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Abstract—Just a test. We present an algorithm for path plan-
ning for a flexible robot in complex environments. Our algorithm
computes a collision free path by taking into account geometric
and physical constraints, including obstacle avoidance, non-
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penetration constraint, volume preservation, surface tension, and Hepatic et \ O
energy minimization. We describe a new algorithm for collision arteries
detection between a deformable robot and fixed obstacles using

graphics processors. We also present techniques to efficiently han- END
dle complex deformable models composed of tens of thousands

of polygons and obtain significant performance improvement

over previous approaches. Moreover, we demonstrate a practical

application of our algorithm in performing path planning of

catheters in liver chemoembolization.
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Endoscopic manipulators for minimally invasive surgery, Catheter 3
power assist suits for human-movement support, and flexible cross-section
agents for entertainment are some examples of a growing

number of “deformable robots” populating through many 2
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different applications. One of the major challenges in this START

area is controlling and planning the motion and behavior of

these robots in simulated environments. Other problems such Catheter (robot)

as cable routing, molecular docking, assembly maintainability Femoral artery L

studies, and medical procedures also require the capability to

plan the motion of a deformable component or robot. Fig. 1. Path Planning of Catheters in Liver Chemoembolization:

The problem of computing a collision free path for &he deformable catheter (robot), consistingléK triangles, is1.35mm in
; ; jameter and approximately, 000mm in length. The obstacles including the
robot throth an e_nwronment has_ been e>_<tenS|ver StUdig' eries and liver consist of more th&3K triangles. The diameter of the
for decades. Practical path planning algorithms are knoWReries varies in the range5-6mm. Our goal is to compute a collision free

for rigid or articulated robots. In contrast, current plannersith from the start to end configuration for the deformable catheter. The path
for deformable robots are only capable of handling simpf@mputed by our motion planner is shown in Fig. 6.

L%?ﬁ;s tl(? (for?nallufen\gr?:gmggf;frtgeeseatphlarll;](iriznca?arﬁl?r? rTf‘ Ycedures [8], [28]. Manipulation of catheters in small vessels
deformable rc?bots introduces twop mai'or challgn es gFir equently causes spasms, preventing adequate flow of fluids

imulating ohvsically olausible def rmJti n for gr b i i?ﬁrough the vessels. If the catheter has a cross-sectional area
ztilluczns? depre){js ga d)i/ffic?ualltus ro%leme ci)n ara?:ticeo Ir? o(r) dgr t%Iose to that of the vessel being injected, the size similarity

. P P ' ill reduce fluid flow. Accurate path planning studies can help

create any p'anf“”g algonthm for flexible ro_bots, we ne_ed rcome this obstacle by becoming an integral part of preop-
model the physical properties and mechamcal constraints ;e surgical planning, i.e. choosing the size and properties
the robots. The cqmputa_\tlonal requirements of generating 8f'the catheter. However, accurate geometric models of the
accurate deformation using a continuum model can be rat leries and a deformable catheter consist of tens of thousands

high. The second challenge is fast and accurate collision dg-~ . "~ . . ; )
tection between a deformable robot and surrounding obstacg}p”m'wes (e.g. polygons). Existing algorithms for motion

Current algorithms for collision detection between deformab hning and collision detection between deformable models

models have a high overhead. Moreover, in many deformalggemrljlgigle to handle models of such high combinatorial

planning scenarios, the free space of a robot becomes very
constrained. The robot is often close to the obstacle boundavigin Results: We present a novel path planning algorithm
leading to an extremely high number of proximity queries. Ar a deformable robot in a complex environment. We treat
a result, collision detection is a major bottleneck in terms d¢fie motion planning problem as a constrained dynamic sim-
developing efficient planners. ulation and then transform the planning problem into solving
The driving application of our work is insertion of flexiblea list of constraints. The set of constraints include geometric
catheters in human vessels for planning and guiding surgicainstraints such as obstacle avoidance and non-penetration,



as well as physical constraints such as volume preservati®n Collision Detection between Deformable Models
and energy minimization. We compute an estimated pathi, this section, we give a brief overview of related work in
using an approximate medial axis of the workspace and mak§jision detection between deformable models. The problem
appropriate adjustments and corrections to the estimated pgihyo|iision detection has been extensively studied and some
using our constraint solver to compute a collision-free pathyacent surveys are available in [5], [21], [26]. Some of the
Our planner checks for possible contacts between the rolgmmonly used algorithms for collision detection are based
and the obstacles during each simulation step. We presght bounding volume hierarchies (BVHs). These hierarchies
a new algorithm to detect collisions between a deformabdg |l away portions of a model that are not in close proximity.
model and a complex, stationary environment. We computeegamples of such hierarchies include sphere-trees, AABB-
potentially colliding set of overlapping primitives usirggt- trees, OBB-trees, k-DOP trees, etc. [5] and they are typically
basedcomputations. Our algorithm uses 2.5D overlap tesggymputed during preprocessing. Recently, algorithms have
between arbitrary objects and checks for the existence ob@en proposed to lower the overhead of updating the hierarchy
separating surface along a view direction. We use graphiggring every step of deformable simulation [15], [19], [27]
processors (GPUs) to efficiently perform 2.5D overlap testsmany collision and proximity computation algorithms ex-
and we compute offsets and Minkowski sums to overcomgoit the computational capabilities of graphics processors
image-precision errors. In practice, our collision detectioGPuUs) [2], [10], [13], [16]. Most of these algorithms involve
algorithm is significantly faster when compared to prior apyo preprocessing, therefore applying to both rigid and de-
proaches based on bounding volume hierarchies. formable models. The GPU-based algorithms perform image-
We have implemented our planner on a 2.8GHz Pentiugpace computations and use the computation power of rasteri-
PC and applied it to complex environments, including pathation hardware to check for overlaps. However, a major issue
planning of catheters for liver chemoembolization. Our plannesith current GPU-based algorithms is limited accuracy due to
can compute a collision-free path for a deformable robot image-space resolution, possibly resulting in missed collisions
a complex environment consisting of tens of thousands bétween small triangles due to sampling errors.
polygons in a few hours. I1l. OVERVIEW

Organization: The rest of the paper is organized as follows. In this section, we give an overview of our planner. We
We give a brief overview of prior work on motion planningintroduce the notation used in the rest of the paper and present
and collision detection for deformable models in Section 2. Weur framework to solve motion planning as a constrained
give an overview of our approach in Section 3 and describe adyynamical system.

planning algorithm in Section 4. In Section 5, we present a fagt Modeling of Deformable Robots

algorithm for collision detection between a deformable robot The simolest phvsicallv-based def bl del
and stationary obstacles. We describe our implementation e simplest physically-based deformable models are typ-

and its application to path planning of catheters for Iivé‘FaIIy represented as mass-spring systems, where each object
chemoembolization in Section 6. is mode_led as a cpllectlon of point masses connected by
springs in a lattice-like structure. The spring forces may be

linear or non-linear. In practice, mass-spring systems are easy

Il. RELATED WORK to construct and can be simulated at interactive rates on

current commodity hardware. More accurate physical models

We briefly present an overview of prior research on planningeat deformable objects as a continuum, i.e. solid objects
of deformable robots and collision detection between flexibigith mass and energy distributed throughout. The continuum

bodies. models are derived from equations of continuum mechanics.
_ _ One of the most commonly used continuous models is the
A. Motion Planning for Deformable Robots finite element methods (FEM). The object is decomposed into

Most of the literature in robot motion planning has focuse lements joined at discrete node points and a function that
P 9 olves the equilibrium equation is computed for each element.

on robots with one or more rigid link. Some of the earhexi.he computational requirements of FEM can be high (as a

work on deformable robots included specialized algorithrgs . . e
. : nction of model complexity) and it is difficult to use them
for bending pipes [25], cables [22] and metal sheets [2 r complex models in real-time applications.

Hollemgn et al. [14] and Lamirayx et al. [17] presentegl i this paper, we have chosen mass-spring systems for
probabilistic planner capable of finding paths for a ﬂ.ex'bl%odeling a def’ormable robot. The main reasons for using
surface patch by modeling the patch as a low degrerids fIhris model is the overall runtime efficiency in representing

patch and used an approximate energy function to model defor- . .
mation of the part. Guibas et al. [12] described a probabilistlccomplex robot and the ease of implementation.

algorithm for a surface patch by sampling the medial axis & Notation

the workspace. Anshelevich et al. [1] presented a path planning-et R be the deformable robot arf@ be the set of obstacles
algorithm for simple volumes such as pipes and cables by the environment. The environment is composed of a set
using a mass-spring representation. Bayazit et al. [3] descrili#fdobstacles® = {01, 09, ...} in the workspace. The robot

a two-stage approach that initially computes an approximak is discretized and represented as a sefVomassesn;,
path and then refines the path by applying geometric-bassath with varying positions over timg Vi, 1 < i < N. The
free-form deformation to the robot. Gayle et al. [9] a presentedasses are the connected by a set of M springsyj,1 <

a motion planning algorithm for simple closed robots. j < M. We assume that the robot’s connectivity does not



change throughout the path computation, so the number audSimulation Framework

location of springs also do not change. The areas enclosed byhe pasic approach of our planning framework is to describe
the springs is denoted bfi.. Along with each spring, a stress,each robot as a dynamical system. This system is characterized
stressj, and a threshold valuey;, used to define material py its state variables, stored B(t) for each timet. Let X (¢)

constraints, are stored. . be the configuration of the robot at some timas defined
Associated with each mass is a state veciplt) = in Section 3; then each constraint can be represented as a

(zi(t), vi(t)) that represents its position and velocity afynction of X(¢) as C(X(t)). The virtual force induced by

time ¢. The collection of position vectors,X(f) = each constrain€(X(t)) is simply:

[z1(t), z2(t), ..., zn(¢)], represents the configuration of the

robot at timet. Similarly, we can also define the state of the _ —0E(C(X(1)))

robot at timet asS(t) = [s1(t), s2(t), ..., sn(t)]. As the robot T X (t)

R deforms when it comes into contact with an obstaglén . . .

0, the deformation can cause the total potential endfgy) Where the energy functio;(C(X(1))), is defined as
of the system (i.e. the elastic solid of the robot) to change. K,
E(C(X(1) = - C(X (1)) - C(X(1)
Planning Problem Formulation: The planning problem for

a deformable robot can be stated as follows: and K is a generalized stiffness matrix [30].

_ _ _ _ The simulation steps from timeto time ¢ + h and updates
Find a sequential set of robot configurationg;),..., X(tf) the state of the robot, subject to the forces induced by the

) ) constraints using the following steps:
such that noX (¢;) intersects any obstacle i@ and X (¢)

satisfies geometric and physical constraints of the robot wh EGIN

minimizing the total energy’(X) of the entire system, Get System State:Get S(t) by concatenatings (t), for

all 4.
V\;hehreX(t;fi) an((dthgff) ire the initial and final configuration Compute Constraint Forces: Sum up all virtual forces,
Of the robot and: = t = - F(S(0) = Sjoy Fo(S())

Update Robot State: Compute S(t + h) from S(t)
C. Constraint-Based Motion Planning subject toF(S(t)).

. . Increment Time: t=t+h
We treat the motion planning problem as a boundary value

problem. In particular, motion planning can be viewed as END
dynamical system in which the initial and final configurations
represent the _boundary values and conditions [7_]. By reforn]qé-m emerges as the sequence of statggl, ), .. ., S(1), S(t +
Ie}tmg the motion planning problem asa constram'ed dynar.nlﬁi ..., S(t+kxh),...,S(tr)}, where the robot is at its initial
simulation, we transform the planning problem into solvingy i ration at time;, and reaches the goal configuration at

a list of constraints, while ‘minimizing the cost funCt'onﬁime ty. The simulation keeps running until the robot reaches
(e.g. total potential energy of the deformable robot). Thf\s goal configuration

planning problem can be solved by computing a sequence of .
intermediate states that link the boundary values and sati§y RoPot Deformation

each of these constraints. However, prior approaches onlyJpdate Robot Stateis computed at each simulation step
work for rigid robots or simple deformable models. Their maiby using a second-order ordinary differential equation (ODE):

limitati : . .
imrtations are MX{t) + CX{t) + KX(t) = Fua(S') + Fu(SY),

In this framework, the solution to the motion planning prob-

1) Earlier algorithms can handle rather simple geometry
with tens or hundreds of polygons. They do not scalehere M and C' are diagonal matrices, anl is a banded
well to complex environments due to simple collisiormatrix. The " diagonal element of\/ is simply the value
handling. of each massn; and similarly the ¥* diagonal element of”

2) The quality of the computed path may be poor becauisethe dampening constant for the masg which is usually
an initial guiding path was generated using randoghetermined empiricallyX is banded since it must represent
sampling with no path smoothing, leading to unrealistispring forces which are functions of the distance between two

robot deformation or poor final paths. masses.F.(S(t)) and F.(S(t)) are 3N-dimensional vectors
3) The robot may deform in an unnatural way due to thepresenting the constraint and external forces acting upon
lack of surface tension. each of theN masses. To help reduce numerical instability

rom stiff systems, we solve the ODE with a semi-implicit
erlet integration scheme. This solver requires only one addi-
tional force computation step, keeping the computational cost
IV. PLANNING FOR DEFORMABLE ROBOTS low.
Next, we must verify if the geometric and physical con-
In this section, we present our planning algorithm for straints are satisfied, subject to minimization of the total energy
complex, flexible robot. in the system. If not, then we perform the following steps:

Next, we will describe our overall planning algorithm th
overcomes these three problems.



1) Set the last valid milestone as the next destination

2) Back trace one step on the current roadmap

3) Find a new path from the last valid milestone to the go.
configuration View 1

4) Compute new constraint forces and solve the ODI —
using the previous state of the robBtand F,

5) Set the next robot state to be the new ODE solution ;E
Next, we will describe the various types of constraints use a)
in our planning algorithms. IView 5 ]View 5

C. Constraints

. . . nl;gg 2. This figure highlights the 2.5D overlap tests used for collision
We impose a number of known geometric, physical, angdtection. The query checks whether there exists a separating surface along a

mechanical constraints suitable for the problem and to handlew direction of depth complexity ong. has depth complexity more than one

; . ; s ; m View 1 as well as View 2. In the right image; has depth complexity
deformations [9]’ each of which can be classified as elthg?e from View 1 andse has depth complexity one from View 2. As a result,

hard or soft. we use two 2.5D overlap tests to decide tif&at and R are not colliding
. with the obstaclegO;).
Hard Constraintsare those that absolutetyustbe enforced at

each simulation step, mcludlr_\g t_he non-penetration con_stralﬁt_. Guiding Path Generation
The non-penetration constraint is enforced by computing the

collision response between the flexible robot and nearbyVVe useestimated pathto generate an initial approximation
obstacles when contacts occur. to the path. This idea has been widely used in motion

planning [4], [6], [29]. In particular, we use a medial-axis

Soft Constraintsserve as guides to encourage or influenggased approach that computes an approximate medial-axis of
the objects in the scene to behave in certain ways. TheRg work space using voxelized methods and performs path
constraints, including goal seeking, obstacle avoidance, patioothing. The estimated path tends to result in smoother final
following, volume preservation, and enforcement of surfaggaths that maintain the farthest distance from nearby obstacles.
tension, are simulated by using penalty forces. Angular coRowever, this path may not be completely collision-free. The
straints between adjacent edges are used to enforce surfgggpenetration constraint in our planning algorithm resolves
tension. any collision by either deforming the robot or adjusting the
final path.

V. COLLISION DETECTION FOR ADEFORMABLE ROBOT

The elastic deformation energy measures the amount ofp,4 running time of most practical motion planning algo-

deformation. The deformation is essentially local stretches rjﬁ'hms is dominated by collision detection [20]. In the case

various directions. If the motion is simply a rigid transforey path planning for flexible or deformable robots, collision

mation, meaning that it preserves the distances between g@lfo tion becomes a greater bottleneck due to the following
particles (no stretches), the energy must be zero. reasons:

soll_igtufég )o?ne gltffo?;ea;?gn d?ﬁ:'%t;lljgzg?n ?; Str)]ta(iarllziitlg « The free space of a deformable robot is constrained, and
going : 9y Y' in several configurations the boundary of the robot comes

integratingE' (X ) over the entire volume of the solid. We have into close proximity of the obstacle boundary. This close

chosen the energy function of a spring network that connects proximity leads to a much higher number of potential
the neighboring nodes. The energy function can be written as: contacts with the obstacles.

2 o Most prior collision detection algorithms are based on
B (X(t) = Z ~(d; — Lj)Q bounding volume hierarchies. As the robot deforms, the

2 precomputed hierarchy needs to be updated to account
for non-rigid motion. The cost of re-computing a hierar-

D. Energy Minimization

J

wherej is the index of a spring and; is the natural length chy can be significantly higher for complex deformable

of the spring andl; is the distance between two massgs models. Furthermore, the hierarchies may not be able to

andz; connected by the spring. provide sufficient culling when the robot is in close prox-
Basically, we would like to comput& by solving imity to the obstacles. In such cases, the early rejection

) . tests may report a high number of false positives.

min E(X(t)) subject toVV(X(t)) < e. We present a new collision detection algorithm for a de-
Here, we relax the hard volume preservation constraint Bgrmable robot undergoing motion among rigid obstacles. Our
allowing the change in volume to be less than a given tolerar@@al is to compute a small subset of potentially colliding
e. This problem can be solved by using a global constrain@dimitives (e.g. triangles) and only perform exact interference
minimization technique. Our current implementation uses!@sts among these primitives. Our algorithm is based on two
local method that checks whether the internal pressure flucfain components:
ation is bounded and that the deformation at each egddees 1) Reliable 2.5D overlap tests using GPUsSince the
not exceed certain pre-defined tolerance @teess; < ¢;) to robot is close the obstacle boundary, we perform a
achieve the same effects. tighter overlap test by checking whether there exists any



separating surface between the robot and the obstacl@s.decompose the boundary into triangles, edges and vertices.
We perform this test using the rasterization capabilitiche offsets of each of these primitives are represented as
of the GPU. We also computelinkowski sumsf the swept sphere volumes: as rectangular swept-sphere (RSS), line
robot and the environment with bounded spheres in ordavept-sphere (LSS) and point swept-sphere (PSS), respectively
to overcome image-precision errors. [18]. We precompute the swept spheres to enclose the obstacle
2) Set-based computationsin order to deal with a high primitives. Since the robot undergoes deformation, we dynam-
number of colliding primitives, we compute sets ofcally compute a bounding OBB (oriented bounded box) for
potentially colliding primitives as opposed to computingach triangle on the boundary. The cross-section of the OBB
each pair of overlapping primitives explicitly. The sizenhas the same plane as the triangle and the height of the OBB
of each set is at mo$d(n), whereas the number of pairsis equal tov/3p. Moreover, we perform the 2.5D overlap test
in close proximity can be super-linear (or ev@n?) in  from a number of fixed directions (e.g. X, Y and Z axes) to
the worst case) for a robot in a constrained free spaceheck for the existence of a separating surface.

A. Reliable 2.5D overlap tests using GPUs B. Set-based Computations

The robot undergoes non-rigid deformation between succesOur algorithm uses the concept of a potentially colliding set
sive steps of path planning. Instead of using BVHs, we chetRCS) of objects or primitives [10]. In this section, we present
for overlaps between the robot and the obstacles using fhespecialized algorithm for a deforming robot among fixed
rasterization capabilities of graphics processing units (GPU8Pstacles. Given a collection of primitiveB, = {pi,...,p.},

The GPUs are widely available on all commodity PCs and the#e initially insert all the primitives into a PCS. Next, we check
computational capabilities are increasing at a rate exceedigetherp; overlaps with the remaining object®: — {p;}. If
Moore’s law. they do not overlap, we removg from the PCS. Based on

We perform visibility computations [10] between the object§!iS property, we reduce the number of object pairs that need
on the GPUs to check wheth@ (robot) and© (obstacles) t0 be checked for exact collision. There are two main issues
along an axis, and check wheth& is fully visible with « Set-based overlap test®¥ve need the capability to per-
respect to© along that direction. IfR is fully visible, then form overlap tests between two different sets of objects.
there exists a separating surface betwResndO (see Fig. 2). In particular, we need a simple test to check that the
Moreover, the separating surface needs to have a one-to-one objects inS; do not overlap with objects i8,. We use
mapping with a plane orthogonal to the viewing direction or  the reliable 2.5D overlap test described above.
depth complexity one along the view direction. We call this « Set partitions:A set of n objects ha®" subsets and we
the 2.5D overlapquery; this provides a sufficient condition cannot check every possible pair of subsets for overlap.
that the two primitives do not overlap. The 2.5D overlap testis Rather we want to perform almost linear number of set-
significantly less conservative and more powerful as compared based overlap tests.
to earlier collision detection algorithms that check whethate compute two sets for collision detection. These are the
two bounding volumes (e.g. spheres, OBBs, etc.) overlap R}set and theO-set. TheR-set = {ry,7s,...,7,} consists
3D. For example, in Fig. 2(b) there exists a single separatingall the polygonal or triangular primitives used to represent
surface betweer; and the obstacles as well @& and the the robot. If the number of triangles in the robot is high, we
obstacles. In this case, we can verify with two 2.5D queriggoup them into small clusters and eaghrepresents a cluster
that the robot does not overlap with the obstacles. of triangles. In the same mannéd:set ={o01,0s,...,0,} is

A main problem with a GPU-based overlap test is the set of obstacles in the environment and we ensure that each
underlying image precision used to perform visibility comebstacleo; does not have a high polygon count.
putations. In particular, the rasterization®for O introduces  We update the vertices of the robot based on the deformation
many sampling errors, including projective errors and depthnd compute a new bounding OBB for each triangle on its
buffer precision errors. In order to overcome these errors, Weundary. The set-based collision proceeds in two passes.
compute and render a bounding offset for each object. Let theln the first pass, we comput®-PCS andO-PCS. In
dimension of square pixel used for orthographic projection rrticular,r; € R-PCS, if r; does not overlap with all the
p. Moreover, letS, represent a sphere of radin&p/2 and obstacles inO-set. Similarly,o; € O-PCS, if o; does not
RS and O represent the Minkowski sum & andO with  overlap with all ther;’s in R-set. TheR-PCS is computed
Sy, respectively. In this case, we use the following lemma: by performing 2.5D overlap test between eggh} and O-
set. Similarly,O-PCS is computed by performing 2.5D overlap
tests between eacfv;} and R-set.

In the second pass, we perform set-based 2.5D overlap tests
in a recursive manner. We represeRtPCS = {R,R2},

We omit the proof due to space limitations. This lemm&here R; and R, have approximately the same number
provides us with a sufficient condition that the robot andf elements. Similarly we decompos®-PCS ={0;, O,}.

the obstacle do not overlap. The exact computation of thee perform 2.5D overlap tests between the following set
Minkowski sum of a primitive with a sphere corresponds to theombinations: R, O1), (R1, O2), (R2, O1) and (R2,05). If
offset of that primitive. The exact offset representation consistene or only one of the 2.5D overlap test results in a separating
of non-linear spherical boundaries. Instead, we computesarface, we terminate the recursion and perform exact collision
bounding approximation of the offset. In case of obstacleshecking betwee®-PCS andD-PCS. Otherwise, we remove

Lemma: If RS is fully visible with respect t@°» from any
view direction under orthographic projection ored discrete
grid with pixel sizep, than’R and S do not overlap.



eltherRl or RQ from R_PCS or removdgl or 02 from O_ Scenario | Robot Obstacle Constraint | 2.5D Exact Solve Total

i N A ) - Complexity | Complexity | update Overlap | Triangle System | Time
PCS. The set-based culling algorithm is applied recursively feris) {tris) =) rest | itersection | (5) | &
s est (s
the new PCS'’s.
Walls 1280 18432 0.0071 0.0232 0.0252 0.0323 0.0878

Analysis: The running time of our set-based culling algorithn
|S bounded byO(mlOg n _|_ nlogm) We assume that the Catheter 10080 80086 0.0159 0.1596 0.0062 0.0227 0.204
cost of performing each 2.5D overlap test is constant. Tl
first pass of th_e aIgorlthm_ takes_ linear _tlme' In_ the_ sec_o . 4. This table gives a breakdown of the average time step for each
pass, the algorithm takes linear time during the first iteratiogsenario. Constraint update refers to the time spent in computing each

During each successive iteration we reduce the number cgfistraint for the given configuration. The 2.5D overlap test along with the

: : ) - exact triangle intersection test are the two stages of the collision detection
ObJeCtS in one of the PCS’s by half and therefore, perform”i@orithm. The Solve-System time is that spent in solving the motion equations

O(mlogn + nlogm) 2.5D overlap tests in the worst case. during each step.
C. Exact Collision Detection

Given the potentially colliding setsR-PCS andO-PCS, . _ _ _ ) -
we perform exact tests between the primitives to check f¥fith th_e exact tnangle—tnanglg intersection tests; .CO||ISIOI”|
collisions. If the number of primitives is small, we check alf€solution is performed along with the exact tests. Finally, we
pairwise combinations. Otherwise, we compute a boundifghlight the time spent in solving the motion equations and
box for each primitive ofR-PCS and®-PCS. We perform the totgl time spent on a time step._One curious result'ls that
pairwise overlap tests between the bounding boxes by pPgore time was spent on exact test in the Walls scenario even
jecting the bounding box along th&, ¥ and Z-axes and though it is a simpler environment. This result is due to greater
compute the overlapping intervals using insertion sort. If tH&!ling effectiveness in the catheterization case.
projections of any bounding box pair overlaps along any axis, 13- 5 compares the effectiveness of the 2.5D overlap
we explicitly check whether the corresponding 3D boundin‘&StS as a function of the scene complexity. To measure the

boxes overlap and perform exact intersection tests between Rg&formance of our new collision detection algorithm, we
primitives. varied the scene complexity of the Walls environment and ran

VI. APPLICATION AND RESULTS our algorithm with and without the GPU-based 2.5D overlap
o ) ) o tests. The case of no overlap test reduces to solely using the
We have implemented the algorithms described in this papgsunding volume hierarchies. In the graph, we see a greater

and tested them on a PC with a 2.8 GHz Pentium IV processgbeedup in collision detection as the obstacle complexity
1 GB of main memory, and a NVidia GeForce FX 6800 car@ncreases.

We used of NVidia’s occlusion query extension along wit . L o
offsets to perform visibility queries for reliable 2.5D overlap%' Path Planning of Catheters in Liver Chemoembolization

tests. We use our path planning algorithm as a guidance tool for
A. Benchmark and Performance a catheterizatiqn procedure, spe.cific.ally.chemoembolliz_atio.n of
. ) liver tumors. Liver chemoembolization involves the injection
In order to test the effectiveness of our algorithm, we havg chemotherapy drugs directly into the hepatic artery that
used it for two scenarios: supplies a tumor. The procedure takes advantage of the fact
« Serial Walls. This scenario is based on a Parasol Benckhat liver tumors obtain their blood supply exclusively from
mark [11] in which a stick-like robot must navigatethe branches of the hepatic artery. Under X-ray guidance,
through a series of walls with holes in them (shown i& small tube orcatheter is inserted into the femoral artery
Fig. 3). We have extended the benchmark by changing thgear the groin) and is then advanced into the selected liver
robot into a thicker soft-body sphere wit80 polygons artery supplying the tumor. Chemotherapy drugs, followed by
and the walls are represented usitRK polygons. The embolizing agents, are then injected through the catheter into
sphere’s diameter is set to be larger than the holes, bHé liver tumor.
small enough so that the robot's material constraints allow puring this procedure, careful manipulation of catheters is
it to fit through. In this environment, the robot has tessential [8], [28]. Manipulation of catheters in small vessels
deform to reach its goal configuration. It takes abbiit frequently causes spasms, which prevent adequate flow to
minutes to compute a collision-free path. carry the chemoembolization material into the tumor. Another
« Liver Chemoembolization. This scenario demonstratesproblem may arise if the catheter has a cross-sectional area
the ability of our planner to work in a realistic complexlose to that of the vessel being injected. In this case, the size
environment. We attempt to plan the path of a tub&imilarity will also reduce fluid flow and increase the risk of
like cylinder, called a catheter, through a set of arteriggflux of chemoembolization material into other arteries. Ac-
in order to mimic the catheterization process in livegurate planning studies can help to overcome these difficulties.
chemoembolization. More details of the process angteoperatively, path planning can be used as part of surgical
environment are given below. planning techniques to help choose the size and properties of
We highlight the performance of our algorithm in thesgéhe catheter used. During the actual procedure, they can greatly
environments in the table and graph. Fig. 4 shows a detailaid in the guidance of the catheter to the liver tumor, reducing
breakdown of the average time spent in various stagestbé possibility of vessel spasm. We used a geometric model
a simulation step. Constraint update is the time required &b the catheter and arteries shown in Fig. 1 (along with their
process the list of constraints. The collision detection amdlative dimensions). The catheter is modeled usifigd80
response phase consists of both the 2.5D overlap tests altimangles. The model of the arteries consist0f006 triangles
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Fig. 3. Spherical robot through Walls: This scenario consists of a robot (deformable sphere wa%0 polygons) moving through six

walls (18,432 polygons) with small holes. The robot is larger than the holes and needs to deform to generate a collision-free path the initial

configuration to the final configuration.

Speedup in Collision Detection vs. Scene Complexity the performance of the overall planner.
We use a a large number of material constraints and are

-
o

able to generate fairly smooth deformations throughout the
s - simulation (as shown in Fig. 6). An additional path smoothing
2 8 step further helps to improve the quality of the deformation.
E 7 VIlI. CONCLUSION AND FUTURE WORK
‘g i — We present a new algorithm for computing a collision-
5, free path for a deformable robot in a complex static envi-
s ronment. We generate an initial path for a robot based on the
g / approximate medial axis of the workspace and probabilistic
; 4 roadmap planner. We present a novel collision detection al-
o gorithm to check for overlaps between the deforming robot

and the obstacles. We have applied our planner to different
configurations, including path planning of catheters in liver

chemoembolization. The initial results are very promising.

Fig. 5.  This graph highlights the speedups obtained by utilizing the There are several directions for future research. We plan
2.5D overlap tests in our collision detection algorithm, as we increase t% develop more physically accurate algorithms based on

0 5000 10000 15000 20000
Triangles in Obstacle

f;?g%ﬁgﬁl;?t”}ﬁ'iﬂ%;@;’“;je"nee’?'O‘C’;'; °pt;?;”§g’1§§,ﬁ'¥n§”b‘;§’§g %fnmfc?unr']tdui M and combine them with multiresolution techniques to
volume hierarchies. accelerate overall performance. We would also like to handle
scenarios where the obstacles are not rigid or stationary
and the liver is represented usifg, 459 triangles. The start and can deform as well, e.g. guiding flexible tubes among
and end configuration of the catheter are shown in the safiRformable organs. We also plan to validate the results of our
figure. planning algorithms for catheterization procedure on clinical
We used our motion planning algorithm to compute a patfals. ) o
for a flexible catheter, inserted at the femoral artery, to a\We would also like to explore new applications of our
specific hepatic artery that is supplying a tumor inside tHdanners in virtual prototyping, engineering design, and other
liver. The 3D models of the liver and the blood vessels, thapplications. Our collision detection algorithm only checks for
make up the environment, were obtained from the 4D NcAgollisions between the robot and the obstacles and we would
phantom [24]. The flexible, snake-like, catheter was modeléle to handle self-collisions in the future.
as a cylinder with a length af00 cm and a diameter of.35 VIIl. A CKNOWLEDGMENT
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Path Planning of Catherers in Liver Chemoembolization: We

the collision-free computed by our algorithm for the catheter shown
in Fig. 1. We show the overall path from the start to the end configuration
in the rightmost image. The left images highlight the zoomed portions of the
{Sath, showing bends and deformations.



