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Figure 1: Our partition-based texture compression algorithm applied to a standard wall texture. The full original texture is
shown on the far left, followed by a zoomed in investigation of the region outlined in red. Our method compresses the texture into
the BPTC format. The resulting image quality, measured in Figure 4, is comparable to prior methods. This texture is 256×256
pixels large and was compressed using an exhaustive method (64 seconds [Don10]), FasTC (567 milliseconds [KLM13]), and
our method (143 milliseconds) on an Intel Core i7-4770k 3.80GHz processor using a single core without vector instructions.

Abstract
Fast, high quality texture compression is becoming increasingly important for interactive applications and mobile
GPUs. Modern high-quality compression formats define sets of pre-existing block partitions that allow disjoint
subsets of pixels to be compressed independently. Efficient encoding algorithms must choose the best partitioning
that fits the data being compressed. In this paper, we describe a new method for selecting the best partition for
a given block by segmenting the entire image into superpixels prior to compression. We use the segmentation
boundaries to determine a partitioning for each block and then use this partitioning to select the closest matching
predefined partitioning. Using our method for BPTC compression results in up to 6x speed-up over prior methods
while maintaining comparable visual quality.

1. Introduction

A major issue in the design of current graphics processors is
to provide faster access to the visual data for rendering ap-
plications, such as geometric data, textures, and animations.
These visual assets are often compiled into a format that is
amenable to fast CPU to GPU memory transfer. Efficient use
of GPU memory is an increasingly important issue in the
design of algorithms for interactive applications. The com-
pilation of visual assets is also one of the major bottlenecks
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in content creation. It is important to design techniques that
can result in faster iteration times to support the hardware
resources. In many applications, textures account for a large
fraction of the visual assets in terms of memory size.

For over a decade, many hardware vendors have in-
corporated hardware decompression of texture data in
GPUs [KSKS96] [TK96]. Compressed textures with small
memory footprints have many advantages such as cache
coherency during rendering, allowing more textures to be
stored in GPU memory, and reduced memory bandwidth for
data access. Efficient software texture compression formats
are used to fit a large number of textures in memory and
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increase the hardware utilization. With the recent develop-
ment of increasingly complex compression formats, such as
BPTC [Ope10] and ASTC [NLP∗12], we need improved al-
gorithms for fast and high quality texture compression. In
practice, texture compression is regarded as one of the most
expensive stages of asset compilation.

Compressed texture formats in hardware require the
stored data to have support for random access texel lookup.
To maintain this random access requirement, compression
formats are typically specified on fixed size N ×M texel
blocks (commonly N = M = 4) [BAC96]. This limitation
forces any hardware based compression scheme to be lossy
with a fixed compression ratio. For each block, encoders are
required to specify compression parameters that will faith-
fully reconstruct the block in hardware. To mitigate the re-
sulting compression loss, compression algorithms tend to
search a large space of parameters for each block [NLP∗12].

Block-wide compression parameters, such as those used
in PVRTC [Fen03] and S3TC [INH99], are usually too re-
strictive for high quality rendering. Recent formats, such as
ASTC [NLP∗12] and BPTC [Ope10], have increased the
quality of compressed textures by introducing partitioning
of blocks so that disjoint subsets of pixels within a block
share separate compression parameters. To avoid the expo-
nential increase in the number of partitionings with respect
to the block size, these formats choose from a restricted set
of common partitionings. The per-block task of an encoding
algorithm becomes twofold:

• Select a partitioning out of a predefined set.
• Choose parameters for each subset of the partitioning.

In this paper, we present a new method for choosing pre-
defined partitionings for partition-based compression for-
mats. Our method first computes a segmentation of the im-
age into superpixels to identify homogeneous areas based
on a given metric. This segmentation defines borders be-
tween areas whose pixels share common characteristics. To
select predefined partitions, each block uses the segmenta-
tion boundaries to determine the best partitioning for that
block. Next, we use a vantage point tree to find the near-
est matching partition based on Hamming distance. Using
this selection scheme, we test our technique on low-dynamic
range textures. We observe up to a 6x performance increase
on existing single-core compression implementations and
approach interactive rates for 256×256 sized textures.

The rest of the paper is organized as follows. In Section
2 we briefly survey current compression formats and algo-
rithms. In Section 3 we highlight the criteria used for image
segmentation, the metric used to determine the similarity be-
tween partitionings, and present our compression algorithm.
Finally, we present results in Section 4.

2. Related Work

Modern texture compression formats are based on a tech-
nique known as Block Truncation Coding, or BTC, intro-

duced by Delp and Mitchell [DM79]. In this approach, for
every 4×4 block of 8-bit pixels, two separate 8-bit grayscale
values are chosen by using a single bit per pixel for a to-
tal of two bits per pixel (2bpp). Beers et al. [BAC96] intro-
duced the idea of compressing textures using vector quan-
tization while maintaining fast decompression. In particu-
lar, they presented a texture compression scheme that pre-
served random access of pixels, provided a fast decoder,
and maintained acceptable compression quality for the ra-
tio. They also claimed that compression speed was not an
issue because it could be performed offline. However, with
the need for fast iteration times during content creation and
multi-platform applications such as Google Maps, compres-
sion speed is becoming a major issue in the design of texture
compression algorithms.

One of the first commercial uses of texture compression
was the S3TC format proposed by Iourcha et al. [INH99]
S3TC provided 4bpp for RGB textures by compressing 4×4
blocks of pixels into two RGB565 endpoints and storing two
bits per pixel as interpolation values between them. Gel-
dreich improved S3TC by considering macroscopic S3TC
blocks [Gel12]. Fenney generalized the S3TC algorithm to
exploit the worst-case nearby block access during filter-
ing [Fen03]. Fenney was able to demonstrate acceptable
quality with this technique for both 4bpp and 2bpp formats.
Strom et al. later introduced a new technique (ETC) that
focused on separating the chrominance from luminance in
images to compress them separately [SAM05] [SP07]. This
4bpp method provided a significant improvement over S3TC
and PVRTC for certain classes of textures.

ETC was the first format to provide partitioning in a
given compression block. Compressors could choose be-
tween a 2 × 4 or 4 × 2 partitioning of a 4 × 4 block
by setting the appropriate bit. More recently, Block Par-
tition Texture Compression (BPTC) was introduced as a
high quality compression format that partitions a 4 × 4
pixel block and compresses each subset separately using
the technique from S3TC [Ope10]. Although initial com-
pressors were slow [Don10], there has been considerable
work recently on increasing the speed of BPTC compres-
sion algorithms [KLM13] [Duf13]. Similarly, Nystad et
al. [NLP∗12] introduced Adaptive Scalable Texture Com-
pression (ASTC), a diverse new format that supports parti-
tioning similar to BPTC along with ratios from 0.89bpp up
to 8bpp. While BPTC stores preselected partitions in two
six-bit look up tables, ASTC defines a hashing function that
determines the partitioning based on the number of subsets
and a ten-bit seed.

Current codecs employ a metric on possible partition-
ings on a per-block basis. Most BPTC codecs choose a
partitioning by estimating the amount of error per parti-
tion [KLM13] [Duf13]. The ASTC reference codec com-
putes an ideal partitioining for a given block and then finds
the best match to an existing partitioning [ARM12]. We take
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a similar approach in our method, but with a few key differ-
ences. Namely, the ASTC codec computes an optimal par-
titioning for every block. Our method computes an optimal
global partitioning (segmentation) and then chooses parti-
tions based on the labels covered by compression blocks.
The advantage here is that we can use the same segmenta-
tion for multiple different block sizes, allowing better per-
formance when compressing textures for a variety of com-
pression ratios. Additionally, we use an acceleration struc-
ture to increase the performance of searching through each
of the partitionings.

3. Segmenting Images for Texture Compression

In modern texture compression schemes, partitioning has
become a prominent technique in increasing the quality of
compression formats. Partitioning takes N×M pixel blocks
and assigns a label to each pixel. Pixels that share the same
label are compressed independently. Due to the limited num-
ber of bits that are allocated for partition selection, compres-
sors must choose from a fixed set of preselected partitionings
called P-shapes. For example, the BPTC format has 64 sep-
arate P-shapes for two and three subset partitionings for a
total of 128 [Ope10]. In order to properly select a P-shape,
many compressors chose from a partial ordering and then
perform a full compression on each P-shape to chose the
best one [NLP∗12] [Duf13]. For certain compression for-
mats, such as 12× 12 ASTC, the P-shape space contains
3123 unique P-shapes [NLP∗12]. For large textures, P-shape
selection becomes a very expensive part of the algorithm.

3.1. Overview

We propose a new P-shape selection method based on image
segmentation, as described in Figure 2. First, we segment the
texture into superpixels as described in Section 3.2. As dis-
cussed in Section 1, encoders for partition-based compres-
sion formats must implement two separate stages. The su-
perpixels computed by the segmentation algorithm are used
in the first stage of our approach for fast P-shape selec-
tion. The second stage of our approach computes compres-
sion parameters for each subset using the cluster-fit algo-
rithm [KLM13]. During image segmentation, each pixel is
labeled with a superpixel index. P-shapes are then chosen by
considering the labels of the pixels within the block being
compressed. As described in Section 3.3, this subset of la-
bels is used as the target for a nearest-neighbor search of the
available P-shapes. The P-shapes with the closest matching
partitioning are used in the cluster-fit algorithm.

3.2. Segmentation

In this section, we describe the segmentation algorithm that
underlies the P-shape selection method. Image segmentation
has been heavily studied in computer vision and image pro-
cessing [ASS∗12]. The goal of image segmentation is to ap-
ply a labeling to each pixel such that pixels sharing a com-
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Figure 2: An overview of our compression algorithm. (a)
The VP-Tree is constructed from format-specific P-shapes as
a preprocessing step. (b) For each image, we perform SLIC
segmentation. For each block, we extract the correspond-
ing partitioning that matches the superpixel boundaries and
find the nearest P-shapes using the VP-Tree. The closest P-
shapes are used with the cluster-fit algorithm to produce the
final compression parameters.
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Original Context SLIC

Figure 3: (left) The original image. (center) An investigation
of the area highlighted in teal. (right) SLIC superpixels: the
image is segmented into small regions that adhere to feature
boundaries [ASS∗10].

mon label all share a common property or visual characteris-
tic. This property is often the minimization of an metric used
in distinguishing image features. Recently, there has been
much work in segmenting the image into large contiguous
regions of pixels known as superpixels [FH04] [VBM10]
[ASS∗10]. Such a partitioning provides a classification into
areas of pixels that admit certain coherence properties. We
find that partitioning blocks by superpixel boundaries is suit-
able for texture compression.

We use a superpixel segmentation method known as
SLIC, or Simple Linear Iterative Clustering [ASS∗10]. In or-
der to maintain encoder performance we chose this method
for its simplicity and speed versus other methods [ASS∗12].
SLIC takes as parameters either the number or desired size
of the superpixels. Using this parameter, SLIC uses equally
spaced kernels over the texture as the initial cluster centers
for a k-means clustering algorithm. Once the clustering is
computed, any pixels that are not contiguously connected to
their cluster centers then ’push’ the superpixel border to con-
nect the components. The error metric chosen to determine
the distance between two pixels is a key issue with respect
to SLIC. For each pixel p, we calculate the distance from the
pixel coordinates (x,y) and the pixel value converted to CIE
LAB space (L,a,b) as

d(p1, p2) =
α‖(x1,y1)− (x2,y2)‖2
+ β‖(L1,a1,b1)− (L2,a2,b2)‖2

where α and β are values chosen to weigh the relative contri-
bution [oI04]. Although most compression formats operate
in RGB space, we segment the image in CIE LAB space in
order to leverage the fact that euclidean distance is correlated
to perceived difference. Different error metrics may provide
better compression values for specific textures because of the
high variability of information types stored in textures.

3.3. P-shape Selection

Once the target partitioning has been selected from the seg-
mented image, we proceed by finding the best P-shape de-
fined by our compression format that matches it. The target

partitioning rarely matches exactly to any of the predefined
P-shapes. In order to properly compare one partitioning to
another, we must define an error metric between partition-
ings. Furthermore, since the P-shape space does not change
between textures for a given compression format, we can ac-
celerate the search by using a data structure to perform effi-
cient nearest neighbor lookups using the metric described in
Section 3.3.1

Some formats, such as ASTC, use blocks as large as
12x12 pixels, meaning that our partitionings would have up
to 144 variables. The high dimensionality per P-shape pre-
vents the use of classical data structures such as k-d trees
because they are no better than brute force search. How-
ever, many well-studied data structures have been developed
for performing nearest neighbor lookups [APPK08] [Yia93]
[Ben75]. The major requirement for most data structures is
that the metric between two points satisfies the triangle in-
equality. Provided we can develop an adequate metric for
partitionings that satisfies this inequality, we can use an ex-
isting data structure that supports high-dimensional queries.

3.3.1. Block partitioning metric

The main idea behind the metric is to determine whether
or not a given partitioning is sufficiently different from any
other. Partitionings are represented by a per-pixel labeling,
but each label’s compression parameters are computed inde-
pendently. Hence, for a given block of N×M pixels, each
partitioning can define labels li ∈ N with i ∈ [0,NM− 1].
Two partitionings with labels p and q are identical if

pi = p j ⇐⇒ qi = q j ∀ i, j. (1)

To determine the difference between two P-shapes, we con-
sider their labeling as strings of length k = NM. Given la-
belings p = p0 p1...pk and q = q0q1...qk we must first find
a relabeling R from unique labels in p to unique labels in
q such that the Hamming distance between strings R(p) =
R(p0)R(p1)...R(pk) and q is minimized [Ham50]. This dis-
tance is used as our P-shape metric.

The relabeling R is not necessarily bijective: one P-shape
may have more unique labels than the other. We can define a
subset of a P-shape p to be a set of all identical labels p j. If
two subsets of a P-shape p independently fulfill Property 1
with respect to a single subset of a P-shape q, then the com-
pression parameters for the subsets of p may be duplicated
for both subsets. However, in practice the number of sub-
sets in a P-shape limits the number of bits that are allowed
for compression parameters. Forcing R to be one-to-one, but
not necessarily surjective, enforces the bit allocation con-
straint. Hence, we compute the optimal relabeling as a bi-
partite matching problem which can be done in polynomial
time. For performance, we approximate the optimal solution
by relabelling each partitioning such that the pixel in the top
left has label zero, and the labels increase from left to right.
Using this method we observe a negligible decrease in com-
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pression quality (< 0.1 db) over full bipartite matching while
observing a 2X performance increase.

3.3.2. Vantage Point Trees

In order to perform nearest neighbor lookups we use a
vantage-point tree or VP-Tree [Yia93]. We use the VP-Tree
because of its ability to handle high dimensional queries
along with its O(logN) query complexity. The quality and
speed of the VP-Tree ultimately depend on the breadth of
P-shapes available for the compression format. The VP-tree
is a binary tree where each node is a P-shape p, and the left
child pl contains all of the P-shapes within a radius r of p
while the right child pr contains all of the P-shapes outside
of this radius. At each node, we can prune half of the re-
maining nodes if the candidate P-shape falls within the asso-
ciated radius of that node. In practice, the discrete nature of
the search space precludes asymptotic O(logn) behavior, but
we still observe better performance than brute force search.

4. Results

In order to test our algorithm, we compare it against existing
encoders. Due to availability and maturity of tools, we com-
pare our results in terms of the BPTC format. We compare it
against all software implementations that can be run on a sin-
gle core irrespective of specialized hardware, although im-
plementations that use GPUs or vector instructions achieve
faster compression speeds. However, the presence of such
features is not guaranteed on all platforms, such as embed-
ded devices. We test our algorithm against the existing refer-
ence encoder that performs an exhaustive search of the com-
pression parameters and against FasTC [KLM13] [Don10].

As Griffin et al. have shown, it is difficult to choose a
single quality metric for compressed textures [GO14]. Even
the classical peak signal-to-noise ratio (PSNR) is an unreli-
able metric [GO14] [WBSS04]. However, for reproducibil-
ity and comparison with prior work, we present comparisons
using both PSNR and the structural similarity image met-
ric (SSIM) in Figure 4 [WBSS04]. As SSIM is only a sin-
gle channel metric, we first convert the textures to grayscale
prior to using the reference implementation. PSNR is calcu-
lated using the same formula as FasTC [KLM13].

5. Conclusions, Future Work, and Limitations

Conclusions: We have presented a new algorithm for se-
lecting P-shapes for partition based texture compression for-
mats. We use image segmentation to designate superpixels
of an image and use them to select the ideal partitioning
for each block. We expect this algorithm to be the basis for
future research in fast P-shape selection methods. Efficient
representations of images that quickly convert to GPU-based
formats open up an entire area of research devoted to effi-
cient GPU-oriented image representations.

Future Work: The segmentation algorithm at the core of our

method is crucial to providing fast compression speeds. The
SLIC algorithm used in our method performs k-means clus-
tering to group pixels based on both spatial and perceptual
proximity. However, compression formats and partitionings
do not meet these specific constraints in general. We believe
that there is valuable future work to be done in terms of us-
ing segmentation algorithms that can group pixels amenable
to compression formats. Similarly, the choice of error metric
can provide better segmentations based on what the texture
is used for. For example, a normal map may be segmented
such that pixels that share a label reconstruct to a similar
unit normal. Furthermore, it should be possible to store seg-
mented images along with per-label compression parame-
ters more efficiently than bare GPU-specific formats. This
research would greatly benefit applications that leverage on-
the-fly compression such as mobile devices.

Limitations: Our algorithm also suffers from a few prob-
lems due to the limitations of the underlying segmentation
algorithm. Most notably, it may not work well compressing
textures with alpha. Also, it is very sensitive to the param-
eters used to perform the segmentation. The parameter that
chooses the size of the superpixels must be small enough to
capture fine details but not large enough such that we lose
the benefits of the segmentation. Finally, the formats that
support multiple subsets per block also support high-quality
single-subset compression. For these formats, the accelera-
tion gained from spending less time calculating an optimal
P-shape pushes the multi-subset encodings of a single block
behind the single-subset encodings with respect to image
quality. This limitation ultimately diminishes the benefits of
formats that support block partitoning. For this reason, cal-
culating optimal P-shapes remains an active area of research.

Overall, the approach presented in this paper provides a good
basis for developing specialized and faster texture compres-
sion algorithms for modern texture compression formats.
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Compression Quality

Peak Signal to Noise Ratio (PSNR)

brick satelite colorsheep pebbles crate
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refers to the texture displayed in Figure 1. The exhaustive algorithm is not displayed in the performance graph because it is two
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of textures that are meant to be consumed visually, and report errors using both peak signal-to-noise ratio and the structural
similarity image metric. We observe an increase in encoding speed over existing implementations while maintaining a similar
quality level. Additionally, we notice that the choice of segmentation is very important because we lose some detail in parts of
’colorsheep’ where the segmentation is too large to catch fine details. To contrast, we maintain the visual detail of ’pebbles’ and
’satellite’ very well. All timings are performed on a single core Intel Core i7-4770 CPU 3.40GHz without vector instructions.
The texture ’colorsheep’ is provided courtesy of Trinket Studios, Inc. The texture ’satellite’ is provided courtesy of Google, Inc.
The remaining textures are public domain from www.opengameart.org
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