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Abstract— Just a test. We present an algorithm for path plan-
ning for a flexible robot in complex environments. Our algorithm
computes a collision free path by taking into account geometric
and physical constraints, including obstacle avoidance, non-
penetration constraint, volume preservation, surface tension, and
energy minimization. We describe a new algorithm for collision
detection between a deformable robot and fixed obstacles using
graphics processors. We also present techniques to efficiently han-
dle complex deformable models composed of tens of thousands
of polygons and obtain significant performance improvement
over previous approaches. Moreover, we demonstrate a practical
application of our algorithm in performing path planning of
catheters in liver chemoembolization.

I. I NTRODUCTION

Endoscopic manipulators for minimally invasive surgery,
power assist suits for human-movement support, and flexible
agents for entertainment are some examples of a growing
number of “deformable robots” populating through many
different applications. One of the major challenges in this
area is controlling and planning the motion and behavior of
these robots in simulated environments. Other problems such
as cable routing, molecular docking, assembly maintainability
studies, and medical procedures also require the capability to
plan the motion of a deformable component or robot.

The problem of computing a collision free path for a
robot through an environment has been extensively studied
for decades. Practical path planning algorithms are known
for rigid or articulated robots. In contrast, current planners
for deformable robots are only capable of handling simple
robots in small environments; these planners can take many
hours to compute a collision free path. Motion planning for
deformable robots introduces two major challenges. First,
simulating physically plausible deformation for a robot is
still considered a difficult problem in practice. In order to
create any planning algorithm for flexible robots, we need to
model the physical properties and mechanical constraints of
the robots. The computational requirements of generating an
accurate deformation using a continuum model can be rather
high. The second challenge is fast and accurate collision de-
tection between a deformable robot and surrounding obstacles.
Current algorithms for collision detection between deformable
models have a high overhead. Moreover, in many deformable
planning scenarios, the free space of a robot becomes very
constrained. The robot is often close to the obstacle boundary,
leading to an extremely high number of proximity queries. As
a result, collision detection is a major bottleneck in terms of
developing efficient planners.

The driving application of our work is insertion of flexible
catheters in human vessels for planning and guiding surgical

Fig. 1. Path Planning of Catheters in Liver Chemoembolization:
The deformable catheter (robot), consisting of10K triangles, is1.35mm in
diameter and approximately1, 000mm in length. The obstacles including the
arteries and liver consist of more than83K triangles. The diameter of the
arteries varies in the range2.5-6mm. Our goal is to compute a collision free
path from the start to end configuration for the deformable catheter. The path
computed by our motion planner is shown in Fig. 6.

procedures [8], [28]. Manipulation of catheters in small vessels
frequently causes spasms, preventing adequate flow of fluids
through the vessels. If the catheter has a cross-sectional area
close to that of the vessel being injected, the size similarity
will reduce fluid flow. Accurate path planning studies can help
overcome this obstacle by becoming an integral part of preop-
erative surgical planning, i.e. choosing the size and properties
of the catheter. However, accurate geometric models of the
arteries and a deformable catheter consist of tens of thousands
of primitives (e.g. polygons). Existing algorithms for motion
planning and collision detection between deformable models
are unable to handle models of such high combinatorial
complexity.

Main Results: We present a novel path planning algorithm
for a deformable robot in a complex environment. We treat
the motion planning problem as a constrained dynamic sim-
ulation and then transform the planning problem into solving
a list of constraints. The set of constraints include geometric
constraints such as obstacle avoidance and non-penetration,



as well as physical constraints such as volume preservation
and energy minimization. We compute an estimated path
using an approximate medial axis of the workspace and make
appropriate adjustments and corrections to the estimated path
using our constraint solver to compute a collision-free path.

Our planner checks for possible contacts between the robot
and the obstacles during each simulation step. We present
a new algorithm to detect collisions between a deformable
model and a complex, stationary environment. We compute a
potentially colliding set of overlapping primitives usingset-
basedcomputations. Our algorithm uses 2.5D overlap tests
between arbitrary objects and checks for the existence of a
separating surface along a view direction. We use graphics
processors (GPUs) to efficiently perform 2.5D overlap tests
and we compute offsets and Minkowski sums to overcome
image-precision errors. In practice, our collision detection
algorithm is significantly faster when compared to prior ap-
proaches based on bounding volume hierarchies.

We have implemented our planner on a 2.8GHz Pentium
PC and applied it to complex environments, including path
planning of catheters for liver chemoembolization. Our planner
can compute a collision-free path for a deformable robot in
a complex environment consisting of tens of thousands of
polygons in a few hours.

Organization: The rest of the paper is organized as follows.
We give a brief overview of prior work on motion planning
and collision detection for deformable models in Section 2. We
give an overview of our approach in Section 3 and describe our
planning algorithm in Section 4. In Section 5, we present a fast
algorithm for collision detection between a deformable robot
and stationary obstacles. We describe our implementation
and its application to path planning of catheters for liver
chemoembolization in Section 6.

II. RELATED WORK

We briefly present an overview of prior research on planning
of deformable robots and collision detection between flexible
bodies.

A. Motion Planning for Deformable Robots

Most of the literature in robot motion planning has focused
on robots with one or more rigid link. Some of the earlier
work on deformable robots included specialized algorithms
for bending pipes [25], cables [22] and metal sheets [23].
Holleman et al. [14] and Lamiraux et al. [17] presented a
probabilistic planner capable of finding paths for a flexible
surface patch by modeling the patch as a low degree Bèzier
patch and used an approximate energy function to model defor-
mation of the part. Guibas et al. [12] described a probabilistic
algorithm for a surface patch by sampling the medial axis of
the workspace. Anshelevich et al. [1] presented a path planning
algorithm for simple volumes such as pipes and cables by
using a mass-spring representation. Bayazit et al. [3] described
a two-stage approach that initially computes an approximate
path and then refines the path by applying geometric-based
free-form deformation to the robot. Gayle et al. [9] a presented
a motion planning algorithm for simple closed robots.

B. Collision Detection between Deformable Models

In this section, we give a brief overview of related work in
collision detection between deformable models. The problem
of collision detection has been extensively studied and some
recent surveys are available in [5], [21], [26]. Some of the
commonly used algorithms for collision detection are based
on bounding volume hierarchies (BVHs). These hierarchies
cull away portions of a model that are not in close proximity.
Examples of such hierarchies include sphere-trees, AABB-
trees, OBB-trees, k-DOP trees, etc. [5] and they are typically
computed during preprocessing. Recently, algorithms have
been proposed to lower the overhead of updating the hierarchy
during every step of deformable simulation [15], [19], [27]

Many collision and proximity computation algorithms ex-
ploit the computational capabilities of graphics processors
(GPUs) [2], [10], [13], [16]. Most of these algorithms involve
no preprocessing, therefore applying to both rigid and de-
formable models. The GPU-based algorithms perform image-
space computations and use the computation power of rasteri-
zation hardware to check for overlaps. However, a major issue
with current GPU-based algorithms is limited accuracy due to
image-space resolution, possibly resulting in missed collisions
between small triangles due to sampling errors.

III. OVERVIEW

In this section, we give an overview of our planner. We
introduce the notation used in the rest of the paper and present
our framework to solve motion planning as a constrained
dynamical system.
A. Modeling of Deformable Robots

The simplest physically-based deformable models are typ-
ically represented as mass-spring systems, where each object
is modeled as a collection of point masses connected by
springs in a lattice-like structure. The spring forces may be
linear or non-linear. In practice, mass-spring systems are easy
to construct and can be simulated at interactive rates on
current commodity hardware. More accurate physical models
treat deformable objects as a continuum, i.e. solid objects
with mass and energy distributed throughout. The continuum
models are derived from equations of continuum mechanics.
One of the most commonly used continuous models is the
finite element methods (FEM). The object is decomposed into
elements joined at discrete node points and a function that
solves the equilibrium equation is computed for each element.
The computational requirements of FEM can be high (as a
function of model complexity) and it is difficult to use them
for complex models in real-time applications.

In this paper, we have chosen mass-spring systems for
modeling a deformable robot. The main reasons for using
this model is the overall runtime efficiency in representing
a complex robot and the ease of implementation.
B. Notation

LetR be the deformable robot andO be the set of obstacles
in the environment. The environment is composed of a set
of obstaclesO = {o1, o2, ...} in the workspace. The robot
R is discretized and represented as a set ofN massesmi,
each with varying positions over timet, ∀i, 1 ≤ i ≤ N . The
masses are the connected by a set of M springs,rj , ∀j, 1 ≤
j ≤ M . We assume that the robot’s connectivity does not



change throughout the path computation, so the number and
location of springs also do not change. The areas enclosed by
the springs is denoted byfk. Along with each spring, a stress,
stressj , and a threshold value,δj , used to define material
constraints, are stored.

Associated with each mass is a state vectorsi(t) =
(xi(t), vi(t)) that represents its position and velocity at
time t. The collection of position vectors,X(t) =
[x1(t), x2(t), . . . , xN (t)], represents the configuration of the
robot at timet. Similarly, we can also define the state of the
robot at timet asS(t) = [s1(t), s2(t), . . . , sN (t)]. As the robot
R deforms when it comes into contact with an obstacleoi in
O, the deformation can cause the total potential energyE(X)
of the system (i.e. the elastic solid of the robot) to change.

Planning Problem Formulation: The planning problem for
a deformable robot can be stated as follows:

Find a sequential set of robot configurationsX(ti), . . . , X(tf )

such that noX(tk) intersects any obstacle inO and X(tk)
satisfies geometric and physical constraints of the robot while
minimizing the total energyE(X) of the entire system,

whereX(ti) andX(tf ) are the initial and final configuration
of the robot andti ≤ tk ≤ tf .

C. Constraint-Based Motion Planning

We treat the motion planning problem as a boundary value
problem. In particular, motion planning can be viewed as a
dynamical system in which the initial and final configurations
represent the boundary values and conditions [7]. By reformu-
lating the motion planning problem as a constrained dynamics
simulation, we transform the planning problem into solving
a list of constraints, while minimizing the cost functions
(e.g. total potential energy of the deformable robot). The
planning problem can be solved by computing a sequence of
intermediate states that link the boundary values and satisfy
each of these constraints. However, prior approaches only
work for rigid robots or simple deformable models. Their main
limitations are:

1) Earlier algorithms can handle rather simple geometry
with tens or hundreds of polygons. They do not scale
well to complex environments due to simple collision
handling.

2) The quality of the computed path may be poor because
an initial guiding path was generated using random
sampling with no path smoothing, leading to unrealistic
robot deformation or poor final paths.

3) The robot may deform in an unnatural way due to the
lack of surface tension.

Next, we will describe our overall planning algorithm that
overcomes these three problems.

IV. PLANNING FOR DEFORMABLE ROBOTS

In this section, we present our planning algorithm for a
complex, flexible robot.

A. Simulation Framework

The basic approach of our planning framework is to describe
each robot as a dynamical system. This system is characterized
by its state variables, stored inS(t) for each timet. Let X(t)
be the configuration of the robot at some timet as defined
in Section 3; then each constraint can be represented as a
function of X(t) as C(X(t)). The virtual force induced by
each constraintC(X(t)) is simply:

fc =
−∂E(C(X(t)))

∂X(t)

where the energy function,E(C(X(t))), is defined as

E(C(X(t))) =
Ks

2
C(X(t)) · C(X(t))

andKs is a generalized stiffness matrix [30].

The simulation steps from timet to time t + h and updates
the state of the robot, subject to the forces induced by the
constraints using the following steps:

BEGIN

Get System State:Get S(t) by concatenatingsi(t), for
all i.

Compute Constraint Forces: Sum up all virtual forces,
Fc(S(t)) =

∑l
j=1 Fj(S(t)).

Update Robot State: ComputeS(t + h) from S(t)
subject toFc(S(t)).

Increment Time: t = t + h

END

In this framework, the solution to the motion planning prob-
lem emerges as the sequence of states,{S(ti), . . . , S(t), S(t+
h), . . . , S(t+k∗h), . . . , S(tf )}, where the robot is at its initial
configuration at timeti, and reaches the goal configuration at
time tf . The simulation keeps running until the robot reaches
its goal configuration.

B. Robot Deformation

Update Robot Stateis computed at each simulation step
by using a second-order ordinary differential equation (ODE):

M ¨X(t) + C ˙X(t) + KX(t) = Fc(St) + Fe(St),

where M and C are diagonal matrices, andK is a banded
matrix. The ith diagonal element ofM is simply the value
of each massmi and similarly the ith diagonal element ofC
is the dampening constant for the massmi, which is usually
determined empirically.K is banded since it must represent
spring forces which are functions of the distance between two
masses.Fc(S(t)) and Fe(S(t)) are 3N -dimensional vectors
representing the constraint and external forces acting upon
each of theN masses. To help reduce numerical instability
from stiff systems, we solve the ODE with a semi-implicit
Verlet integration scheme. This solver requires only one addi-
tional force computation step, keeping the computational cost
low.

Next, we must verify if the geometric and physical con-
straints are satisfied, subject to minimization of the total energy
in the system. If not, then we perform the following steps:



1) Set the last valid milestone as the next destination
2) Back trace one step on the current roadmap
3) Find a new path from the last valid milestone to the goal

configuration
4) Compute new constraint forces and solve the ODE,

using the previous state of the robotR andFe

5) Set the next robot state to be the new ODE solution

Next, we will describe the various types of constraints used
in our planning algorithms.

C. Constraints

We impose a number of known geometric, physical, and
mechanical constraints suitable for the problem and to handle
deformations [9]; each of which can be classified as either
hard or soft.

Hard Constraintsare those that absolutelymustbe enforced at
each simulation step, including the non-penetration constraint.
The non-penetration constraint is enforced by computing the
collision response between the flexible robot and nearby
obstacles when contacts occur.

Soft Constraintsserve as guides to encourage or influence
the objects in the scene to behave in certain ways. These
constraints, including goal seeking, obstacle avoidance, path
following, volume preservation, and enforcement of surface
tension, are simulated by using penalty forces. Angular con-
straints between adjacent edges are used to enforce surface
tension.

D. Energy Minimization

The elastic deformation energy measures the amount of
deformation. The deformation is essentially local stretches in
various directions. If the motion is simply a rigid transfor-
mation, meaning that it preserves the distances between all
particles (no stretches), the energy must be zero.

Let E(X) be the energy density function of an elastic
solid undergoing deformation. The total energy is obtained by
integratingE(X) over the entire volume of the solid. We have
chosen the energy function of a spring network that connects
the neighboring nodes. The energy function can be written as:

Es(X(t)) =
∑

j

k

2
(dj − Lj)2

wherej is the index of a spring andLj is the natural length
of the spring anddj is the distance between two massesxi

andxk connected by the spring.
Basically, we would like to computeX by solving

min E(X(t)) subject to∇V (X(t)) ≤ ε.

Here, we relax the hard volume preservation constraint by
allowing the change in volume to be less than a given tolerance
ε. This problem can be solved by using a global constrained
minimization technique. Our current implementation uses a
local method that checks whether the internal pressure fluctu-
ation is bounded and that the deformation at each edgeei does
not exceed certain pre-defined tolerance (i.e.stressi < δi) to
achieve the same effects.

Fig. 2. This figure highlights the 2.5D overlap tests used for collision
detection. The query checks whether there exists a separating surface along a
view direction of depth complexity one.S has depth complexity more than one
from View 1 as well as View 2. In the right image,s1 has depth complexity
one from View 1 ands2 has depth complexity one from View 2. As a result,
we use two 2.5D overlap tests to decide thatR1 and R2 are not colliding
with the obstacles(Oi).

E. Guiding Path Generation

We useestimated pathsto generate an initial approximation
to the path. This idea has been widely used in motion
planning [4], [6], [29]. In particular, we use a medial-axis
based approach that computes an approximate medial-axis of
the work space using voxelized methods and performs path
smoothing. The estimated path tends to result in smoother final
paths that maintain the farthest distance from nearby obstacles.
However, this path may not be completely collision-free. The
non-penetration constraint in our planning algorithm resolves
any collision by either deforming the robot or adjusting the
final path.

V. COLLISION DETECTION FOR ADEFORMABLE ROBOT

The running time of most practical motion planning algo-
rithms is dominated by collision detection [20]. In the case
of path planning for flexible or deformable robots, collision
detection becomes a greater bottleneck due to the following
reasons:

• The free space of a deformable robot is constrained, and
in several configurations the boundary of the robot comes
into close proximity of the obstacle boundary. This close
proximity leads to a much higher number of potential
contacts with the obstacles.

• Most prior collision detection algorithms are based on
bounding volume hierarchies. As the robot deforms, the
precomputed hierarchy needs to be updated to account
for non-rigid motion. The cost of re-computing a hierar-
chy can be significantly higher for complex deformable
models. Furthermore, the hierarchies may not be able to
provide sufficient culling when the robot is in close prox-
imity to the obstacles. In such cases, the early rejection
tests may report a high number of false positives.

We present a new collision detection algorithm for a de-
formable robot undergoing motion among rigid obstacles. Our
goal is to compute a small subset of potentially colliding
primitives (e.g. triangles) and only perform exact interference
tests among these primitives. Our algorithm is based on two
main components:

1) Reliable 2.5D overlap tests using GPUs:Since the
robot is close the obstacle boundary, we perform a
tighter overlap test by checking whether there exists any



separating surface between the robot and the obstacles.
We perform this test using the rasterization capabilities
of the GPU. We also computeMinkowski sumsof the
robot and the environment with bounded spheres in order
to overcome image-precision errors.

2) Set-based computations:In order to deal with a high
number of colliding primitives, we compute sets of
potentially colliding primitives as opposed to computing
each pair of overlapping primitives explicitly. The size
of each set is at mostO(n), whereas the number of pairs
in close proximity can be super-linear (or evenO(n2) in
the worst case) for a robot in a constrained free space.

A. Reliable 2.5D overlap tests using GPUs

The robot undergoes non-rigid deformation between succes-
sive steps of path planning. Instead of using BVHs, we check
for overlaps between the robot and the obstacles using the
rasterization capabilities of graphics processing units (GPUs).
The GPUs are widely available on all commodity PCs and their
computational capabilities are increasing at a rate exceeding
Moore’s law.

We perform visibility computations [10] between the objects
on the GPUs to check whetherR (robot) andO (obstacles)
overlap. In particular, we choose a view direction, usually
along an axis, and check whetherR is fully visible with
respect toO along that direction. IfR is fully visible, then
there exists a separating surface betweenR andO (see Fig. 2).
Moreover, the separating surface needs to have a one-to-one
mapping with a plane orthogonal to the viewing direction or
depth complexity one along the view direction. We call this
the 2.5D overlapquery; this provides a sufficient condition
that the two primitives do not overlap. The 2.5D overlap test is
significantly less conservative and more powerful as compared
to earlier collision detection algorithms that check whether
two bounding volumes (e.g. spheres, OBBs, etc.) overlap in
3D. For example, in Fig. 2(b) there exists a single separating
surface betweenR1 and the obstacles as well asR2 and the
obstacles. In this case, we can verify with two 2.5D queries
that the robot does not overlap with the obstacles.

A main problem with a GPU-based overlap test is the
underlying image precision used to perform visibility com-
putations. In particular, the rasterization ofR or O introduces
many sampling errors, including projective errors and depth-
buffer precision errors. In order to overcome these errors, we
compute and render a bounding offset for each object. Let the
dimension of square pixel used for orthographic projection be
p. Moreover, letSp represent a sphere of radius

√
3p/2 and

RSp andOSp represent the Minkowski sum ofR andO with
Sp, respectively. In this case, we use the following lemma:

Lemma: If RSp is fully visible with respect toOSp from any
view direction under orthographic projection on a2D discrete
grid with pixel sizep, thanR andS do not overlap.

We omit the proof due to space limitations. This lemma
provides us with a sufficient condition that the robot and
the obstacle do not overlap. The exact computation of the
Minkowski sum of a primitive with a sphere corresponds to the
offset of that primitive. The exact offset representation consists
of non-linear spherical boundaries. Instead, we compute a
bounding approximation of the offset. In case of obstacles,

we decompose the boundary into triangles, edges and vertices.
The offsets of each of these primitives are represented as
swept sphere volumes: as rectangular swept-sphere (RSS), line
swept-sphere (LSS) and point swept-sphere (PSS), respectively
[18]. We precompute the swept spheres to enclose the obstacle
primitives. Since the robot undergoes deformation, we dynam-
ically compute a bounding OBB (oriented bounded box) for
each triangle on the boundary. The cross-section of the OBB
has the same plane as the triangle and the height of the OBB
is equal to

√
3p. Moreover, we perform the 2.5D overlap test

from a number of fixed directions (e.g. X, Y and Z axes) to
check for the existence of a separating surface.
B. Set-based Computations

Our algorithm uses the concept of a potentially colliding set
(PCS) of objects or primitives [10]. In this section, we present
a specialized algorithm for a deforming robot among fixed
obstacles. Given a collection of primitives,P = {p1, . . . , pn},
we initially insert all the primitives into a PCS. Next, we check
whetherpi overlaps with the remaining objects:P− {pi}. If
they do not overlap, we removepi from the PCS. Based on
this property, we reduce the number of object pairs that need
to be checked for exact collision. There are two main issues
in using set-based computations for collision detection:

• Set-based overlap tests:We need the capability to per-
form overlap tests between two different sets of objects.
In particular, we need a simple test to check that the
objects inS1 do not overlap with objects inS2. We use
the reliable 2.5D overlap test described above.

• Set partitions:A set of n objects has2n subsets and we
cannot check every possible pair of subsets for overlap.
Rather we want to perform almost linear number of set-
based overlap tests.

We compute two sets for collision detection. These are the
R-set and theO-set. TheR-set = {r1, r2, . . . , rm} consists
of all the polygonal or triangular primitives used to represent
the robot. If the number of triangles in the robot is high, we
group them into small clusters and eachri represents a cluster
of triangles. In the same manner,O-set ={o1, o2, . . . , on} is
a set of obstacles in the environment and we ensure that each
obstacleoi does not have a high polygon count.

We update the vertices of the robot based on the deformation
and compute a new bounding OBB for each triangle on its
boundary. The set-based collision proceeds in two passes.

In the first pass, we computeR-PCS andO-PCS. In
particular, ri ∈ R-PCS, if ri does not overlap with all the
obstacles inO-set. Similarly, oi ∈ O-PCS, if oi does not
overlap with all theri’s in R-set. TheR-PCS is computed
by performing 2.5D overlap test between each{ri} andO-
set. Similarly,O-PCS is computed by performing 2.5D overlap
tests between each{oi} andR-set.

In the second pass, we perform set-based 2.5D overlap tests
in a recursive manner. We representR-PCS = {R1,R2},
where R1 and R2 have approximately the same number
of elements. Similarly we decomposeO-PCS = {O1,O2}.
We perform 2.5D overlap tests between the following set
combinations: (R1, O1), (R1, O2), (R2, O1) and (R2,O2). If
none or only one of the 2.5D overlap test results in a separating
surface, we terminate the recursion and perform exact collision
checking betweenR-PCS andO-PCS. Otherwise, we remove



eitherR1 or R2 from R-PCS or removeO1 or O2 from O-
PCS. The set-based culling algorithm is applied recursively to
the new PCS’s.
Analysis: The running time of our set-based culling algorithm
is bounded byO(m log n + n log m). We assume that the
cost of performing each 2.5D overlap test is constant. The
first pass of the algorithm takes linear time. In the second
pass, the algorithm takes linear time during the first iteration.
During each successive iteration we reduce the number of
objects in one of the PCS’s by half and therefore, performing
O(m log n + n log m) 2.5D overlap tests in the worst case.
C. Exact Collision Detection

Given the potentially colliding sets,R-PCS andO-PCS,
we perform exact tests between the primitives to check for
collisions. If the number of primitives is small, we check all
pairwise combinations. Otherwise, we compute a bounding
box for each primitive ofR-PCS andO-PCS. We perform
pairwise overlap tests between the bounding boxes by pro-
jecting the bounding box along theX, Y and Z-axes and
compute the overlapping intervals using insertion sort. If the
projections of any bounding box pair overlaps along any axis,
we explicitly check whether the corresponding 3D bounding
boxes overlap and perform exact intersection tests between the
primitives.

VI. A PPLICATION AND RESULTS

We have implemented the algorithms described in this paper
and tested them on a PC with a 2.8 GHz Pentium IV processor,
1 GB of main memory, and a NVidia GeForce FX 6800 card.
We used of NVidia’s occlusion query extension along with
offsets to perform visibility queries for reliable 2.5D overlap
tests.
A. Benchmark and Performance

In order to test the effectiveness of our algorithm, we have
used it for two scenarios:

• Serial Walls. This scenario is based on a Parasol Bench-
mark [11] in which a stick-like robot must navigate
through a series of walls with holes in them (shown in
Fig. 3). We have extended the benchmark by changing the
robot into a thicker soft-body sphere with1280 polygons
and the walls are represented using18K polygons. The
sphere’s diameter is set to be larger than the holes, but
small enough so that the robot’s material constraints allow
it to fit through. In this environment, the robot has to
deform to reach its goal configuration. It takes about16
minutes to compute a collision-free path.

• Liver Chemoembolization. This scenario demonstrates
the ability of our planner to work in a realistic complex
environment. We attempt to plan the path of a tube-
like cylinder, called a catheter, through a set of arteries
in order to mimic the catheterization process in liver
chemoembolization. More details of the process and
environment are given below.

We highlight the performance of our algorithm in these
environments in the table and graph. Fig. 4 shows a detailed
breakdown of the average time spent in various stages of
a simulation step. Constraint update is the time required to
process the list of constraints. The collision detection and
response phase consists of both the 2.5D overlap tests along

Fig. 4. This table gives a breakdown of the average time step for each
scenario. Constraint update refers to the time spent in computing each
constraint for the given configuration. The 2.5D overlap test along with the
exact triangle intersection test are the two stages of the collision detection
algorithm. The Solve-System time is that spent in solving the motion equations
during each step.

with the exact triangle-triangle intersection tests; collision
resolution is performed along with the exact tests. Finally, we
highlight the time spent in solving the motion equations and
the total time spent on a time step. One curious result is that
more time was spent on exact test in the Walls scenario even
though it is a simpler environment. This result is due to greater
culling effectiveness in the catheterization case.

Fig. 5 compares the effectiveness of the 2.5D overlap
tests as a function of the scene complexity. To measure the
performance of our new collision detection algorithm, we
varied the scene complexity of the Walls environment and ran
our algorithm with and without the GPU-based 2.5D overlap
tests. The case of no overlap test reduces to solely using the
bounding volume hierarchies. In the graph, we see a greater
speedup in collision detection as the obstacle complexity
increases.

B. Path Planning of Catheters in Liver Chemoembolization

We use our path planning algorithm as a guidance tool for
a catheterization procedure, specifically chemoembolization of
liver tumors. Liver chemoembolization involves the injection
of chemotherapy drugs directly into the hepatic artery that
supplies a tumor. The procedure takes advantage of the fact
that liver tumors obtain their blood supply exclusively from
the branches of the hepatic artery. Under X-ray guidance,
a small tube orcatheter, is inserted into the femoral artery
(near the groin) and is then advanced into the selected liver
artery supplying the tumor. Chemotherapy drugs, followed by
embolizing agents, are then injected through the catheter into
the liver tumor.

During this procedure, careful manipulation of catheters is
essential [8], [28]. Manipulation of catheters in small vessels
frequently causes spasms, which prevent adequate flow to
carry the chemoembolization material into the tumor. Another
problem may arise if the catheter has a cross-sectional area
close to that of the vessel being injected. In this case, the size
similarity will also reduce fluid flow and increase the risk of
reflux of chemoembolization material into other arteries. Ac-
curate planning studies can help to overcome these difficulties.
Preoperatively, path planning can be used as part of surgical
planning techniques to help choose the size and properties of
the catheter used. During the actual procedure, they can greatly
aid in the guidance of the catheter to the liver tumor, reducing
the possibility of vessel spasm. We used a geometric model
of the catheter and arteries shown in Fig. 1 (along with their
relative dimensions). The catheter is modeled using10, 080
triangles. The model of the arteries consist of70, 006 triangles



Fig. 3. Spherical robot through Walls: This scenario consists of a robot (deformable sphere with1280 polygons) moving through six
walls (18, 432 polygons) with small holes. The robot is larger than the holes and needs to deform to generate a collision-free path the initial
configuration to the final configuration.

Fig. 5. This graph highlights the speedups obtained by utilizing the
2.5D overlap tests in our collision detection algorithm, as we increase the
polygonal complexity of our scene. We observe nearly an order of magnitude
improvement in complex scenes over prior algorithms based on bounding
volume hierarchies.

and the liver is represented using12, 459 triangles. The start
and end configuration of the catheter are shown in the same
figure.

We used our motion planning algorithm to compute a path
for a flexible catheter, inserted at the femoral artery, to a
specific hepatic artery that is supplying a tumor inside the
liver. The 3D models of the liver and the blood vessels, that
make up the environment, were obtained from the 4D NCAT
phantom [24]. The flexible, snake-like, catheter was modeled
as a cylinder with a length of100 cm and a diameter of1.35
mm. Figure 6 shows a 3D rendering of the models used in this
study with the starting (insertion of the catheter) and ending
(tumor supplying vessel) locations marked. The catheter must
navigate through the arteries to reach a tumor in the liver, so
that medication can be fed directly to the tumor.

Despite the scenario’s complexity, our planner was able
to successfully plan a path for this problem. A breakdown
of the step time averages is given in Fig. 4. As the table
shows, a large portion of the computation time is spent done
in the collision detection phase (more than80%). Further
optimizations in GPU-based 2.5D overlap tests would improve

the performance of the overall planner.
We use a a large number of material constraints and are

able to generate fairly smooth deformations throughout the
simulation (as shown in Fig. 6). An additional path smoothing
step further helps to improve the quality of the deformation.

VII. C ONCLUSION AND FUTURE WORK

We present a new algorithm for computing a collision-
free path for a deformable robot in a complex static envi-
ronment. We generate an initial path for a robot based on the
approximate medial axis of the workspace and probabilistic
roadmap planner. We present a novel collision detection al-
gorithm to check for overlaps between the deforming robot
and the obstacles. We have applied our planner to different
configurations, including path planning of catheters in liver
chemoembolization. The initial results are very promising.

There are several directions for future research. We plan
to develop more physically accurate algorithms based on
FEM and combine them with multiresolution techniques to
accelerate overall performance. We would also like to handle
scenarios where the obstacles are not rigid or stationary
and can deform as well, e.g. guiding flexible tubes among
deformable organs. We also plan to validate the results of our
planning algorithms for catheterization procedure on clinical
trials.

We would also like to explore new applications of our
planners in virtual prototyping, engineering design, and other
applications. Our collision detection algorithm only checks for
collisions between the robot and the obstacles and we would
like to handle self-collisions in the future.
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Fig. 6. Path Planning of Catherers in Liver Chemoembolization: We
highlight the collision-free computed by our algorithm for the catheter shown
in Fig. 1. We show the overall path from the start to the end configuration
in the rightmost image. The left images highlight the zoomed portions of the
path, showing bends and deformations.


