spaces such as CAD models and large
outdoor scenes, and extend it to multi-GPU clusters as well.
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(a) Cathedral (35m x 16m x 27 m)

(b) Walkway (30m x 30m x 10m)

(c) Train station (34m x82m x 30m)

(d) Living room (22m x 28m x 12m)

Figure 6: Benchmark scenes, videos and more pictures available in the supple-
mentary materials or at the link [9].
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