
Work distribution methods on GPUs

Christian Lauterback∗ Qi Mo† Dinesh Manocha‡

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27599
Technical Report TR009-16

Abstract

Due to their high thread and data parallelism, commodity GPUar-
chitectures currently provide very high performance and general
programmability. Many algorithms have been successfully ported
to GPUs, but several limitations have prevented scalable implemen-
tations of many less easily parallelizable recursive and hierarchical
algorithms. In this paper, we investigate general approaches for
dynamic work distribution and balancing on GPUs to allow recur-
sive algorithms such as hierarchy algorithms. We propose a new
and simple method that instead employs only minimal synchro-
nization between cores and explicit balancing, but is more suited
to the properties of the architecture. We show an implementation
of several applications on a current GPU and our results showthat
for applications with fine-grained parallelism it outperforms other
currently used work distribution methods since it avoids limita-
tions of GPU architectures and provides competitive performance
on coarse-grained applications.

1 Introduction

Commodity graphics processing units (GPUs) are increasingly used
for general purpose computations. They offer a high level ofdata
and thread parallelism along with higher memory bandwidth,as
compared to CPUs. These features have been successfully ex-
ploited to achieve higher performance for many geometric, scien-
tific and database applications.

Current GPUs are many-core processors with a high number of
cores. In this paper, we address the problem of designing efficient
recursive algorithms on current GPU processors that can balance
the load among various processing units. Examples of such algo-
rithms include methods that use hierarchies or trees, adaptive re-
finement schemes, sorting, recursive search, etc. Moreover, many
of these techniques are frequently used as sub-algorithms in high-
performance computing applications. In many cases, the overall
cost of the task is not known apriori and the resulting applica-
tion may generate additional sub-tasks at runtime. For example,
in a tree search several branches will be pruned relatively quickly
whereas others are traversed very deeply. In order to utilize all the
hardware resources, the work may therefore need to be frequently
re-distributed. This is different from problems or algorithms with
more regular structures or where the work distribution is known
(e.g. fast fourier transform).

GPUs have been used to implement recursive algorithms such as
ray tracing using spatial or bounding volume hierarchies [Foley
and Sugerman 2005; Horn et al. 2007]. In practice, the problem
is different since for these applications many parallel queries are
evaluated and no work for an individual query is distributedamong
the multiple units, therefore allowing each query to be handled in-
dependently and there is no need intercommunication between the
cores. As a result, it is relatively simple to design good parallel

∗cl@cs.unc.edu
†qmo@cs.unce.edu
‡dm@cs.unc.edu

algorithms for such cases. However, many other problems such as
the construction of spatial hierarchies by divide-and-conquer algo-
rithms can pose more challenges. Current solutions for performing
these computations on GPUs [Zhou et al. 2008; Lauterbach et al.
2009] used work queues. However, these algorithms can spendcon-
siderable time on explicit management of these queues, and thereby
adding significant overhead to the overall computation. In partic-
ular, the hierarchy construction algorithm is one that performs a
lot of work for each task before creating new work units, and such
can amortize expensive communication. For many problems, this
is not the case and much less computations is performed before
communication is necessary. In these cases, the overhead ofwork
distribution will become the bottleneck.

In this paper, our goal is to exploit the parallel capabilities of current
many-core GPUs to efficiently perform recursive algorithms. Even
though current GPU architectures provide the capabilitiesto imple-
ment intercommunication and synchronization between cores, we
show that the particular hardware architecture of GPUs poses prob-
lems for traditional work balancing approaches as frequently used
in previous work. We look at several examples of common appli-
cations as well as different solutions to work distributionincluding
work queues, work stealing as well as a novel minimal work balanc-
ing approach presented in this paper and compare them. Our results
show that for applications with fine-grained parallelism, methods
that need significant communication do perform significantly worse
than our minimal scheme due to latency bottlenecks.

2 Background

We first briefly summarize previous work in the areas of GPU-
based algorithms and parallel computation. Later, we give abrief
overview of GPU architectures.

2.1 Previous work

There is considerable literature in parallel computing on the use of
work queues for load balancing, including locking and non-locking
shared queues such as work stealing approaches [Arora et al.1998;
Hendler and Shavit 2002; Chase and Lev 2005; Hendler et al. 2006]
or dynamic load balancing of irregular algorithms [?]. These tech-
niques map very well to hierarchical and recursive operations and
have been employed extensively in parallel systems and parallel
programming languages such as Cilk [Frigo et al. 1998]. Other
techniques are based on stream computing that can handle unstruc-
tured computations more efficiently [?]. However, most of these
techniques have not been used on GPUs as the overhead of per-
forming communication between the cores through main memory
is high. Instead, previous techniques for GPU work queues inthe
context of load balancing have used explicit compaction methods
between kernel calls. The overhead of these methods makes them
efficient only for applications with relatively high computational
intensity and coarse-grained parallelism [Zhou et al. 2008; Lauter-
bach et al. 2009]. Recently, some initial research has been per-
formed into using work queues and work stealing for octree con-
struction [Cederman and Tsigas 2008a] and sorting [Cederman and



Tsigas 2008b]. In addition, other synchronization primitives have
been investigated [Ha et al. 2008].

There is extensive literature on hierarchical data structures and al-
gorithms as well as GPU computing. Many GPU-based algorithms
exploit hierarchies or irregular data structures for fast rendering or
simulations. These include multigrid solvers [?], photon mapping
[Purcell et al. 2003], fluid simulation [Kyle Hegeman and Miller
2006], random access data structures [Lefohn et al. 2006], spatial
hashing [Lefebvre and Hoppe 2006], random access trees [Lefebvre
and Hoppe 2007], visualization of adaptive mesh refinement data
[?], etc. Most of these applications perform specialized hierarchy
operations or computations.

2.2 GPU architectures

In this section, we give a brief overview of current many-core GPU
architectures that we exploit in our algorithm. We refer thereader
to [Volkov and Demmel 2008] for a more in-depth analysis. In gen-
eral, the GPUs have a relatively large number of independentpro-
cessing cores, each of which is optimized to perform vector opera-
tions but runs at comparatively low frequencies compared tocurrent
CPU architectures. The high vector width – between 8 and 64 for
current generation of GPUs – also implies that any efficient algo-
rithm needs to utilize data parallelism to achieve high performance.
Another main issue is the GPU memory system that typically pro-
vide more bandwidth as compared to CPU memory systems, but has
a higher latency. Moreover, the caches in GPUs are much smaller
than CPU caches and current GPUs only provide read-only access,
which limits their use for general purpose computing. The main
goal of these caches is not to reduce latency, but rather to reduce
the amount of memory bandwidth used.

In order to improve latency, GPUs use two main techniques: first,
each core has local scratch memory that can be used in programs as
an explicitly managed store and provides very low latency. Thus, if
algorithms are designed with sufficient locality, most of their mem-
ory accesses should go there. Second, the high main memory la-
tency is circumvented by use of hardware multi-threading while
waiting for the results of memory accesses. This can be achieved
by running several data-parallel tasks on each core such that the
processor can switch between them as they are blocked waiting for
memory accesses. Finally, the vector size used in programs can be
extended beyond the size of the actual hardware vector unitssuch
that the computations can be strip mined (i.e. processed in chunks
of real vector size). This means that GPUs can efficiently process
these large vectors for latency hiding as well. Overall, this means
that algorithm design should aim at providing both as much task
and as much vector parallelism as possible since it will improve the
efficiency of the processors.

3 Work distribution on GPU architectures

In this section, we discuss work distribution algorithms and in-
troduce our minimal synchronization approach that is particularly
suitable for hierarchies and other recursive algorithms where fine-
grained load balancing is necessary. Our approach is general and
applicable to different GPU architectures. We first introduce the
notation used in the rest of the paper.

3.1 Notation

In general, we refer to each independent processing unit on the GPU
as a core, each of which is a vector processor that executes the same
instruction on a data array elements in parallel. A running program
is a task that can be executed in parallel on each core of the GPU,
and we refer to the specific code run by the task as a kernel. This
kernel is identical on all the cores. We assume that our kernels

take work units as input that can be processed independentlyand
can lead to generation of new work units. The exact definitionof
a work unit depends on the kernels: for example, when testingtwo
hierarchy nodes for overlap, the result can be that similar intersec-
tion tests needs to be performed recursively on the childrenof these
nodes. In this case, the intersection test is the kernel and the work
unit is the pair of hierarchy nodes. More general, a recursive algo-
rithm gets a work unit as an input that defines all parameters to the
recursive function call, and then may spawn additional workunits
representing recursive calls, as well as other work units that may
combine results from those recursive calls. Overall, we look at the
complete set of active work units at any step in the algorithmas the
front, which may or may not be available in an explicit form. If
the order in which recursive calls are generated and executed can
be represented as a tree, then the front is simply a cut through the
tree. The size of the front governs the available parallelism and thus
should be as large as possible since elements in the front canbe ex-
ecuted independently. In practice, the size depends on the order of
execution of work units, the configuration of input objects and the
size of the hierarchy.

3.2 Processing hierarchical workloads

The main challenge when performing parallel operations on hierar-
chies is the dynamic nature of work distribution. Since the work-
load is not known a priori, assigning work units to differentcores
and vector lanes in advance is impossible. A front of sufficient size
to occupy all cores may not even exist until after some steps in the
computation. For example, in hierarchical collision detection the
initial front just has one element, i.e. the pair of root nodes; as the
traversal generates more pairs of nodes the size of the fronttypi-
cally increases in geometric progression. Work is typically also not
evenly distributed over the hierarchy since some sub-treesof the hi-
erarchy may be skipped early whereas others need to be processed
much deeper. Therefore, some mechanism for distributing work
between cores and load balancing during the hierarchy operation is
necessary. We identify multiple existing solutions for performing
this balancing on multi-threaded CPU or GPU architectures.

Compaction: Prior approaches used explicitly managed queues
on GPUs due to limitations that made core synchronization impos-
sible. In this case, each kernel has an input and an output work
queue and is bounded in how many work units it can spawn per
step. The work kernel is executed once, then the output queueis
processed by a compaction kernel that eliminates empty positions
in the queue. The roles of output/input queue are then swapped and
the work kernel executed again, until no more output units exist.
However, this approach has several disadvantages: it makesuse of
the GPU’s static task scheduler to distribute the work unitsin the
input queue, which does not perform any load balancing. In addi-
tion, there may be significant overhead for repeatedly running the
compaction kernel, both due to call overhead and limited available
parallism of the compaction. Finally, bounding the number of work
units created per step may lead to limitations for several algorithms.
In the context of hierarchy construction [Zhou et al. 2008; Lauter-
bach et al. 2009], this approach works due to two reasons: a) the
work kernel performs a relatively large amount of work per step
and b) it could only write out a very small number (two) of new
work units per step, thus making list maintenance relatively cheap.

Work queues: Due to the introduction of atomic operations such
as CAS and memory fence operations, it is also possible to use
global shared memory structures on GPUs. The simplest solution
is to use a shared work queue in global memory and control access
to it via a synchronization primitive. However, this approach has
significant contention for access to the work queue and thus high



overhead as cores are busy waiting for work access.

Work stealing: Algorithms such as non-blocking work stealing
[Arora et al. 1998] have been very successful in multi-core applica-
tions due to a reduction in contention. In this case, every core has
a separate work queue which is still accessible to other processors.
However, cores can steal work units from others’ queues whenever
their own queue is empty. By using an implementation with an
array-based deque such as in [Arora et al. 1998], blocking inac-
cess to the queues can be reduced. In addition, ideally each core
will try to steal from different work queues first to further reduce
contention. Previous work [Cederman and Tsigas 2008a; Ceder-
man and Tsigas 2008b] has found this to perform better than global
work queues.

However, all these techniques do not currently work well on GPUs
for multiple reasons. Primarily, they are based on the assumption
that low-latency communication between cores is possible in order
to manage concurrent access to shared structures. Unfortunately,
this is only possible in a very restricted sense on current GPUs. The
main barrier to communication is the latency and lack of a memory
consistency model in the global GPU memory shared by the cores,
i.e. different cores are not guaranteed to see memory writesfrom
other cores or may not even see them in the same order they were
written. Even though newer GPU architectures provide atomic op-
erations such as compare-and-swap (CAS) that could be used for
locking operations, the remaining problem is that previouswrites
to the memory protected by the lock may not have been executed
yet, thus preventing implementation of work queues or otherstruc-
tures shared by all cores. Using memory fence operations, consis-
tency can be enforced, but with relatively high overhead. Even if
memory consistency were not a problem, busy waiting such as by
spinning on a lock variable is relatively inefficient on an architec-
ture with high memory latency and hardware multi-threaded exe-
cution can also lead to priority inversion and prevent otherthreads
on the same core from performing useful work. In addition, actual
task scheduling to the cores is still handled by fixed-function units
on hardware that cannot be affected by the programming interface.
The number of actual tasks is almost always higher than the number
of cores to allow hardware multi-threading, and since the scheduler
does not make any guarantees as to fairness in core allocation, it
is not guaranteed that any task is actually executed in parallel to
any other. Thus, global communication between all tasks cannot be
guaranteed as some may not even be started until others end.

3.3 Lightweight work balancing

Our approach is motivated by this challenge and tries to circum-
vent the lack of a memory consistency model and still providesome
limited coordination between cores to avoid maintenance overhead.
While some explicit queue maintenance work outside of the work
kernel is necessary, we drastically reduce the amount of time spent
on it by only performing it as a load balancing step between cores
when we detect that enough cores are idle. In our work organization
approach each task maintains a private work queue either in shared
or global memory (depending on the size of work units) that can be
either be read in a data parallel manner to provide a work unitfor
all vector element, or just one unit for the whole task, depending
on the application. Putting new elements in the local work queue
can be implemented easily by either using a parallel prefix sum
based on the results of each work kernel, or atomic increments to
the local work queue index to avoid write conflicts. There aretwo
cases where work processing must end: first, the queue is empty
and no more work is available and second, the allocated spacefor
the queue is full and the work kernel cannot be executed because
any further work elements could not be stored. In that case, we
consider the task inactive and atomically increment a global idle

Task 0

Task i

Core 1

Task n

Task n+i

Core k

Utilization

Balance
Core 1..k

New kernel call

abort or

continue

abort or

continue

Figure 1: Our approach: In our approach, each task keeps its
own local work queue in local memory and can generate new work
units without coordinating with others. After processing awork
unit, each task is either able to run further or has an empty orcom-
pletely full work queue and wants to abort. By checking how many
tasks are marked idle after each step, tasks will abort whenever a
certain threshold of idle tasks is reached. At that point, anexplicit
work balancing kernel is launched that rearranges the work queues
and distributes work units such that all cores have roughly the same
workload.

executeWithBalancing(globalWorkQueue, taskNr, threshold,nIdle)
begin

localQueue:= globalWorkQueue(taskNr);
comment: copy work queue to local memory;
while !wq.empty() ∧ !wq. f ull() ∧ nIdle≤ thresholddo

item:= wq.pop();
kernel(wq, item);

od
atomicInc(idle);
globalWorkQueue(taskNr) := localQueue;

end

Figure 2: Lightweight work balacing. nIdle is initialized t o 0
before execution and then incremented whenever a task exits
for some reason. threshold is a user-specified parameter setting
the number of idle tasks allowed until balancing.

counter. To make sure that a sufficient amount of tasks is active to
ensure parallel utilization of the whole GPU, each task reads the
counter after processing a work unit and compares against anidle
threshold to determine whether re-balancing work is needed. If that
is the case, then the task aborts (see Fig. 1 for illustration.) Note
that even without a memory consistency model, every task will see
increments to the global counter eventually.

In case balancing is needed, a we exectute a global work distribu-
tion kernel that steals work from some of the queues and distributes
it to those that are not full. Work redistribution is performed in par-
allel by first counting the total number of work items and computing
a roughly equal number of work units for each queue. Resorting the
work units to the new queues for all cores is performed in parallel
by computing offsets through a data parallel prefix sum algorithm
and then copying to the new positions by all cores in parallel. Over-
all, there are a couple of factors influencing the performance of this
approach, most of which are dependent on which actual work kernel
is used. Foremost, the idle threshold should be set relatively high
to avoid having to balance work too often, which incurs extraover-
head for multiple kernel launches and synchronization overhead. In



Active front

Inner node

Leaf node

Step 1

Step 2

Step 3

Step 4

Figure 3: Hierarchy construction: The front of active work units
during several steps in the construction of an object hierarchy.
Each entry in the front can be processed independently by paral-
lel tasks, but subsequent steps depend on output from the previous
one and thus require some degree of coordination.

addition, the number of tasks launched in parallel should exceed the
number of cores on the GPU, taking into account that each can run
multiple tasks thanks to hardware multi-threading. Therefore, even
if a part of the tasks is idle, others running on the same core may
still be active. The optimal number of tasks is the one that assures
that all GPU cores are scheduled enough tasks as they can handle
using hardware multithreading.

4 Applications

We use several benchmark applications with different properties to
evaluate the different GPU work distribution techniques.

4.1 Hierarchy construction

Object hierarchies are widely used in many applications such as
computer graphics and collision detection. An object hierarchy is
a tree of bounding volumes (such as boxes or spheres) with the
main property that each node’s bounding box contains all itschil-
drens’. At the leaf nodes, nodes then refer to individual primitive
geometric objects, such as triangles or points. Construction of these
hierarchies usually progresses by recursively splitting groups of ob-
jects into two or more smaller groups until only single objects are
left. Since the splits usually do not result in the same amount of
primitives in all the subgroups, the height of the tree is notknown
in advance and the tree in general can be highly unbalanced. Thus,
load balancing is critical to good performance in many applications.

This divide-and-conquer approach maps well to our algorithm since
all split operations are fully independent and can thus be handled in
parallel. We employ the same approach as in [Lauterbach et al.
2009] using axis-aligned bounding boxes (AABBs) where the main

work kernel takes in a set of triangles, computes a split of the set
into two new subsets according to a heuristic, resorts the primitives
based on the split, generates the new bounding box and then may
generate two new splits (or none, if it created a leaf node). The
construction algorithm starts with only one split (the rootnode) and
then increases parallelism geometrically until leaf nodesare con-
structed.

4.2 Sorting

An obvious candidate for recursive algorithms is Quicksort, which
was also investigated in [Cederman and Tsigas 2008b]. Whileit is
similar in structure to hierarchy construction since it starts with the
whole list, then recursively subdivides, the main difference is that
the main pivoting operation has much less computational intensity.
Therefore, we expect the overhead in the work balancing method to
be much more critical to overall performance. Unlike the hierarchy
construction, we only recurse until the list of keys to be sorted is
small enough to fit into local memory and then revert to a simpler
sort for higher performance.

4.3 Collision detection

An application for object hierarchies is to check for collisions be-
tween two disjoint objects (inter-object collisions) as well as self
collisions for deformable objects (intra-object collisions). The main
operation in collision detection is, given several objects, to find
whether and at which points they overlap. The objects consist of
several geometric primitives (e.g. triangles), which reduces the
problem to finding which of these triangles intersect. As a spe-
cial case, self-intersection tests whether any of the primitives of the
object intersect each other, which is of use for applications such
as cloth simulation. The naïve solution to collision detection is
to test every combination of primitives, which is not practical due
to quadratic run-time. However, given a hierarchy built on top of
each object’s primitives, it is possible to intersect the hierarchies
instead to find potential collisions and then only perform primitive-
primitive intersection for those candidates.

Simultaneous hierarchy traversal: In general, both the geomet-
ric primitives as well as the bounding volumes used in the hierarchy
can vary depending on the application and other criteria. However,
the algorithm for intersecting hierarchies is the same. Starting with
the two roots, two hierarchy nodes are intersected by analytically
testing their respective bounding volumes for overlap. If they over-
lap, then all possible pairings of their children are recursively tested
for intersection as well (see Fig.??.) If both of the nodes are leafs,
then the two corresponding primitives are put on the list of potential
intersections. If only one of the two is a leaf, then it is tested against
the children of the other node.

From the standpoint of our approach, the main work units are pairs
of hierarchy nodes and for a binary tree each intersection can gen-
erate up to four pairs per step. All intersection tests between the
node of the hierarchy can be performed independently. We usethe
object hierarchy generated by the construction algorithm described
above with AABB as the bounding volume as the input for our colli-
sion detection algorithm, then perform self-collision by intersecting
the hierarchy with itself. As such, the mapping to our work model
are relatively simple. Unlike the previous applications that use data
parallelism in the actual work, the intersection kernel caninstead be
run using the vector units to process several intersectionsin parallel
and push the resulting new intersection pairs on the work queue or
in a separate result queue for actual primitive pairs. This way, we
can handle many more parallel node intersections. After thehierar-
chy traversal, the overall list of primitive pairs is then used as input
into a intersection test kernel that tests for actual intersection, using



the GPU’s static work scheduler.

4.4 Generic recursion kernel

In order to evaluate performance of a generic recursive algorithm
on different methods more directly, we also tested a genericwork
kernel that spawns up tot new work units and performsw work at
each step by executing mathematical operations inw iterations of
a loop. Unlike the other approaches, this kernel handles a separate
work unit for each vector lane and thus for a vector size ofv can
actually create up tovt new work units, thus putting a much larger
load on work organization. As a termination criterion, a random
number in 0..1 is generated for each evaluation and compared to a
user-specified termination probabilityp. If larger, then new work
units are spawned, otherwise no new work is created.

This kernel allows to vary the computational load of a recursive al-
gorithm, as well as the rate at which new work is generated andthus
new work units may need to be distributed. This allows us to inves-
tigate a broader spectrum than presented by the two real-world ap-
plications and also test for architecture-specific performance char-
acteristics. In order to have a fair comparison of differentwork
distribution approaches, the random number generator is seeded in
a way that the resulting recursion tree structure only depends on the
initial seed and is thus reproducible.

5 Results and Analysis

5.1 Results

We now describe results from an implementation of the methods
and applications described above on a real GPU architecture.

5.2 Implementation

We have implemented our approach using a Intel Core2 Duo sys-
tem at 2.83 GHz on 4 cores. We are using CUDA on a NVIDIA
GTX 285 GPU that has a total of 30 processing cores and 1 GB of
memory. For all approaches and work kernels, we start more inde-
pendent GPU tasks than actual cores to allow for hardware multi-
threading. The optimal number of tasks to fully occupy the GPU
can be calculated by examining the resource utilization of the work
kernels. Using our work balancing approach, we set the criterion
for performing a balancing step to half the tasks being idle.Note
that since we launch more tasks than cores this does not result in
half the processing cores being idle.

We now demonstrate results from our implementation of the algo-
rithms described in the previous section. We use several common
benchmark scenes from previous work to allow easier comparison
with other techniques (see Fig. 4). These scenes range from 40k
to 146k triangles each and have relatively complex structure. For
example, the Flamenco model has several cloth layers very close
together, representing a hard case for culling in collisiondetection.

Fig. 5 shows our results for construction of an object hierarchy
on several geometric triangle models ranging from 40k to 146k
triangles. We use both axis-aligned bounding boxes (AABBs)as
well as more complex and tighter-fitting oriented bounding boxes
(OBBs) for both approaches. For OBB construction, similar to pre-
vious approaches we perform splitting with axis-aligned planes first
and then fit the OBB around the triangles in a post-processingstep
similar to refitting using the PCA approach from [Gottschalket al.
1996]. We compare the impact of our approach for hierarchy con-
struction compared to previous compaction-based implementations
[Zhou et al. 2008; Lauterbach et al. 2009], but improvementsare
relatively minor at about 10-13% faster timings.

Sorting peformance using Quicksort is shown in Fig. 6. We use

0

10

20

30

40

50

60

70

0 50000 100000 150000 200000

T
im

e
 (

m
s)

Number of geometric objects

Compaction

Balancing

Figure 5: Hierarchy construction: Timings of our approach (in
ms) for parallel hierarchy construction, using AABBs or OBBs
as bounding volumes. Results are relatively close since theover-
all time is dominated by the computationally intensive workker-
nels, but our approach performs about 5-10% faster than the
compaction-based implementation in previous work.

Figure 6: Quicksort: Timings of our sorting a list of n values (in
ms) for different work balancing algorithms, as well as for afast
radix sort algorithm.

the implementation on several randomly generated datasetswith
increasing number of values to sort. The results show that our min-
imal work balancing approach performs much better here due to
less overhead and contention in list access. To compare absolute
performance, we also compare against a state-of-the-art sorting al-
gorithm presented in [Satish et al. 2009] based on optimizedradix
sort. Similar to results in [Cederman and Tsigas 2008b], we ob-
serve that Quicksort is still somewhat slower in practice. Similar to
construction, the main problem is that the initial steps of the Quick-
sort algorithms cannot use full parallelism since only one or very
few partitions are available. In addition, these partitions are most
likely contain the largest number of values to sort and thus take the
most time to process.

5.3 Analysis

Finally, we look at the performance of our generic recursionker-
nel for different parameters for branching factort and termination
probability p controlling how much total work units are generated,
as well as work per kernelw which directly influences the computa-
tional load versus time spent generating and distributing work. The
results are summarized in Fig.??. In general, we see that, as ex-
pected, an increase inw decreases the impact of work distribution
method as more of the total time is spent doing actual work. Inthe
opposite case, we observe that for smaller work units our work bal-
ancing method performs better since it requires less synchroniza-
tion. Interestingly, we also see that the absolute performance does
not change much up to some value ofw, which suggests that up to
a point additional computational intensity is almost free,which has
interesting applications for algorithm design choices.

When changingt and p to increase the amount of work (see Fig.
?? b) ), we see that all implementations except compaction scale
well. The graphs also show some sub-linear scalability for work
stealing and our approach. We ascribe that to higher performance
in the late stages of processing when all tasks have sufficient work
to perform without needing to perform work on synchronization at
all, whereas both global work queues and compaction always have
the same overhead.



Figure 4: Benchmarks: The benchmark scenes for construction used in this paper. Top left: Flamenco (49K triangles), top right: Princess
(40K), bottom left: Cloth dropping on sphere (92K) and bottom right: n-body simulation (146K). Our algorithm can perform interactive
self-collision using continuous triangle intersection onall of these models.

Our approach has some limitations worth noting. For one, aborting
the work kernel occasionally incurs both overhead from additional
kernel calls (about on the order of 3-7µs on current architectures
[Volkov and Demmel 2008]), time spent idling when waiting for
the last active tasks to complete as well as the actual time spent in
the balancing kernel which is directly proportional to the number
of work units in all queues. In our applications, individualwork
units are very small (e.g. 8-16 bytes) and reordering them during
balancing is relatively cheap. For applications with larger units, it
would be advisable to reorder indices instead.

6 Conclusion and future work

6.1 Conclusion and future work

We have presented a lightweight work balancing technique for use
on GPU architectures and compared it against several previously
used methods on a variety of applications. Our results show that
traditional methods work for applications with very computation-
ally intense kernels, but are slow when the overall runtime is not
dominated by the computation and requires frequent synchroniza-
tion operations. In contrast, our method – while incurring some
overhead – provides faster overall performance during workexecu-
tion due to its lightweight nature.

We are interested in investigating other applications thathave a re-
cursive nature. One candidate is collision detection whereobjects
represented by hierarchies are tested for overlap using a recursive
hierarchical traversal. Due to the computational intensity of in-
tersection tests between primitives especially when usingcomplex
bounding volumes and continuous intersection, GPUs shouldbe a
good candidate for performing the intersection tests. Another ap-
plication would be other recursive search problems such as chess
and other planning algorithms that are implemented recursively.

References
ARORA, N. S., BLUMOFE, R. D.,AND PLAXTON , C. G. 1998. Thread scheduling for

multiprogrammed multiprocessors. InSPAA ’98: Proceedings of the tenth annual
ACM symposium on Parallel algorithms and architectures, ACM, New York, NY,
USA, 119–129.

CEDERMAN, D., AND TSIGAS, P. 2008. On dynamic load balancing on graphics pro-
cessors. InGH ’08: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 57–64.

CEDERMAN, D., AND TSIGAS, P. 2008. On sorting and load balancing on gpus.
SIGARCH Comput. Archit. News 36, 5, 11–18.

CHASE, D., AND LEV, D. 2005. Dynamic circular work-stealing deque. InSPAA
’05: Proceedings of the seventeenth annual ACM symposium onParallelism in
algorithms and architectures, ACM, New York, NY, USA, 21–28.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration structures for a GPU
raytracer. InProc. ACM SIGGRAPH/EG Conf. on Graphics Hardware, 15–22.

FRIGO, M., LEISERSON, C. E., AND RANDALL , K. H. 1998. The implementation
of the cilk-5 multithreaded language.SIGPLAN Not. 33, 5, 212–223.

GOTTSCHALK, S., LIN , M., AND MANOCHA, D. 1996. OBB-Tree: A hierarchical
structure for rapid interference detection.Proc. of ACM Siggraph’96, 171–180.

HA , P. H., TSIGAS, P.,AND ANSHUS, O. J. 2008. Wait-free programming for general
purpose computations on graphics processors. InIPDPS, IEEE, 1–12.

HENDLER, D., AND SHAVIT , N. 2002. Non-blocking steal-half work queues. In
PODC ’02: Proceedings of the twenty-first annual symposium on Principles of
distributed computing, ACM, New York, NY, USA, 280–289.

HENDLER, D., LEV, Y., MOIR, M., AND SHAVIT , N. 2006. A dynamic-sized non-
blocking work stealing deque.Distrib. Comput. 18, 3, 189–207.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN , P. 2007. Interac-
tive k-d tree GPU raytracing. InProc. I3D ’07, 167–174.

KYLE HEGEMAN, N. A. C., AND M ILLER , G. S. 2006. Particle-based fluid simula-
tion on the gpu. 228–235.

LAUTERBACH, C., GARLAND , M., SENGUPTA, S., LUEBKE, D., AND MANOCHA,
D. 2009. Fast bvh construction on gpus. InProc. Eurographics ’09.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing. InSIGGRAPH ’06,
ACM, New York, NY, USA, 579–588.

LEFEBVRE, S., AND HOPPE, H. 2007. Compressed random-access trees for spa-
tially coherent data. InRendering Techniques (Proceedings of the Eurographics
Symposium on Rendering), Eurographics.

LEFOHN, A., KNISS, J. M., STRZODKA, R., SENGUPTA, S., AND OWENS, J. D.
2006. Glift: Generic, efficient, random-access gpu data structures.ACM Transac-
tions on Graphics 25, 1 (Jan.), 60–99.

PURCELL, T., DONNER, C., CAMMARANO , M., JENSEN, H., AND HANRAHAN ,
P. 2003. Photon mapping on programmable graphics hardware.ACM SIG-
GRAPH/Eurographics Conference on Graphics Hardware, 41–50.

SATISH, N., HARRIS, M., AND GARLAND , M. 2009. Designing efficient sorting
algorithms for manycore gpus. InParallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, 1–10.

VOLKOV, V., AND DEMMEL , J. W. 2008. Benchmarking gpus to tune dense linear
algebra. 1–11.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time kd-tree construction
on graphics hardware. InProc. SIGGRAPH Asia.


