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(a) Crossing immediately before light changes (b) Crossing after red light

Figure 1: Shibuya Crossing Scenario. A scenario simulating the scramble crossing near Shibuya metro station in Tokyo. (a) Agents start to
walk quickly or jog when the walk signal begins flashing indicating little time left to cross. (b) When the light turns red, indicating no time
left to cross safely, agents experience a high level of stress and run aggressively to cross as quickly as possible.

Abstract

We propose a new technique to simulate dynamic patterns of crowd
behaviors using stress modeling. Our model accounts for perma-
nent, stable disposition and the dynamic nature of human behaviors
that change in response to the situation. The resulting approach
accounts for changes in behavior in response to external stressors
based on well-known theories in psychology. We combine this
model with recent techniques on personality modeling for multi-
agent simulations to capture a wide variety of behavioral changes
and stressors. The overall formulation allows different stressors,
expressed as functions of space and time, including time pressure,
positional stressors, area stressors and inter-personal stressors. This
model can be used to simulate dynamic crowd behaviors at inter-
active rates, including walking at variable speeds, breaking lane-
formation over time, and cutting through a normal flow. We also
perform qualitative and quantitative comparisons between our sim-
ulation results and real-world observations.

Keywords: crowd simulation, psychological models, dynamic be-
haviors

1 Introduction

Simulating the wide variety of behaviors seen in real-world crowds
is important for many interactive applications, including games and
virtual environments. There are no known computational models
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that can simulate different types of crowd behaviors. At a broad
level, crowd behaviors are governed by the characteristics of the
individual humans and the surrounding environment.

Psychologists have extensively studied human characteristics and
behaviors. Differences in human behaviors are governed by multi-
ple factors, including differences in stimuli, genetic endowment,
physiological state, cognitive state, social environment, cultural
environment, previous life experiences, and personal characteris-
tics [Eysenck 2002]. Despite this diversity, factors affecting human
behaviors can be categorized into some basic types.

Attribution theory, for example, divides these causes into disposi-
tional attributes and situational attributes. Dispositional attributes
capture internal factors such as personality or characteristics, while
situational attributes capture external factors such as current situ-
ation [Heider 1982]. Cattell [1952] suggested a similar divide in
the causes of behavior termed personality and situational factors.
Our proposed technique for simulating dynamic crowd behaviors is
based on this dichotomy, and we use separate models for an agent’s
personality and another one to account for situational factors.

In crowd simulation literature, techniques to model heterogeneous
behaviors using personality models have been proposed [Durupinar
et al. 2011; Guy et al. 2011]. Resulting simulations can success-
fully generate a variety of behaviors happening in a scene, but may
not be able to model dynamic behaviors. These dynamic behav-
iors correspond to changes in individual and crowd behaviors in
response to a situation. For example, a calm or composed per-
son walking through a pedestrian crossing may become aggressive
when the light turns red from green. Similarly, the same person
may cut through a crowd when a train approaches the platform at
a train station. The dynamic nature of human and crowd behav-
iors is also observed during fearful or panicked situations, such as
fire evacuations, where individuals change behaviors in response to
emergencies and alarms.

Our objective is to model such dynamic crowd behaviors at interac-
tive rates. We model these behaviors as a reaction to meet certain
demands or cope with the changes in a situation or environment.
These situational factors will be referred to as stressors, and the ef-
fect of these stressors on the agents will be measured as stress. Our
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approach is build on the psychological theory of General Adapta-
tion Syndrome [Selye 1956] that provides a well-established behav-
ior model of how humans react to stress.

Main Result: We present a new technique to simulate dynamic pat-
terns of crowd behaviors by considering various types of stressors.
Our model accounts for both stable, consistent aspects of behav-
iors, influenced by personality, and the dynamic changes in behav-
ior due to situational factors. Our main contribution is a method that
incorporates well-established psychological models of stress into
crowd simulation. Our algorithm generates realistic, dynamically-
changing crowd behaviors based on a few high-level parameters
that model how individuals vary in their response to stress.

We model stressors as functions of space and time that can generate
various real-world crowd behaviors. These include prototypes of
many common stressors based on time constraints, agent positions,
and other environmental factors. These stressors can be used in con-
junction with goal-directed, multi-agent simulations to easily gen-
erate a rich variety of behaviors. An agent’s reaction to a stressor
depends on both an agent’s personality and the stressor itself. More
specifically, we model the measured value of stress that a agent re-
ceives from stressors as a function of both (personality-dependent)
internal weight and (situation-dependent) external weights.

The resulting simulation shows a variety of dynamic crowd behav-
iors under stress, such as cutting through the crowds, walking with
variable speeds, and breaking lane-formation over time or in differ-
ent situations. We perform both qualitative and quantitative com-
parison between our simulation results and real-world observations.
Our method has a small computational overhead and can simulate
thousands of agents responding to dynamic stressors in real time on
a single-core CPU.

The rest of our paper is organized as follows. Section 2 provides an
overview of related work both from crowd simulation and psychol-
ogy. Section 3 gives an overview of psychological models and of
our approach. Section 4 discusses our approach to modeling stress
accumulation. Section 5 presents the overall dynamic crowd simu-
lation algorithm. We highlight the results in Section 6.

2 Related Work

In this section, we give a brief overview of prior work from both
psychology and crowd simulation literature. Our discussion here
focuses on modeling dynamic behaviors due to stress. For a broader
coverage of human psychology, we refer the reader to Eysenck
[2002].

2.1 Stress

Several researchers have attempted to characterize how humans re-
spond to stress in terms of both internal, physiological changes and
external, behavioral changes. Early attempts to model how human
behavior changes in different situations include the work of Cat-
tell [1952], who proposed a mathematical formula to predict human
behavior as a function of personality and situation. More recently,
Leon [2010] have extended this work to the pedestrian behavior,
modeling the increased aggression people exhibit when stressed.

Selye [1956] proposed a broad framework for understanding how
the response to stress changes over time. His General Adapta-
tion Syndrome theory presents a non-specific, non-unique model
of stress response to stimuli. Since this work, other studies about
stress in a broad aspect have been performed, investigating its rela-
tionship to general activities, physiological effects, emotional, be-
havior, and cognitive performance [Eriksen et al. 1999; Mordkoff

1964]. The connection between stress and aggression has been par-
ticularly well established [Evans 1984; Anderson 2001; K.B. and
Rasmussen 1979] and holds across a variety of stressors [Berkowitz
1990; Miller 1941].

2.2 Crowd Simulation

The area of crowd simulation and multi-agent navigation is an ac-
tive area of research, with a wide variety of methods and results.
We primarily focus on interactive methods for modeling crowd be-
haviors. For a broader coverage of the field we refer the reader to a
recent survey [Pelechano et al. 2008].

2.2.1 Interactive Crowd Simulation

There are several frameworks proposed for simulating and render-
ing large number of crowds. The Virtual Dublin project simulated
crowds in an urban simulation at interactive frame rates [Dobbyn
et al. 2005]. Yersin et al. [2009] proposed a method using pre-
computed crowd patches to populate a large-scale virtual environ-
ment for real-time simulations. Parallel GPU-based algorithms
have also been proposed for both crowd simulation and high-quality
rendering [Shopf et al. 2008].

Many real-time techniques have also been suggested for goal-
directed multi-agent simulations. Among them the HiDAC sys-
tem is able to simulate various behaviors [Pelechano et al. 2007].
Reciprocal Collision Avoidance based methods have been success-
fully applied to simulate crowds [van den Berg et al. 2011]. Patil
et al. [2011] proposed an interactive algorithm based on navigation
fields, where users can directly control the crowd movement.

2.2.2 Behavior Modeling

Rule-based approaches are commonly used to model complex be-
haviors. These include frameworks based on motor, perceptual, be-
havioral, and cognitive components for modeling pedestrian behav-
ior [Shao and Terzopoulos 2005] and modeling decision-making
process [Yu and Terzopoulos 2007].

Reynolds [1999] modeled flocking behaviors as those of individ-
uals and pairs, by combined behavior as group behavior. Yeh et
al. [2008] described the geometric notion of a composite agent,
which can model different behaviors including aggression, social
priority, authority, protection, and guidance.

Many researchers have used psychological factors in crowd simula-
tion. Pelechano et al. [2005] simulated different wayfinding behav-
iors of trained/untrained leaders and the followers in emergency sit-
uations. These behavior patterns are chosen based on the given role,
and may not change during simulation. Sakuma et al. [2005] pro-
posed a local collision avoidance method that switches discreetly
between smooth and urgent avoidance behaviors based on the ur-
gency of collisions. Nygren [2007] proposed a system which mod-
els the effects of psychological factors by using artist derived rules
to change behaviors when the agents are fearful, fatigued or happy.

More recently, there have been attempts to create realistic, hetero-
geneous crowd behavior based on human psychology, especially
personality traits [Guy et al. 2011; Durupinar et al. 2011]. These
approaches provide a way to model heterogeneous behaviors, but
the behavior patterns do not change over time. Our approach builds
on these works to model dynamic crowd behaviors.



(a) Selye’s General Adaptation Syndrome model (b) Response generated by our model

Figure 2: General Adaptation Syndrome and approximation (a) GAS model of the human response to stress. After an initial disturbance,
the resistance level increases up to maximum capacity. If the stress is chronic or unresolved, the resistance gets weaker and is no longer
effective (causes illness or death). (b) Our approximation of GAS model. We assume acute stress, i.e. no exhaustion stage. Instead, agents
are relieved from stress when the stress is resolved. The shape of the response is determined by the stress accumulation rate α and maximum
capacity β

.

3 Preliminaries and Overview

In this section, we introduce some important concepts from psy-
chology literature on modeling stress and highlight the link be-
tween stress and behaviors. We also give an overview of our method
for applying this established psychological literature to multi-agent
simulations for generating dynamic crowd behaviors.

3.1 Psychological Models of Stress

There are multiple definitions of stress in psychology literature. In
a broad sense, stress can be defined as any change caused by inter-
actions between the environment and individuals. Generally, stress
is caused by a discrepancy between environmental demands and the
abilities of individuals [Cox 1978]. In other words, people become
stressed when they feel they are challenged or they need to cope
with the current situation. Stressors are what cause the stress, they
can be a situation, an object, or even other individuals. There are a
number of sources that cause stress. In this paper, we focus on the
following types of stressors:

1. loads given to individuals (challenging situations), e.g. time
constraints associated with the goal of each agent;

2. perceived threats, e.g. fire, threatening animals or objects;

3. unpleasant events, e.g. heat, noise, air pollution (smoke, mal-
odor), and over-crowding.

The emotional or behavioral effect of stress is generally associated
with increased aggression. This link can be found is both psycho-
logical models of emotion [Berkowitz 1990] and empirical studies
of human behavior [Evans 1984; Anderson 2001] However, the re-
sult of stress is not always negative. In some situations increased
aggression can have positive effects, and can improve performance
up to a point [Yerkes and Dodson 1908].

By measuring the connection between how people act (measured
through recorded observation) and how people feel (measured indi-
rectly via heart rate, skin temperature and self reporting) psychol-
ogists have established a consistent relationship between increased
stress and increased aggressive and impulsive behavior [Anderson
2001]. This result has held across various stressors, different set-
tings, cultures, and genders [Evans 1984; K.B. and Rasmussen
1979]. Our approach uses the result of these empirical studies to
model various stressors and their effects as increasingly aggressive
and impulsive crowd behaviors.

3.2 General Adaptation Syndrome (GAS)

To simulate the behavioral effects under a given value of stress, we
use the General Adaptation Syndrome (GAS) formulation proposed
by Hans Selye [1956]. Selye proposed the GAS model as a general
response to any stressor (toxins, cold, injury, fatigue, fear, etc.) The
GAS model has three stages of response: alarm, resistance, and
exhaustion (see Figure 2a). When individuals perceive a stress, in
the alarm stage, they ready themselves for ”fight” or ”flight”. In the
resistance stage, they work to resolve the stress at their full capacity.
If the stressor is not removed (i.e. a chronic stressor), they reach the
exhaustion stage and resistance becomes ineffective.

Research shows that the GAS model also applies to various phys-
iological changes and general activities [Eriksen et al. 1999]. Ad-
ditionally, there is a stable relationship between psychological re-
sponse of how stress makes a person feel and the physiological re-
sponse of how it changes their behavior [Mordkoff 1964].

3.3 Approximation of the GAS Model

While the GAS model suggests the shape of a person’s stress re-
sponses, it does not provide quantitative values for the level of re-
sponse to different stressors. We propose a quantitative approxima-
tion of the GAS model, which produces a stress response consistent
with that model.

We first assume an agent is experiencing a perceived stress with a
value of ψ. Our goal is to compute a stress response for an agent,
denoted as S. This value will be a function of the perceived stress,
ψ. To maintain consistency with the shape of the GAS response,
our model has two main attributes. First, an agent’s change in stress
response is capped by a maximum rate, denoted as α. This is to
ensure that an agent’s stress response does not jump suddenly in
response to a sudden stress. Secondly, an agent’s stress response is
capped at some maximum amount, denoted as β. This is to ensure
that if the perceived stress increases unboundedly, there will be a
limit on an agent’s response.

Taken together, α and β will map the perceived stress ψ to a stress
response S as follows:

dS

dt
=

{
α if ψ > S
{−α ≤ dψ

dt
≤ α} if ψ = S

−α if ψ < S
(1)



where S is capped at maximum of β. For efficiency reasons, we
model α and β as constants per agent per stressor, though, in gen-
eral, these values can be a function of time or of the number of
exposures to a stressor.

Figure 2b shows the resulting stress response induced by a instan-
taneous, large value of ψ (which lasts until the stress is resolved).
This is similar to the stress induced by a sudden, loud warning alarm
sounding. The stress response, which results from Eqn.1, shows a
similar shape to that corresponding the GAS model (shown in Fig-
ure 2a).

In general, an individual’s stress response (parameterized by α and
β) can vary between different people and across different situations.
The values for these parameters can be chosen by an artist for a
specific, potentially exaggerated effect (as discussed in Section 4.3)
or chosen to match real-world data (as discussed in Section 5.3).

Our purpose is to provide a general framework that can simulate
dynamically changing behavior triggered by stress response in real-
time crowd simulations. To that end, we make some simplifying
assumptions, notably, treating the parameters α and β as constants,
and a further assumption that agents will not be exposed to a stres-
sor long enough to reach the exhaustion or death stage.

3.4 Overview of our Approach

Our overall system has three main components. Firstly, the stres-
sor provides a source of stress for the agents. Secondly, the stress
accumulation function Eqn.1 which is determined by the GAS
model. Thirdly, a multi-agent simulation algorithm that is capa-
ble of changing an agent behavior by increasing its aggressiveness
and impulsiveness.

The interaction between a stressor and an agent’s perceived level of
stress from that stressor is determined by the perceived stress func-
tion, ψ. The form of the perceived stress function varies based on
the type of stress, and we highlight several examples in Section 4.1.
The interactions between the agents are updated as a function of the
accumulated stress, S. This aspect is discussed in Section 5. Fig-
ure 3 provides an overview of the system. In the next two sections
we discuss details of how we model each component.

Figure 3: System Overview Different levels of stressed behaviors
are simulated by updating agent parameters.

4 Modeling Stress and Stressors

In this section, we describe how we model stress in our simula-
tor. We show how measurable physical quantities of a stressor are
mapped to the perceived amount of stress and give specific exam-
ples for various prototype stressors.

4.1 Perceived Stress

In order to define the perceived amount of stress experienced by
an agent, we adapt Stevens’ psychophysical power law [Stevens
1957]. This law states the relationship between the perceived mag-
nitude of a stress and the physical measurement of the stimulus in-
tensity, e.g. the relationship between sound intensity and perceived
loudness, luminance and perceived brightness, and density and per-
ceived crowding.

Steven’s Law states that the relationship between the perceived in-
tensity of the stressor, ψ, and the magnitude of the physical inten-
sity of the stressor, I , has the form:

ψ(I) = kIn, (2)

with two parameters, a scale factor k and an exponent n, which
depend on the type of stressor. Stevens [1957] provides approxi-
mate exponent values for various stimulus. Additionally, the com-
putation of the intensity I also depends on the type of the stressor.
Steven’s Law was originally formulated for low level stressors, such
as noise and heat. However, subsequent studies found that similar
power laws can be applied to a wide range of stressors [Teghtsoo-
nian and Frost 1982; Middlemist et al. 1976; Oswald and Bratfisch
1969]. Inpired by this observation, we use Eqn.2 as a generic model
of the effect of the stressors.

4.2 Stressor Prototypes

We define four different prototype stressors, which can be used to
model a variety of forms of stress. These are time pressure, po-
sitional stressors, environmental stressors, and interpersonal stres-
sors.

Time pressure: These are stressors associated with an attempt to
reach a goal by a particular time. Examples could include crossing
the street at a timed light, boarding a train before the doors close,
or evacuating a building during a fire.

To model these type of stressors, agents are given a goal position
and a time constraint of tallowed. We model the intensity of the time
pressure, It, as a function of the difference between the allowed
time and the estimated arrive time. Formally:

It = max(testimated − tallowed, 0), (3)

where testimated is the estimated amount of time an agent will take
to reach its goal, i.e. testimated = distRemaing/avgSpeed.

Area stressors: These are stressors that arise from a condition in
the environment. Examples include noise, heat, bright lights, and
smoke. The intensity of these types of stressors is almost constant
over a area, that is

Ia =

{
c if pa ∈ A
0 if pa /∈ A (4)

where A is the area under effect from the stressor and pa is the
agent’s current position.

Positional stressors: These are stressors associated with a local-
ized source of stress. Unlike area stressors, these correspond to
stressors whose intensity grows as an agent approaches them. Ex-
amples include both static stressors, such as fire, or dynamically
moving stressors, such as a runaway car or an assailant.

Formally, we define the intensity as

Ip = ‖pa − ps‖ , (5)



where pa and ps indicate the position of the agent and the stressor,
respectively.

Some stressors, such as fire, have a high intensity over a large area.
For these stressors, we use a Gaussian distribution with a standard
deviation of σ to compute the intensity:

Ip = N (pa − ps, σ). (6)

Interpersonal stressors: These are stressors associated with the
stress coming from other agents. A common example includes
crowding, where some people feel stress due to too many people
being too close. These interpersonal stressors have been found to
follow a similar exponential law [Middlemist et al. 1976; Oswald
and Bratfisch 1969]. We model these stressors’ intensity as a func-
tion of the difference between the preferred density of neighbors,
and the actual density of neighbors:

Ii = max(ncur − npref , 0), (7)

where ncur is number of current neighbors in a unit space and
npref is the preferred number of neighbors in the same area.

4.3 Stress Model

Each of the above stressor prototypes define an intensity I which,
when combined with Eqn. (2), is used to define the perceived stress
ψ. Given the current ψ, an agent’s stress response, S, is determined
by Eqn. (1).

The values of α and β can be changed to control the stress response
of an agent. The way people respond to stress varies based on the
condition of body defense system and the coping style of the indi-
vidual. In our model, agents with a high α can be thought of as
tense and react very quickly to the introduction of a new stressor.
Agents with a high β react very intensely to stressors and show a
much stronger reaction to the same stressor as compared to agents
with a low β.

The values for α and β can be chosen by the artist or scene designer
to get a desired distribution of stress responses. Alternatively, these
values can be determined from real-world data, as discussed in Sec-
tion 5.3.

Multiple stressors: When exposed to multiple stressors, we com-
pute a weighted sum of each stress value to find the total stress
experienced by the agent. This model conforms with the discus-
sion in Lazarus [1993] that people selectively pay attention to the
stimulus.

Formally, we define the total perceived stress s as

S =
∑

ωiSi, (8)

where ωi is the weight of each individual stressor Si. The values
of ωi can be chosen to weigh the stresses equally or can be used to
give priority to more important stressors.

5 Behavior Mapping

In Section 4, we defined our psychologically-motivated model of
how an agent’s level of perceived stress, S, changes in response to
various stressors. We now discuss how an agent’s behavior changes
in response to these changes in the stress level.

As discussed in Section 3.1, the primary observable response to in-
creasing levels of stress is an increase in aggressive and impulsive

behavior. Our method for modeling the dynamic changes in behav-
ior that arise from stress relies on a multi-agent system capable of
simulating changes in the levels of aggression and impulsiveness
displayed by the agents. We use the multi-agent simulation algo-
rithm proposed by Guy et al. [2011], though our methods could be
easily applied to other approaches with similar capabilities.

5.1 Incorporation of Behavior Changes

Recently, Guy et al. [2011] proposed a method of reparameteriz-
ing the reciprocal-collision-avoidance based simulation method de-
scribed in van den Berg et al. [2011] to achieve a perceptually based
variation in agent behavior. The method was based on the results of
a user study that asked participants to classify the apparent behavior
of agents in terms of how aggressive, impulsive, shy, tense, active
or assertive the agents appeared. The result of the study suggested
a method for choosing simulation parameters that could achieve a
desired agent behavior. These parameters include agent radius, pre-
ferred speed, planning horizon, number of neighbors, and agents
sight distance. Different parameter values generate different goal-
directed behaviors and local interaction with neighboring agents,
which are perceived as personality.

They asserted that there are two primary dimensions (or principle
components) of crowd behavior, and that these can be regarded as
high-level parameters. The first, denoted PC1, was correlated to an
increased level of of ”extraverted” or more ”intense” behavior from
the agents. The second dimension, PC2, was associated with in-
creasingly ”careful” behavior. Using this parameterization, we are
able to determine how to automatically select simulation parameters
for the multi-agent modeling system to produce behaviors that ap-
pear to be as increasingly aggressive and impulsive. We denote this
change in parameters as the stress behavior vector, Bstress since
adding it to an agents current simulation parameters will increase
their perceived level of stress. For the results in this paper, we use

Bstress = (PC1 PC2)

(
0.95
−0.3

)
(9)

because it produces behavior which is predominately aggressive
(very high ”egocentricity”) and somewhat impulsive (negative
”carefulness”).

5.2 Coupling with Personality Attributes

Guy et al. [2011] also provided a matrix, Apc, which gives a linear
mapping between the values of PC1 and PC2 and the simulation
parameters. The same work further suggested a matrix,Aadj which
maps a variety of different personality descriptors to simulation pa-
rameters. We determine the final behaviors of our agents as a linear
combination of these two parameter matrices: the first represent-
ing an agent’s situational response and the second the agent’s stable
personality. The effect of the situational response is scaled by the
amount of perceived stress s̄ that an agent is current experiencing.

The resulting equation for determining simulation parameters that
depicting the agent’s behaviors due to inherent personality traits and
dynamically changing stress response is

SimParams = SApcBstress +AadjP, (10)

where P is a vector representing an agents stable personality. When
a stress is induced on an agent and the value of S increases, the
effect of Bstress will grow and thereby increase the stressful be-
haviors displayed by an agents. When the stress is removed, S will
decrease and the agents behavior will return to its stable personality
P.



(a) Initial Approach (b) Lane Formation (c) Alarm Response

Figure 4: Opposing Group scenario. (a) Two opposing groups approach each other. (b) Agents initially form natural lanes. (c) After
experiencing stress from the alarm the lane formation breaks down into uncooperative, clogged and congested behavior.

5.3 Modeling from Real-world Data

Eqn. 10 provides a complete description of how stress affects crowd
behaviors in a multi-agent simulation. Given the definitions Aadj ,
SApc, and Bstress from above, the free parameters to be deter-
mined for the model are α and β, which control how an agent re-
sponds to stress. One option is to let the simulation designer de-
termine these parameters to create controlled or exaggerated crowd
behaviors. However, they can also be found by fitting the stress
response to real-word data.

Studies such as Crompton [1979] have found mappings between
quantifiable changes behaviors, such as increasing speed, and quan-
tifiable stressors such as the amount of time remaining on a pedes-
trian crossing signal. Matching the largest observed speeds for
agents with little time left to cross provides a lower bound on the
value of β. Likewise measuring the change in velocity over the
time to cross the street will provide an estimate for α. Finally for
determining the form of the perceived stress function ψ() we use a
least-square power-law fitting.

Section 6.2 shows the result of this process on the data
from [Crompton 1979]. In our simulations, we do not use the same
value of α and β for every agent, but rather sample them from a
normal distribution centered at the values estimated from the data.

6 Results

We tested our method on several scenarios described below. For
each scenario, we saw a variety of behaviors exhibited by the agents
under stress, which matched the results from psychology literature
both qualitatively and quantitatively.

Opposing Groups: Two large groups of agents move through a
hallway in opposite directions. An alarm is triggered that provides
an area stressor for the agents. See Figure 4.

Street Crossing: A single agent must cross the street with a time
pressure stressor given by the crossing signal. See Figure 6.

Chasing: An agent is being chased by a green monster. The chased
agent experiences a positional stressor from the monster. See Fig-
ure 7a.

Evacuation: One thousand agents must evacuate an office environ-
ment. All agents experience stress from the fire in the center of
the building. Additionally some agents, shown in red shirts, also
experience an interpersonal stressor from crowding. See Figure 5.

Shibuya Crossing: One thousand agents participate in a scrabble
crossing modeled after the Shibuya metro station in Tokyo. The
agents experience two stressors. The first is a pressure stressor
when the crossing signal begins flashing, as a signal to clear the

intersection. The second is a more intense area stress, when the
crossing signal turns red indicating the vehicular traffic will resume
soon. See Figure 1.

6.1 Emergent Behaviors

In the above scenarios agents exhibit several different behaviors
commonly associated with increasing stress. These behaviors are
not explicitly coded into the system, but rather emerge from the
dynamic increase in aggressive and impulsive behavior that occurs
from increasing the stress level.

A basic effect that can be seen in all of the scenarios is that agents
will increase their speed as their stress increases. An example of
this can be observed in the Evacuation scenario where agents near
the fire run quickly to escape its spread. Likewise in the Shibuya
Crossing scenario agents who are in the middle of the intersection
increase their speed to a jog when the crossing light starting to flash
and those who are still in the street when the light turns yellow or
red switch to an all out run.

Figure 5: Evacuation scenario. Agents evacuate an office building
in the presence of a fire stressor and crowding stressors.

Another stressed behavior displayed by agents is an increase in
”selfish” behavior as stress increases. In the Evacuation scenario
the agents who experience crowding stress have a higher level of
stress than others who are only concerned with evacuating. The ef-
fect of this can be seen clearly in the accompanying video where
these agents push their way out of the crowded doorway to exit
faster than others. Likewise, in the Chasing scenario, the agent be-
ing chased cuts a near straight line through the crowd. In the same
scenario, without a source of stress, the agent’s path is deflected by
the crowd of people it is trying to cut through (see Figure 7b).

Additionally, stressed agents show noticeably more impulsive or
reckless behavior. In the Evacuation scenario stressed agents push
and bump into each other as they crowd together to get through



Figure 6: Street Crossing scenario. Agents cross a street after var-
ious delays. Agents who enter too late must run to cross in time.

the exit. Similarly, agents becoming increasingly stressed leads to
the breakdown of the cooperative behavior which usually occurs
between agents. This can be most clearly seen in the Opposing
Groups scenario. Here, after the alarm sounds the natural lane for-
mation that forms between the groups breaks down and the agents
degenerate into a chaotic, inefficient flow (see Figure 4). When the
alarm is turned off, and the stress subsides the agents eventually
return to normal flow patterns.

(a)

(b)

Figure 7: Chasing scenario. (a) A red shirted agent is chased
through a crowd by a green monster causing a positional stressor.
(b) If not being chased (dashed line), the agent’s path drifts as it
navigates through the crowd. With our model, the agent takes a
faster, more direct path through the crowd (red line). This aggres-
sive behavior is due to the effect of the stressor.

6.2 Validation

Due to the dynamic, incoherent nature of human crowds, preform-
ing a precise validation of our method is a challenging problem.
However, we can examine some quantitate and qualitative features
of stress reported in the psychological literature and compare them
to our results.

For example, in a study of pedestrians crossing roads, Cromp-
ton [1979] measured average crossing speed against how much a
pedestrian has been delayed entering a street crossing from the start
of the crossing signal. The study found that the later a pedestrian
entered the street, the faster they walked. This effect can be seen
with our method by presenting agents with a time pressure stressor

with a tallowed for the time it takes to cross the street at an average
walking speed. Using the method discussed in Sec. 5.3, we derived
the values shown in Table 1.

Param Value Description
α .38 Stress accumulation rate
β .80 Maximum stress
k .012 Power law coefficient
n 2 Power law exponent

Table 1: Data-driven stress parameters. Values derived from fitting
our stress model to street crossing data from Crompton [1979].

Figure 8: Comparison of simulated crossing speeds and real-world
data. The less time left to cross, the faster agents move.

Another important result from the psychology of stress is known
as the Yerkes-Dodson Law [Yerkes and Dodson 1908]. This is the
observation that while for very simple tasks stress is usual beneficial
to performance, when a task is sufficiently complicated too much
stress causes a decrease in performance. We can see similar effects
in our simulation. For example, in the Opposing Groups scenario,
we can change the value of β for the agents, changing the amount of
stress they receive from the alarm. Here we measure performance
as the average velocity of the agents over a small time window.
With small amounts of stress agents velocities increase along with
the aggressiveness of their behavior. However, when the stress level
becomes too high, the lane formation breaks down causing agents
to jam up and bump into each other, and slows down the overall
progress. The ”inverted U” shaped performance graph in Figure 9
is consistent with the Yerkes-Dodson Law.

Figure 9: Average speed of agents in the Opposing Groups sce-
nario at various levels of stress. The Yerkes-Dodson Law states
that stress should increase performance up to a point then decrease
it, a result which is matched by our model.

6.3 Performance Results

The Shibuya Crossing and Evacuation scenarios demonstrate the
ability of our method to scale to large complex scenarios with thou-



sands of agents and obstacles. Table 2 shows the execution time
for simulating agents in several different scenarios. The timings
were computed on a 3.2 GHz Intel i7 processor. In all cases, the
simulation ran at interactive rates.

# # Time
Scenario Agents Obstacles (ms)
Chasing 602 0 18.8
Opposing Groups 800 2 17.2
Evacuation 1000 219 21.8
Shibuya Crossing 1000 205 20.6

Table 2: Performance timings per frame.

7 Conclusion

We have introduced a method for modeling the dynamic changes
in behavior that result from situational factors. Our method derives
a linearized approximation of the well-established theory of Gen-
eralized Adaptation Syndrome for modeling stress response. Our
approach is able to match quantitative studies of human behavior,
reproduce important phenomena such as the Yerkes-Dodson Law,
and display a variety of emergent dynamic behaviors, all at interac-
tive rates.

There are, however, some limitations to our approach. We have
made a few simplifying assumptions, and have limited our applica-
tion to short-term stressors ignoring the effects exhaustion or death.
Additionally, we do not address how the stress response should in-
teract with the crowd rendering system (e.g. changing the facial
expression of agents under stress). We would like to investigate
these areas in future work. Additionally we would like to integrate
our system in a video game engine to allow for stressors to arise
from user interaction.
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