Work distribution m

ethods on GPUs

Christian Lauterback Qi Mo™ Dinesh Manochi

Department of Co

mputer Science

University of North Carolina
Chapel Hill, NC 27599
Technical Report TR009-16

Abstract

Due to their high thread and data parallelism, commodity GirU
chitectures currently provide very high performance andegel
programmability. Many algorithms have been successfublsiqul
to GPUs, but several limitations have prevented scalabjéeimen-
tations of many less easily parallelizable recursive aedanchical
algorithms. In this paper, we investigate general appreadbr
dynamic work distribution and balancing on GPUs to allowurec
sive algorithms such as hierarchy algorithms. We proposeva n
and simple method that instead employs only minimal synchro
nization between cores and explicit balancing, but is moited
to the properties of the architecture. We show an implentiamta
of several applications on a current GPU and our results gshatv
for applications with fine-grained parallelism it outperfts other
currently used work distribution methods since it avoidsita-
tions of GPU architectures and provides competitive pertorce
on coarse-grained applications.

1 Introduction

Commodity graphics processing units (GPUs) are increfsirsgd

for general purpose computations. They offer a high levelaif

and thread parallelism along with higher memory bandwidth,
compared to CPUs. These features have been successfully ex
ploited to achieve higher performance for many geometiers

tific and database applications.

Current GPUs are many-core processors with a high number of
cores. In this paper, we address the problem of designingjesffi
recursive algorithms on current GPU processors that caanbal
the load among various processing units. Examples of syt al
rithms include methods that use hierarchies or trees, ada-
finement schemes, sorting, recursive search, etc. Moremaary
of these techniques are frequently used as sub-algorithrhigh-
performance computing applications. In many cases, theathve
cost of the task is not known apriori and the resulting applic
tion may generate additional sub-tasks at runtime. For @&m
in a tree search several branches will be pruned relativeigkty
whereas others are traversed very deeply. In order to eitiizthe
hardware resources, the work may therefore need to be fnglgue
re-distributed. This is different from problems or algbrits with
more regular structures or where the work distribution igwkn
(e.g. fast fourier transform).

GPUs have been used to implement recursive algorithms ssich a
ray tracing using spatial or bounding volume hierarchiesldi

and Sugerman 2005; Horn et al. 2007]. In practice, the prmoble
is different since for these applications many parallelrpseare
evaluated and no work for an individual query is distribuéedong

the multiple units, therefore allowing each query to be heaadh-
dependently and there is no need intercommunication betvee
cores. As a result, it is relatively simple to design goodafial

*cl@cs.unc.edu
Tgmo@cs.unce.edu
*dm@cs.unc.edu

algorithms for such cases. However, many other problemis asic
the construction of spatial hierarchies by divide-andepaT algo-
rithms can pose more challenges. Current solutions foopaihg
these computations on GPUs [Zhou et al. 2008; Lauterbach et a
2009] used work queues. However, these algorithms can sjpend
siderable time on explicit management of these queues hanelty
adding significant overhead to the overall computation. drtip-
ular, the hierarchy construction algorithm is one that perfs a

lot of work for each task before creating new work units, andhs
can amortize expensive communication. For many problehis, t
is not the case and much less computations is performedébefor
communication is necessary. In these cases, the overhemakiof
distribution will become the bottleneck.

In this paper, our goal is to exploit the parallel capatastof current
many-core GPUs to efficiently perform recursive algorithigen
though current GPU architectures provide the capabilitésple-
ment intercommunication and synchronization betweens;ore
show that the particular hardware architecture of GPUspsab-
lems for traditional work balancing approaches as fredyarged
in previous work. We look at several examples of common appli
cations as well as different solutions to work distributionluding
work queues, work stealing as well as a novel minimal workbel
ing approach presented in this paper and compare them. Qultse
show that for applications with fine-grained parallelismethods
that need significant communication do perform significamwbrse
than our minimal scheme due to latency bottlenecks.

2 Background

We first briefly summarize previous work in the areas of GPU-
based algorithms and parallel computation. Later, we gibeief
overview of GPU architectures.

2.1 Previous work

There is considerable literature in parallel computingloa dise of
work queues for load balancing, including locking and nocking
shared queues such as work stealing approaches [AroraléXos,;
Hendler and Shavit 2002; Chase and Lev 2005; Hendler et@6]20
or dynamic load balancing of irregular algorithn®.[These tech-
nigues map very well to hierarchical and recursive openstiand
have been employed extensively in parallel systems andlglara
programming languages such as Cilk [Frigo et al. 1998]. Othe
techniques are based on stream computing that can handtaans
tured computations more efficientl?]] However, most of these
techniques have not been used on GPUs as the overhead of per-
forming communication between the cores through main mgmor
is high. Instead, previous techniques for GPU work queugkén
context of load balancing have used explicit compactionhod
between kernel calls. The overhead of these methods mades th
efficient only for applications with relatively high comptional
intensity and coarse-grained parallelism [Zhou et al. 20G8&iter-
bach et al. 2009]. Recently, some initial research has been p
formed into using work queues and work stealing for octree-co
struction [Cederman and Tsigas 2008a] and sorting [Cedeame

Tsigas 2008b]. In addition, other synchronization privési have
been investigated [Ha et al. 2008].

There is extensive literature on hierarchical data stmestand al-
gorithms as well as GPU computing. Many GPU-based algogthm
exploit hierarchies or irregular data structures for fastdering or
simulations. These include multigrid solvefd,[photon mapping
[Purcell et al. 2003], fluid simulation [Kyle Hegeman and lgiil
2006], random access data structures [Lefohn et al. 20pé}iad
hashing [Lefebvre and Hoppe 2006], random access treesijized
and Hoppe 2007], visualization of adaptive mesh refinematd d
[?], etc. Most of these applications perform specializeddrigny
operations or computations.

2.2 GPU architectures

In this section, we give a brief overview of current manye@PU
architectures that we exploit in our algorithm. We refer thader

to [Volkov and Demmel 2008] for a more in-depth analysis. émg
eral, the GPUs have a relatively large number of indepengemnt
cessing cores, each of which is optimized to perform vegiera-
tions but runs at comparatively low frequencies comparexiteent
CPU architectures. The high vector width — between 8 and 64 fo
current generation of GPUs — also implies that any efficiégo-a
rithm needs to utilize data parallelism to achieve high genfance.
Another main issue is the GPU memory system that typicalby pr
vide more bandwidth as compared to CPU memory systems, but ha
a higher latency. Moreover, the caches in GPUs are much emall
than CPU caches and current GPUs only provide read-onlysacce
which limits their use for general purpose computing. Thémrma
goal of these caches is not to reduce latency, but ratherdiacee
the amount of memory bandwidth used.

In order to improve latency, GPUs use two main techniquest, fir
each core has local scratch memory that can be used in pregsm
an explicitly managed store and provides very low latentyusT if
algorithms are designed with sufficient locality, most aithmem-

take work units as input that can be processed independandy
can lead to generation of new work units. The exact definitibn
a work unit depends on the kernels: for example, when testing
hierarchy nodes for overlap, the result can be that similsrsec-
tion tests needs to be performed recursively on the childfémese
nodes. In this case, the intersection test is the kerneltamaork
unit is the pair of hierarchy nodes. More general, a receraigo-
rithm gets a work unit as an input that defines all parametetise
recursive function call, and then may spawn additional warks
representing recursive calls, as well as other work unigs thay
combine results from those recursive calls. Overall, wé labthe
complete set of active work units at any step in the algoriéisnthe
front, which may or may not be available in an explicit form.
the order in which recursive calls are generated and exéaaén
be represented as a tree, then the front is simply a cut thrthey
tree. The size of the front governs the available paraftebsid thus
should be as large as possible since elements in the froftecar-
ecuted independently. In practice, the size depends orrttes of
execution of work units, the configuration of input objectsl dhe
size of the hierarchy.

=

3.2 Processing hierarchical workloads

The main challenge when performing parallel operationsierai
chies is the dynamic nature of work distribution. Since therka
load is not known a priori, assigning work units to differeates
and vector lanes in advance is impossible. A front of sufficgze
to occupy all cores may not even exist until after some stepisa
computation. For example, in hierarchical collision détetthe
initial front just has one element, i.e. the pair of root ngdas the
traversal generates more pairs of nodes the size of the typit
cally increases in geometric progression. Work is typicalko not
evenly distributed over the hierarchy since some sub-wétt hi-
erarchy may be skipped early whereas others need to be pestes
much deeper. Therefore, some mechanism for distributindk wo
between cores and load balancing during the hierarchy tiperia

ory accesses should go there. Second, the high main memory la necessary. We identify multiple existing solutions forfpeming

tency is circumvented by use of hardware multi-threadingdlevh
waiting for the results of memory accesses. This can be eethie
by running several data-parallel tasks on each core sudhtiba
processor can switch between them as they are blocked gédtin
memory accesses. Finally, the vector size used in programbe
extended beyond the size of the actual hardware vector suits
that the computations can be strip mined (i.e. processebtinks
of real vector size). This means that GPUs can efficientlz@se
these large vectors for latency hiding as well. Overalls thieans
that algorithm design should aim at providing both as muck ta
and as much vector parallelism as possible since it will maprthe
efficiency of the processors.

3 Work distribution on GPU architectures

In this section, we discuss work distribution algorithmsd an-
troduce our minimal synchronization approach that is paldirly
suitable for hierarchies and other recursive algorithmemsHine-
grained load balancing is necessary. Our approach is gemada
applicable to different GPU architectures. We first introelithe
notation used in the rest of the paper.

3.1 Notation

In general, we refer to each independent processing uniteoGPU
as a core, each of which is a vector processor that execssthe
instruction on a data array elements in parallel. A runnir@gpam
is a task that can be executed in parallel on each core of thg GP
and we refer to the specific code run by the task as a kernes Thi
kernel is identical on all the cores. We assume that our kerne

this balancing on multi-threaded CPU or GPU architectures.

Compaction: Prior approaches used explicity managed queues
on GPUs due to limitations that made core synchronizatigrosn
sible. In this case, each kernel has an input and an outplt wor
queue and is bounded in how many work units it can spawn per
step. The work kernel is executed once, then the output giseue
processed by a compaction kernel that eliminates emptyipasi

in the queue. The roles of output/input queue are then svebppe

the work kernel executed again, until no more output uniistex
However, this approach has several disadvantages: it meseesf

the GPU’s static task scheduler to distribute the work uinitde
input queue, which does not perform any load balancing. th-ad
tion, there may be significant overhead for repeatedly mumiihe
compaction kernel, both due to call overhead and limitedaivie
parallism of the compaction. Finally, bounding the numtferork
units created per step may lead to limitations for sevegar@hms.

In the context of hierarchy construction [Zhou et al. 2008uter-
bach et al. 2009], this approach works due to two reasonshea) t
work kernel performs a relatively large amount of work pespst
and b) it could only write out a very small number (two) of new
work units per step, thus making list maintenance relaticékeap.

Work queues: Due to the introduction of atomic operations such
as CAS and memory fence operations, it is also possible to use
global shared memory structures on GPUs. The simplestisnlut

is to use a shared work queue in global memory and controkacce
to it via a synchronization primitive. However, this appchahas
significant contention for access to the work queue and tigls h

overhead as cores are busy waiting for work access.

Work stealing: Algorithms such as non-blocking work stealing
[Arora et al. 1998] have been very successful in multi-cqneliaa-
tions due to a reduction in contention. In this case, everg bas

a separate work queue which is still accessible to othergssmrs.
However, cores can steal work units from others’ queues etem
their own queue is empty. By using an implementation with an
array-based deque such as in [Arora et al. 1998], blockingcin
cess to the queues can be reduced. In addition, ideally eaeh c
will try to steal from different work queues first to furtheeduce
contention. Previous work [Cederman and Tsigas 2008a; i€ede
man and Tsigas 2008b] has found this to perform better thaived!
work queues.

However, all these techniques do not currently work well d?Js

for multiple reasons. Primarily, they are based on the apsiom
that low-latency communication between cores is possibtader

to manage concurrent access to shared structures. Urdibetyn
this is only possible in a very restricted sense on curreni&SH he
main barrier to communication is the latency and lack of a wgm
consistency model in the global GPU memory shared by thescore
i.e. different cores are not guaranteed to see memory wirbes

other cores or may not even see them in the same order they wer

written. Even though newer GPU architectures provide atapk
erations such as compare-and-swap (CAS) that could be osed f
locking operations, the remaining problem is that previauges

to the memory protected by the lock may not have been executed

yet, thus preventing implementation of work queues or osftierc-
tures shared by all cores. Using memory fence operatiomsiso
tency can be enforced, but with relatively high overheaderEif
memory consistency were not a problem, busy waiting suctyas b
spinning on a lock variable is relatively inefficient on armlatec-
ture with high memory latency and hardware multi-threadeet e
cution can also lead to priority inversion and prevent otheeads
on the same core from performing useful work. In additiortuat
task scheduling to the cores is still handled by fixed-fuorctinits
on hardware that cannot be affected by the programmingfater
The number of actual tasks is almost always higher than thrbeu
of cores to allow hardware multi-threading, and since theedaler
does not make any guarantees as to fairness in core alloc#tio
is not guaranteed that any task is actually executed in Ipatal
any other. Thus, global communication between all taskaatlve
guaranteed as some may not even be started until others end.

3.3 Lightweight work balancing

Our approach is motivated by this challenge and tries tounirc
vent the lack of a memory consistency model and still progiai@e
limited coordination between cores to avoid maintenanegt@mad.
While some explicit queue maintenance work outside of the&kwo
kernel is necessary, we drastically reduce the amount & spent
on it by only performing it as a load balancing step betweae<o
when we detect that enough cores are idle. In our work orgéioiz
approach each task maintains a private work queue eithéwaired

or global memory (depending on the size of work units) thatloa
either be read in a data parallel manner to provide a workfonit
all vector element, or just one unit for the whole task, delen

on the application. Putting new elements in the local workugu
can be implemented easily by either using a parallel prefir su
based on the results of each work kernel, or atomic incresnent
the local work queue index to avoid write conflicts. There tawe
cases where work processing must end: first, the queue isyempt
and no more work is available and second, the allocated dpace
the queue is full and the work kernel cannot be executed Isecau
any further work elements could not be stored. In that case, w
consider the task inactive and atomically increment a dlatia

e

continue

lNew kernel call

Balance mEE }

Core 1..k

Figure 1: Our approach: In our approach, each task keeps its
own local work queue in local memory and can generate new work
units without coordinating with others. After processingvark
unit, each task is either able to run further or has an emptgam-
pletely full work queue and wants to abort. By checking howyna
tasks are marked idle after each step, tasks will abort whena
certain threshold of idle tasks is reached. At that pointeaplicit
work balancing kernel is launched that rearranges the warkups
and distributes work units such that all cores have roughg/game
workload.

executeWithBalancinglobalWorkQueugaskNrthresholdnldle)
begin
localQueue= globalWorkQueué&askNm;
comment copy work queue to local memory;
while 'wa.empty) Alwa. full() A nidle < thresholddo
item:= wa.pop();
kernelwag,item);
od
atomicindidle);
globalWorkQueué&askNn := localQueue
end

Figure 2: Lightweight work balacing. nldle is initialized to 0
before execution and then incremented whenever a task exits
for some reason. threshold is a user-specified parameter sieig
the number of idle tasks allowed until balancing.

counter. To make sure that a sufficient amount of tasks iseatii
ensure parallel utilization of the whole GPU, each task seihe
counter after processing a work unit and compares againgti@n
threshold to determine whether re-balancing work is neeteldat
is the case, then the task aborts (see Fig. 1 for illustrgtiblote
that even without a memory consistency model, every tasicesd
increments to the global counter eventually.

In case balancing is needed, a we exectute a global worlktxdistr
tion kernel that steals work from some of the queues andligés
it to those that are not full. Work redistribution is perfaethin par-
allel by first counting the total number of work items and cartirpg
a roughly equal number of work units for each queue. Regpttia
work units to the new queues for all cores is performed in Ifglra
by computing offsets through a data parallel prefix sum atlgor
and then copying to the new positions by all cores in parabeker-
all, there are a couple of factors influencing the perforneasfchis
approach, most of which are dependent on which actual warieke
is used. Foremost, the idle threshold should be set relathigh
to avoid having to balance work too often, which incurs extrar-
head for multiple kernel launches and synchronizationload. In

/ Step 1

Inner node &
. Leaf node &

Active front .

u,

r

Figure 3: Hierarchy construction: The front of active work units
during several steps in the construction of an object hiehngr

Each entry in the front can be processed independently bglpar

lel tasks, but subsequent steps depend on output from thiepse
one and thus require some degree of coordination.

addition, the number of tasks launched in parallel shouteted the

number of cores on the GPU, taking into account that eachwan r

multiple tasks thanks to hardware multi-threading. Themrefeven

if a part of the tasks is idle, others running on the same cag m

still be active. The optimal number of tasks is the one thatiaes

work kernel takes in a set of triangles, computes a split efgét

into two new subsets according to a heuristic, resorts timitres
based on the split, generates the new bounding box and thgn ma
generate two new splits (or none, if it created a leaf node)e T
construction algorithm starts with only one split (the raotle) and
then increases parallelism geometrically until leaf nodes con-
structed.

4.2 Sorting

An obvious candidate for recursive algorithms is Quicksettich
was also investigated in [Cederman and Tsigas 2008b]. Vithde
similar in structure to hierarchy construction since itrtgavith the
whole list, then recursively subdivides, the main differeris that
the main pivoting operation has much less computationehsity.
Therefore, we expect the overhead in the work balancing ookt
be much more critical to overall performance. Unlike ther&iehy
construction, we only recurse until the list of keys to betadris
small enough to fit into local memory and then revert to a sémpl
sort for higher performance.

4.3 Collision detection

An application for object hierarchies is to check for catiiss be-
tween two disjoint objects (inter-object collisions) aslives self
collisions for deformable objects (intra-object collisg). The main
operation in collision detection is, given several objec¢tsfind
whether and at which points they overlap. The objects coosis
several geometric primitives (e.g. triangles), which meshithe
problem to finding which of these triangles intersect. As a-sp
cial case, self-intersection tests whether any of the pikies of the
object intersect each other, which is of use for applicatiench
as cloth simulation. The naive solution to collision detects
to test every combination of primitives, which is not praatidue
to quadratic run-time. However, given a hierarchy built op bf
each object’s primitives, it is possible to intersect therhichies
instead to find potential collisions and then only performmyitive-
primitive intersection for those candidates.

Simultaneous hierarchy traversal: In general, both the geomet-

that all GPU cores are scheduled enough tasks as they catehand ric primitives as well as the bounding volumes used in thesiy

using hardware multithreading.

4 Applications

We use several benchmark applications with different prtgeto
evaluate the different GPU work distribution techniques.

4.1 Hierarchy construction

Object hierarchies are widely used in many applicationh ag
computer graphics and collision detection. An object hidrg is

a tree of bounding volumes (such as boxes or spheres) with the

main property that each node’s bounding box contains atihits
drens’. At the leaf nodes, nodes then refer to individuaitive
geometric objects, such as triangles or points. Constmcii these
hierarchies usually progresses by recursively splittiraugs of ob-
jects into two or more smaller groups until only single oltgeare
left. Since the splits usually do not result in the same arhofin
primitives in all the subgroups, the height of the tree is kratwn
in advance and the tree in general can be highly unbalandags, T
load balancing is critical to good performance in many agagions.

This divide-and-conquer approach maps well to our algorisince
all split operations are fully independent and can thus eltea in

can vary depending on the application and other criteriavéler,
the algorithm for intersecting hierarchies is the samertidgwith
the two roots, two hierarchy nodes are intersected by analist
testing their respective bounding volumes for overlaphéitover-
lap, then all possible pairings of their children are reualy tested
for intersection as well (see Fi@?.) If both of the nodes are leafs,
then the two corresponding primitives are put on the listaieptial
intersections. If only one of the two is a leaf, then it is ¢égkagainst
the children of the other node.

From the standpoint of our approach, the main work units ansp
of hierarchy nodes and for a binary tree each intersectiorges-
erate up to four pairs per step. All intersection tests betwthe
node of the hierarchy can be performed independently. Wehgse
object hierarchy generated by the construction algoritiescdbed
above with AABB as the bounding volume as the input for oulicol
sion detection algorithm, then perform self-collision byerrsecting
the hierarchy with itself. As such, the mapping to our workdalo
are relatively simple. Unlike the previous applicationatthse data
parallelism in the actual work, the intersection kernel icestead be
run using the vector units to process several intersectioparallel
and push the resulting new intersection pairs on the workigus
in a separate result queue for actual primitive pairs. Thay,we
can handle many more parallel node intersections. Aftehibrar-

parallel. We employ the same approach as in [Lauterbach. et al chy traversal, the overall list of primitive pairs is theredsas input

2009] using axis-aligned bounding boxes (AABBs) where tlagnm

into a intersection test kernel that tests for actual irtetion, using

the GPU'’s static work scheduler.

4.4 Generic recursion kernel

In order to evaluate performance of a generic recursiverdlgo
on different methods more directly, we also tested a gerveoik
kernel that spawns up tonew work units and performa work at
each step by executing mathematical operations iterations of
a loop. Unlike the other approaches, this kernel handleparate
work unit for each vector lane and thus for a vector size/ c&n
actually create up tet new work units, thus putting a much larger
load on work organization. As a termination criterion, adam

number in 0.1 is generated for each evaluation and compared to a

user-specified termination probability. If larger, then new work
units are spawned, otherwise no new work is created.

This kernel allows to vary the computational load of a reiveral-
gorithm, as well as the rate at which new work is generatedtaunl
new work units may need to be distributed. This allows usvesn
tigate a broader spectrum than presented by the two redthapr
plications and also test for architecture-specific peréomoe char-
acteristics. In order to have a fair comparison of differamirk
distribution approaches, the random number generatoedezkin
a way that the resulting recursion tree structure only ddpem the
initial seed and is thus reproducible.

5 Results and Analysis

5.1 Results

We now describe results from an implementation of the method
and applications described above on a real GPU architecture

5.2 Implementation

i /s
w0 /4

«==¢-=Compaction

Time (ms)
&

20

—{=Balancing

10

0 50000 100000 150000 200000

Number of geometric objects

Figure 5: Hierarchy construction: Timings of our approach (in
ms) for parallel hierarchy construction, using AABBs or GBB
as bounding volumes. Results are relatively close sinceviee

all time is dominated by the computationally intensive wiek-
nels, but our approach performs about 5-10% faster than the
compaction-based implementation in previous work.

Figure 6: Quicksort: Timings of our sorting a list of n values (in
ms) for different work balancing algorithms, as well as fofast
radix sort algorithm.

the implementation on several randomly generated datag#éts
increasing number of values to sort. The results show thatninr
imal work balancing approach performs much better here due t
less overhead and contention in list access. To compardudso
performance, we also compare against a state-of-the-dingal-
gorithm presented in [Satish et al. 2009] based on optimiadik

We have implemented our approach using a Intel Core2 Duo sys- SOrt. Similar to results in [Cederman and Tsigas 2008b], e o

tem at 2.83 GHz on 4 cores. We are using CUDA on a NVIDIA

serve that Quicksort is still somewhat slower in practideniir to

GTX 285 GPU that has a total of 30 processing cores and 1 GB of construction, the main problem is that the initial stepshef@uick-

memory. For all approaches and work kernels, we start mate-in
pendent GPU tasks than actual cores to allow for hardward-mul
threading. The optimal number of tasks to fully occupy theUGP
can be calculated by examining the resource utilizatiomefitork
kernels. Using our work balancing approach, we set thermite
for performing a balancing step to half the tasks being idNete
that since we launch more tasks than cores this does not resul
half the processing cores being idle.

We now demonstrate results from our implementation of tige-al
rithms described in the previous section. We use severahtmm
benchmark scenes from previous work to allow easier corapari
with other techniques (see Fig. 4). These scenes range foém 4
to 146k triangles each and have relatively complex strectdor
example, the Flamenco model has several cloth layers vesecl
together, representing a hard case for culling in colligietection.

Fig. 5 shows our results for construction of an object higngr
on several geometric triangle models ranging from 40k tok146
triangles. We use both axis-aligned bounding boxes (AABH&s)
well as more complex and tighter-fitting oriented boundiroxds
(OBBs) for both approaches. For OBB construction, simibgorte-
vious approaches we perform splitting with axis-aligneahgls first
and then fit the OBB around the triangles in a post-processtieg
similar to refitting using the PCA approach from [Gottschetlal.
1996]. We compare the impact of our approach for hierarchmt co
struction compared to previous compaction-based impléatiens
[Zhou et al. 2008; Lauterbach et al. 2009], but improvemeinés
relatively minor at about 10-13% faster timings.

sort algorithms cannot use full parallelism since only on@ery

few partitions are available. In addition, these partisi@me most
likely contain the largest number of values to sort and thiks the
most time to process.

5.3 Analysis

Finally, we look at the performance of our generic recursien
nel for different parameters for branching factaand termination
probability p controlling how much total work units are generated,
as well as work per kern& which directly influences the computa-
tional load versus time spent generating and distributingkwThe
results are summarized in Fi@®?. In general, we see that, as ex-
pected, an increase im decreases the impact of work distribution
method as more of the total time is spent doing actual workhén
opposite case, we observe that for smaller work units ouk\waf-
ancing method performs better since it requires less symita-
tion. Interestingly, we also see that the absolute perfagealoes
not change much up to some valuemfwhich suggests that up to
a point additional computational intensity is almost frelijch has
interesting applications for algorithm design choices.

When changing and p to increase the amount of work (see Fig.
??b)), we see that all implementations except compactiorescal
well. The graphs also show some sub-linear scalability forkw
stealing and our approach. We ascribe that to higher pegoc@

in the late stages of processing when all tasks have suffigierk

to perform without needing to perform work on synchroniaatat

all, whereas both global work queues and compaction always h

Sorting peformance using Quicksort is shown in Fig. 6. We use the same overhead.

&40

Figure 4. Benchmarks: The benchmark scenes for construction used in this pappriefo Flamenco (49K triangles), top right: Princess
(40K), bottom left: Cloth dropping on sphere (92K) and bottdght: n-body simulation (146K). Our algorithm can penfioiinteractive
self-collision using continuous triangle intersectionalhof these models.

Our approach has some limitations worth noting. For onertatgp
the work kernel occasionally incurs both overhead from tolaal
kernel calls (about on the order of 3¢ on current architectures
[Volkov and Demmel 2008]), time spent idling when waiting fo
the last active tasks to complete as well as the actual tireetsp
the balancing kernel which is directly proportional to thember
of work units in all queues. In our applications, individwabrk
units are very small (e.g. 8-16 bytes) and reordering thermgu
balancing is relatively cheap. For applications with largeits, it
would be advisable to reorder indices instead.

6 Conclusion and future work

6.1 Conclusion and future work

We have presented a lightweight work balancing techniquese
on GPU architectures and compared it against several pgyio
used methods on a variety of applications. Our results shaitv t
traditional methods work for applications with very comgtitin-
ally intense kernels, but are slow when the overall runtisyaadt
dominated by the computation and requires frequent symitae
tion operations. In contrast, our method — while incurrirgnge
overhead — provides faster overall performance during veadcu-
tion due to its lightweight nature.

We are interested in investigating other applications ttzae a re-
cursive nature. One candidate is collision detection wiobjects
represented by hierarchies are tested for overlap usingLagiee
hierarchical traversal. Due to the computational intgnsit in-
tersection tests between primitives especially when usamgplex
bounding volumes and continuous intersection, GPUs shuoeild
good candidate for performing the intersection tests. Aeogp-
plication would be other recursive search problems suchhassc
and other planning algorithms that are implemented receilssi

References

ARORA, N. S., B.UMOFE, R. D.,AND PLAXTON, C. G. 1998. Thread scheduling for
multiprogrammed multiprocessors. 8PAA '98: Proceedings of the tenth annual
ACM symposium on Parallel algorithms and architectu®€M, New York, NY,
USA, 119-129.

CEDERMAN, D., AND TSIGAS, P. 2008. On dynamic load balancing on graphics pro-
cessors. IGH '08: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS

symposium on Graphics hardwareEurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 57-64.

CEDERMAN, D., AND TsSIGAS, P. 2008. On sorting and load balancing on gpus.

SIGARCH Comput. Archit. News 35 11-18.

CHASE, D., AND LEV, D. 2005. Dynamic circular work-stealing deque. 3RAA
'05: Proceedings of the seventeenth annual ACM symposiuffacallelism in
algorithms and architectureACM, New York, NY, USA, 21-28.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration structures for a GPU

raytracer. InProc. ACM SIGGRAPH/EG Conf. on Graphics Hardwat8—22.

FRIGO, M., LEISERSON C. E.,AND RANDALL, K. H. 1998. The implementation
of the cilk-5 multithreaded languag8IGPLAN Not. 335, 212-223.

GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 1996. OBB-Tree: A hierarchical
structure for rapid interference detectidProc. of ACM Siggraph’96171-180.

HA, P. H., TSIGAS, P.,AND ANSHUS, O. J. 2008. Wait-free programming for general
purpose computations on graphics processortPDPS IEEE, 1-12.

HENDLER, D., AND SHAVIT, N. 2002. Non-blocking steal-half work queues. In
PODC '02: Proceedings of the twenty-first annual sympositmPdnciples of
distributed computingACM, New York, NY, USA, 280-289.

HENDLER, D., LEV, Y., MOIR, M., AND SHAVIT, N. 2006. A dynamic-sized non-
blocking work stealing dequéDistrib. Comput. 183, 189-207.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P. 2007. Interac-
tive k-d tree GPU raytracing. IRroc. 13D '07, 167-174.

KYLE HEGEMAN, N. A. C.,AND MILLER, G. S. 2006. Particle-based fluid simula-
tion on the gpu. 228-235.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D., AND MANOCHA,
D. 2009. Fast bvh construction on gpus.Aroc. Eurographics '09

LEFEBVRE, S.,AND HOPPE H. 2006. Perfect spatial hashing. $\GGRAPH '06
ACM, New York, NY, USA, 579-588.

LEFEBVRE S.,AND HOPPE H. 2007. Compressed random-access trees for spa-
tially coherent data. IiRendering Techniques (Proceedings of the Eurographics
Symposium on Renderindgjurographics.

LEFOHN, A., KNISS, J. M., STRZODKA, R., SENGUPTA, S.,AND OWENS, J. D.
2006. Glift: Generic, efficient, random-access gpu datzcsires. ACM Transac-
tions on Graphics 251 (Jan.), 60-99.

PURCELL, T., DONNER, C., CAMMARANO, M., JENSEN, H., AND HANRAHAN,
P. 2003. Photon mapping on programmable graphics hardw&@M SIG-
GRAPH/Eurographics Conference on Graphics Hardwatke-50.

SATISH, N., HARRIS, M., AND GARLAND, M. 2009. Designing efficient sorting
algorithms for manycore gpus. Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium,dr-10.

VoLkov, V., AND DEMMEL, J. W. 2008. Benchmarking gpus to tune dense linear
algebra. 1-11.

ZHou, K., Hou, Q., WANG, R.,AND GuO, B. 2008. Real-time kd-tree construction
on graphics hardware. IAroc. SIGGRAPH Asia

