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Abstract— Laplacian instability is the physical mechanism that o A user parameter that allows high-level modulation of

drives pattern formation in many disparate natural phenomena. dimension, along with intuitive controls for low-level
However, current algorithms for simulating this instability are detail:

impractically slow and memory intensive. We present a new Simole imol tation that . ither the i
algorithm that is over three orders of magnitude faster than  >impie implementation that requires neither the finear

previous methods and decreases memory use by two orders of system solvers nor point location data structures of pre-
magnitude. Our algorithm is based on the dielectric breakdavn vious methods;
model from physics, but is faster, more intuitive, easier to « Proof-of-concept demonstration of our algorithm on mod-

implement, and simpler to control. We demonstrate the abilly eling of several natural phenomena and pattern formation.
of our algorithm to simulate various natural phenomena and

compare its performance with previous techniques. - We apply our algorithm to generation of the tree and
lightning as shown in Figures 4 and 5(a), and to the Tesla

coil discharge in Figure 7. We measured a performance gain
of over three orders of magnitude, and two orders of mag-
nitude in memory savings over previous techniques. We also
|. INTRODUCTION demonstrate the use of our algorithm to augment the existing

L . . framework of L-Systems [3], as shown in Figure 6.
Laplacian instability occurs when a smooth interface evolv

ing under a Laplacian field develops rapidly growing spikes Il. PREVIOUSWORK
and branches. Many fields are Laplacian, including the gtead Laplacian growth algorithms are closely related to fragtal

state heat equation, electric potential, and an incomiless g they can often produce structures with a fractal dimensio

fluid pressure field. The instability has be_en connected {§e term ‘fractal’ was coined by Mandelbrot [4] to charaeter
many disparate phenomena, such as dendrites on snowflakgsnon-integral, or ‘fractional’ values for physical dimson.

forks on lightning, quasi-steady-state fracture, lobei@ven, |, aqdition to the usual 1D, 2D and 3D, Mandelbrot defined
coral, riverbeds, vasculature, and urban sprawl patt8inge j,_hetween dimensions such as 1.71D or 2.55D. The Koch
the formation of non-smooth features from smooth initiad,wflake and the Mandelbrot set have since become instantly
f:ond|t|()_ns is cour_1ter-|ntU|t|ve, th|§ topu_: has attracatigntion recognizable computer-generated structures, and fréaetal
in physics, chemistry, and material science. rains, fractal textures [5], and L-Systems [3] are now séadd
Simulating Laplacian instability, oLaplacian growth has ;isyal effects tools.
not been a widely used technique in computer graphics,There are three classes of Laplacian growth algorithms.
perhaps because existing algorithms, specificallydielectric | jsted in order of increasing generality they are: diffusio
breakdown mode(DBM) [1], have prohibitive space and|imjted aggregation [6], the dielectric breakdown modé, [1
time requirements, and are daunting to implement effigjentbng Hastings-Levitov iterative conformal mapping [7]. We
However, many natural structures arise through this inigiab \yjl| abbreviate them respectively as DLA, DBM, and HLCM.
thus fast simulations of Laplacian instability can provide \while HLCM is the most general algorithm, it is also the most
powerful, general, and physically-based method for dbBWi - mathematically involved, and can be difficult to interprays-
a wide variety of natural phenomena. ically. Alternately, DLA has a simple physical interprétat,

In this paper, we present a fast Laplacian growth algorithgut can only produce a narrow set of fractal structures. By
that is StrUCtUra“y similar to DBM but simulates a dlﬁetencomparison' DBM offers clean physica| intuition while Istil

phySicaI Casefuse breakdOWr[z:l. Our algorithm admits a producing arich Variety of growth structures.
spherical harmonic solution, which allows it to take into |n computer graphics, DLA has been used to produce ice
account arbitrary boundary data, such as an environmeglt lichen [9], and DBM has been used to create lightning
map. We have not found a similar algorithm elsewhere [Ij_O] Many other natural phenomena can be generated by
the literature, and our method appears to be novel fromit@ese algorithms [11], but they require supercomputelesca
physics standpoint as well, as it suggests that Laplaciantdr resources for the simulation. However, the efficiency of our
does not require the evolving interface to be an equipaentaigorithm should make the generation of these phenomena
surface. The main contributions of this paper are: practical on commodity desktop PCs.
« A fast, exact, memory-optimal fractal growth algorithm;
« A spherical harmonic formulation that takes into accouy The Dielectric Breakdown Model
arbitrary boundary information, such as environment As our algorithm is structurally similar to DBM, we will
maps; briefly describe the DBM algorithm here. DBM was first

Index Terms— procedural texturing, natural phenomena, frac-
tals, diffusion limited aggregation, dielectric breakdown model
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Fig. 2. From left to right: Results of DLA, our algorithm, and DBM.
Despite the fact that we are solving a different physicaéct®e characteristic
branching patterns of Laplacian growth are still observed.
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wherei is the index of some candidate growth sitejs the
total number of candidate growth sites, is the potential at
© (d) site 4, andp; is the probability of selection for sité Once
Fig. 1. (a) Initial conditions for 2D DBM. Reds — 0, Blue: ¢ — 1 (b) (€ Site has beer_1_se|_ected, it is setgb_to: 0, and treated as
2D Laplace stencil (c) Initial conditions for 3D DBM (Octantit away for @ boundary condition in subsequent iterations. The algorit
clarity). (d) 3D Laplace stencil proceeds until the desired growth structure is obtainededh
dimensional growth can be obtained by instead solving the
7 point Laplacian stencil (Figure 1(d)) over a 3D grid, with
initial enclosing sphere instead of a circle (Figure J1(c)
e initial boundary condition in Fig. 1 is arbitrary, andusd
bﬁ set to other configurations to produce different disaharg
patterns.
The n term in Egn. 2 is a user parameter that controls
) ) _the dimension of the growth structure. At = 0, a fully
1) Calculate the electric potentiab on a regular grid 2p growth structure known as aden clusteris produced

)

described by Niemeyer et al. [1] to simulate the branchi
patterns that occur in electric discharge. While the mod
generalizes to many natural phenomena, we will describe
intuitively in terms of electrical discharge. The simutsti
proceeds in three steps:

according to some bou‘ndary copdition. _ [12], and aty = 4, a 1D line is obtained [13]. Therefore, by
2) Select a grid cell as a ‘growth site’ accordingdo tuning n between 0 and 4, the entire spectrum of structures
3) Add the growth site to the boundary condition. between 1 and 2 dimensions can be obtained. Similarly, in

One application of these three steps is considered a sintjleee dimensions, the spectrum between 1D and 3D can be
iteration of DBM. The algorithm is iterated until the desire obtained by tuning;.
growth structure, oaggregate is obtained.

The 2D initial boundary conditions described in the origina |||. EAST SIMULATION OF LAPLACIAN INSTABILITY

paper [1] are shown in Figure 1(a). The red cells represent a i i )
boundary condition ofs — 0, and the blue cells are — 1. In this section, we will propose a faster, more memory

Intuitively, ¢ = 0 corresponds to a region of negative chargg,fﬁCient Laplacian growth algorithm. In DBM, a large amount
and¢ = 1 a region of positive charge. The potentialsin of computation time is spent on the first step. Computing

the neutral white cells are obtained by solving the Lapladl® Potential is expensive because we are numericallyingeat
equation the interior of the aggregate as a perfect conductor, and the

charge redistributes drastically even if only a small préydd
Vi =0, (1) tion to the boundary is introduced. Therefore, computirg th
potential field for this new distribution is still expensivia
according to these boundary conditions. In 2D, the Laplaceder to circumvent this problem, we constrain the intedbr
equation can be solved by constraining the values of the gtite aggregate to be a perfect insulator instead. Even under
cells according to the 5 point Laplacian stencil (Figure)lL(b these different physical conditions, we have found that the
These constraints produce a linear system that can thenbp&nching patterns characteristic of Laplacian instgbiill
solved with an efficient solver such as conjugate gradient. occur (Figure 2). Physically, this suggests that the cotiitic
Once the potentialy is known, a growth site must beof the aggregate is not an essential component of Laplacian
selected. All grid cells that are adjacent to negative ahargnstability.
are considered candidate growth sites. The growth site iSDBM simulates dielectric breakdown; when breakdown
then randomly selected from a distribution weighted acicgrd occurs an insulator (ie dielectric) is converted into a aand
to the local potential at each candidate site. The weighteat. Our algorithm instead simulates the opposite césse
probability function is given in Eqn. 2, breakdown [2], where a conductor converts into an insulator



A. Solving the Laplace Equation The constants can then be solved for using the boundary

In the first step of DBM, the solution of Laplace equatior(fondltlons'
can be determined by solving a large linear system correspon o = _(& — 1)t @)
ing to a uniform grid. However, as the grid size increases, th Ry
linear system quickly becomes intractable. Each step of the cg = (i _ i)—l_ 8)
DBM algorithm increases the size of the aggregate by one, so Ry Ry

growing an aggregate of sizetakesn timesteps. Given a grid pg g, approaches infinity, this function reduces to:
containingG cells, growing an aggregate of sizdakes at best B
1

O(n x G*®) time. As G is typically very large, particularly p=1-"2 9)
in 3D, this running time scales poorly. r

It appears that a conjugate gradient solver should be afilee B2 — oo case is arguably what DBM is trying to simulate
to solve the linear system very efficiently since the shape iof the first place. In nature, we do not often encounter nega-
the aggregate changes relatively slowly between timestepi¢e charges surrounded by uniform rings of positive charge
However, as stated before, the charge distribution on thstead, we assume that the universe is charge conserving,
interior of the aggregate changes rapidly in order to erforand for every negative charge, the universe contains sritici
the ¢ = 0 boundary condition along the aggregate surfacpgsitive charge to balance it out. However, these positive
causing non-trivial changes in the potential field. Theristex charges are only well approximated by a homogeneous ring
variants of DBM that try to solve for this charge distributio when they are very far away from the negative point charge.
directly, such as [14], but their formulations involve saly a Now that we know the potential induced by a single point
denseG x G linear system. charge as shown in Eqn. 9, we can solve for the potential field

In contrast, we instead treat the interior as an insulattifduced by many insulated point charges by simply summing
and no longer require a large regular grid. Therefore, we cHigir respective fields. For some grid cell of indéxthe
eliminate the need to solve a large linear system. Conclyptuapotential can then be calculated by:

we replace thep = 1 and ¢ = 0 boundary conditions with n R
positive and negative point charges. By summing the fields i = Z (1 - 1> (20)
induced by these point charges, we can compute the potential §=0 T,

field produced by a collection of insulated point Chargeﬁ)herej is the index of a point charge; is the distance

Formally, this is still a valid solution to the Laplace eqoat between grid celli and point chargej, andn is the total

because the Laplace equation is linear, and admits Sumpor?umber of point charges. By treating the aggregate as an
solutions.

insulator instead of a conductor, we have now circumvented

We must first determine the field induced by one sucllae most computationally expensive step of DBM
insulated point charge. In order to facilitate later parfance '

comparisons to DBM, we utilize boundary conditions that are _ o
analogous to those in DBM. Assume we haveMx N x N B. Algorithm Description

grid, whereh is the physical length of a grid cell. The initial We will now use Eqn. 10 to design a new fast algorithm
case of DBM corresponds to the case where a negativedy simulating Laplacian instability. DBM solves the Lapéa
charged circle of radiug; = % is located at the center of equation over a large regular grid because the linear system
the grid, and is surrounded by a larger, positively chargegl r requires a numerical medium through which far away bound-
of radius R, = 5. The potential in the space between thary conditions can be propagated to the candidate sites. Our
circle and ring is then defined by the Laplace equation (Ecfdrmulation requires no such propagators. While Eqn. 10 may
1). We can solve fop analytically in this initial case by using appear to be an expensive series to compute, we only need
the spherical form of the Laplace equation: to compute it at the candidate sites. Additionally, we obser
Po 1% L 26 206 that there V\_/ould_be a go_od Qeal of repeated W_ork _between
Vi(r,0,0) = — + — —— ————— +-—=0. Successive iterations. Unlike in DBM, the potential field we
or2 - r?200?  r2sin®00B* v or (3) construct changes very slowly, as the addition of a singietpo

The positive hollow sphere and neaative sphere can then }hearge does not force a charge redistribution in the redief t
stateg as Dirichlet boEndary conditi%nS' P ggregate. In fact, the values ¢f from the previous iteration

are already correct, save for one new charge. In order t@#xpl
this coherence, the potential at each candidate site cteaths
$(R1,0,8) = 0 @) P

be computed as:
G — ot 4 (1 — Ry
In this case, the boundary conditions are independettarfd ‘ ! Tit4+1
(3, so we can drop the middle two terms, reducing the PDE t
an Euler equation whose solution is the 3D Green'’s functio

) (11)

ciwere “+1 corresponds to the potential at positignat
i p p p
timestept + 1, ¢! is the potential at the same point at the
previous timestep, and — —£2-) is the potential contributed
o C2 6 L Tittl
p=c+- (6) by the new {+ 1)th point charge.



Finally, we observe that in DBM, the value of the potentiavhere Y,*(9, 3) is a spherical harmonic basis function and
field is constrained to th¢0,1] range. In our formulation, Ay, is its corresponding coefficient. The spherical Laplace
this constraint no longer holds. However, in order for the equation is usually solved for as the product of a radialapol
exponent in Eqn 2 to be effective, this constraint must md azimuthal function. Eqn. 14 already satisfies the polar
enforced. Therefore, prior to growth site selection, we-noand azimuthal components, but we must choose an appropriate
malize the potential values according to the current mimmuradial function. Only two radial harmonic functions? and

and maximum potential valueg,,,;, and ¢,,q.: r~"~!, are capable of satisfying our boundary conditions. Our
potential function thus takes the form:
(®:)"
P T e : -
J=1370 $(r,0,8) => (anr™ +byr™ 1) Y AR, Y0, 8). (15)
where: n=0 k=—n
The coefficients:,, andb,, solve to:
P; = m (13) ntl
¢mam - ¢mzn a _ RQ—
. no R2n+1 _ R2n+1
We have now described all the components of the fast growth 2 1 .
algorithm. To sum up, the algorithm is initialized as follaw b — (R(n+1) Ry )
1) Insert a point charge at the origin, " 2 Rf"“

2) Locate the candidate sites around the charge. Omgrder to incorporate the spherical harmonic solutiom int
square 2D (3D) grid, these would be the eight (twentyne overall algorithm, we then use Egn. 15 in place of Eqn. 9.

six) neighbors, . . . . However, we cannot seR;, = oo as we did in the
3) Calculate the potential at each candidate site accordifgmogeneous case. Consider the limitof
to Eqn. 10. .
An iteration of the algorithm is as follows: lim <R2_(n+1) _ i%q) _0
1) Randomly select a growth site according to Eqn. 12. fa—oo Ry
2) Add a new point charge at the growth site. All b,, are forced to zero with the exception of the= 0 case:
3) Update the potential at all the candidate sites according 1
to Egn. 11. lim (i — L) =—R,.
4) Add the new candidate sites surrounding the growth site. Ro—oo \ Ry Ry
5) Calculate the potential at new candidate sites using Eqe same holds true far,,. Thus, if we try to setR, = o,
10. we obtain the following result:
We note that while Eqn. 10 is the Green’s function for the Ry
3D case, we also use it when growing 2D fractals. The 2D o(r,0,3) = (1 - 7) Ago.

solution to the Laplace equation requires an impracticatgh

conservation constraint to be enforced due to the presenceNote that this equation is exactly the same as Eqn. 9, but

a logarithm. Details are in Appendix A of the supplementaicaled by the global average of the spherical functity, In-

materials. tuitively, this occurs because the outer boundary conditias

been pushed out so far that any angular variation is coniplete

suppressed, and only the overall average remains. Therefor

in order for angular effects to appear in the simulatid,
The algorithm we have described generalizes to arbitramust be set to some finite value. In our simulations, we set

Dirichlet boundary conditions, allowing the incorporatiof R, to twice the expected radius of the final aggregate.

spherical functions such as an environment map into the

growth condit?ons. This. i§ accomplishgd by repla}cing thieou D. Algorithm Analysis and Comparison

sphere of uniform positive charge with a function. The new

C. Spherical Harmonic Solution

boundary conditions can be stated as: Over n iterations, the running time of our algorithm is
O(n?). For a single iteration, steps 1, 3, and 5 of our algorithm
¢(R1,60,8) = 0 require O(n) time, and steps 2 and 4 requi@(1) time.
O(R2,0,8) = f(0,0). Therefore, oven iterations, the running time i©(n?). This

is optimal for any exact potential field approach because
The function introduces angular dependency, so we must ngive contribution of a new point charge must be computed
solve the full spherical Laplace equation (Eqn. 3). Methodsvery iteration. As electric potentials have infinite suppo
of solving this equation are well-known, and are available ihis requires updating)(n) candidate sites. By comparison,
any book on partial differential equations. First we replache running time of DBM is approximatel(n x G1-%), since

f(r,0,3) with its spherical harmonic series conjugate gradient runs in roughty(G*%). Sincen << G,
o n this running time is considerably larger than our algorithm
10,3) = Z Z A YF(0, ), (14) An exact bound on the running time of DLA is difficult to

=0 he—m obtain, as the algorithm contains a Monte Carlo step. Howeve



experimental results [15] suggest that in 2D, DLA runs in| StePS | DLA DBM 1 our al-| speedup| speedup
. 171 . .55 (sec) (sec) gorithm | over over
approximatelyO(n* "), and in 3D,0(n?°°). (sec) DLA DBM
Our algorithm requiresO(n) memory, wheren is the 2000 | 434 21821 | 6 72X 3636x
number of growth sites in the final aggregate. We only need 4000 | 1691 43119 | 20 84x 2156x
to track the locations of the point charges and candidags,sit 2888 gggé g‘g‘?gg ‘713 gg)’i iggii
so a large uniform grid is unnecessary. By contrast,_ DBM 10000| 9093 115466 | 110 82x 1049x
requwesO(G) space, whereZ is the number of ce!ls ina | 12000/ 12881 | 143165 | 156 82x 917x
uniform grid. In generalp << G, so the memory savings are | 14000/ 16987 | 171825 | 209 81x 822x
significant, especially in 3D. DLA requires a point location | 16000 21548 | 202364 | 269 80x 752x
data structure, for which we chose Delaunay triangulation| 58888 gigg% gg#gi’g fﬁg ;gx gg?x
which has a worst case memory bound @fn?). For our ) X X
DLA implementation, we used the off-lattice DLA version
. . . . . steps | our al- | DBM memory
dgsc_:qbed in [11]. Because our basic algor!thm structu‘fert_ih gorithm | (KB) savings
significantly from that of DLA, any quantitative comparison (KB)
will necessarily be somewhat tenuous. However, the running 2000 | 1064 687865 | 646x
time of the off-lattice version does not involve a grid facto 2888 %gii gg;ggg gi?x
. . . X
G, making comparison to our algorithm more natural. 8000 | 3559 687865 | 193x
Total Runtime| Memory Use 10000} 4336 687865 | 158x
s 12000| 5360 687865 | 128x
DBM Onx G ) 0(G) 14000| 4668 | 687865 | 147
I1.7T O 2 X
2D DLA O(n ") (n) 16000 5552 | 687865 | 123x
3D DLA O(n™") Oo(n”) 18000| 6528 | 687865 | 105x
Our Algorithm o(n”) O(n) 20000| 7252 | 687865 | 94x
(6)
TABLE |

. . Fig. 3. Performance comparisohe top table is compares the running time
Asymptotic AnalysiSTHE FIRST COLUMN IS THE TOTAL TIME TO GROW AN of our algorithm to that of DBM in the lightning scene in Figus(a). The

AGGREGATE OF SIZEn, AND THE SECOND COLUMN IS THE MEMORY bottom table shows the memory consumption for the same sc@verall,
REQUIREMENTS OF EACH ALGORITHM IN ALL COLUMNS, G IS THE SIZE our algorithm is651 times faster than DBM77 times faster than DLA, and

OF A UNIFORM GRID. IN GENERAL, G IS MUCH LARGER THANn, SO consumes4 times less memory than DBM.

ELIMINATING THE GG TERM RESULTS IN A SIGNIFICANT SPEEDUP

IV. IMPLEMENTATION AND RESULTS

We implemented the our algorithm in C++ using the linked
list and multimap templates available in STL. We implemdnte
As our fast algorithm still utilizes the variable, the ability DBM with Incomplete Cholesky Conjugate Gradient as its
to generate a final structure of arbitrary dimension is netdi solver. The solver exploits the Intel SSE instruction sets h
However, the 2D to 1D transition range 0f< n < 4 shifts the Laplace equation hard-coded into the calculations, and
to approximatelyd < n < 10. It is unclear if the switch from was compiled under ICL 8.0. Compared to the commonly
a conductor to an insulator alone is responsible for thiff.shiavailable IML++ [16] implementation, our solver performs a
The exact mapping aof to the dimensionality of the aggregateaverage of 7 times faster. The DBM solver was allowed to
is still an area of active research in physics, so furthedystuterminate at a generous 4 digits of precision; adding more
is necessary to determine the significance of this shift. digits increased running time by roughly a factor of 2 per
The algorithm also permits the use of repulsors and attratigit. The infinity norm was used instead of the usual 2-
tors. The growth can be repulsed from user specified regiomem, as it more accurately characterizes the precision of
by inserting extra negative charges into the simulatiord athe solution at the candidate sites. DLA requires a point
neglecting to add candidate sites around these charges. ffgation data structure that allows incremental consiact
growth will then be repulsed from that region of extra chargand nearest neighbor queries. We used the optimized Dglauna
Conversely, positive charge can be inserted into the siionla triangulation module of CGAL [17] for this purpose. All the
and growth will be attracted to this positive charge. Thedinings were collected on a 3.2 GHz Xeon PC.
two parameters can be used to ‘paint’ a desired path for the
aggregate. The spherical harmonic version of the algorithm
provides an efficient method of representing and simulating™ €€ Benchmark
dense, complex array of distant repulsors and attractors. ~ The tree in Figure 4 was created by running our algorithm
The attractors and repulsors are not restricted to potat 1 million particles withn = 3. In order to simulate the
charges, but can be any geometry that has a closed fagffects of the ground and sun, we placed an infinite plane
solution to the Laplace equation. Therefore, geometries as of negative charge under the initial charge. The potential o
infinite lines, planes, and cylinders can be used to manipulahis plane was calculated ais wherer is the perpendicular
the growth. distance of a point in space to the plane.

E. User Parameters



We mirrored these environmental conditions in DBM by Our algorithm’s lightning simulation corresponds t& &3
also placing a negatively charged plate under the initiargh. DBM simulation, but due to resource limitations, we wereyonl
A plate of positive charge was also placed along the top edagele to obtain timing data for a56% grid DBM simulation.
of the simulation grid because DBM requires the presenBainning a5123 grid DBM simulation to 20,000 particles
of some positive charge. The grid resolution was set would require 5.5 GB of memory and several months of
256% because visual artifacts become unacceptable at loveemputation. However, we project that our algorithm would
resolutions, andy was set to 1 to match the visual resultgjive a factor of nearly30, 000 speedup and a memory savings
of the tree generated using our algorithm. We mirrored otactor of nearly400 using the same grid size 6fl23.
algorithm’s conditions in DLA by emitting particles from a Figure 7 shows a Tesla coil discharge simulated by our
far away plate in the positive y direction. The ground couldlgorithm. Tesla coils are known for discharging the type of
not be simulated because DLA does not admit any notion electrical streamers that are common in science fiction and
a ‘repulsor’. fantasy films. Previous lightning methods [19] can produce

Our algorithm generated the 1-million-particle tree in-+Figvisually distracting self-intersections when simulatisgch
ure 4. (Please see the supplementary document for a plasge scale patterns. In contrast, our physically-basgalahm
tograph of a real maple tree with similar characteristics @sauses the streamers to naturally repulse each other,g@ngdu
the tree shown here.) Due to the massive running time afself-avoiding pattern without any user intervention. fdey
DBM, we had to limit our comparisons to the first 20,0080 suppress grid aliasing artifacts, we jittered each glarti
particles of the simulation. Our algorithm generated 20,00nside its grid cell.
particles1,112times faster than DBM and reduced memory
consumption by a factor oB5. Compared to DLA, our C. Terrain Generation

algorithm generated 20,000 particléS2 times faster. The 4, algorithm can be used to generate heightfields for

supplementary appendices also contain a side-by-sid@lVisi,ain representation. The lower left image in Figure 5(b)

comparison between an image of our tree and a photogra@fy,s a heightfield representation of the SIGGRAPH logo.

ofa real_maple_. .. . The fractal used in this scene was generated in less than
The pioneering work L-Systems work of Prusmklercz2 minutes with any of 7 and an initial boundary charge

Lindenmayer, and collaborators [3] has been widely used iy ration designed to constrain the fractal growth to a

computer graphics to generate plants. While our algorithrggion resembling the SIGGRAPH logo. We sampled the

does not approach the performance of L-Systems, we haug, ing potential field on a regular grid and used these

found that the two can work _in tgndem tq _eﬁiciently Simu'f’j‘tgalues to generate the heightfield, which was then rendered i
plant growth under complex lighting conditions. The spéalri Blender. Please see the supplementary video for a fly-tiroug

harmonic version_ of our algorithm can be implemented 3t this terrain. (This animation also appeared in the Etedtr
an L-System environmental module [18]. In that work, th%heatre at SIGGRAPH 2005.)

lighting conditions are taken into account by solving the

volum_e renderlng_ equatl_on on a regular grld. By using O 5b Benchmarks

spherical harmonic solution in place of this more expensive o )

solver, our algorithm provides a highly efficient, approaim _ All the 2D forms in Figure 5(b) were computed in under
alternative. The result can be seen in Fig. 6, where biased t¢ Minutes. Explicit timing comparisons are difficult becaus
growth adds only a few seconds to the overall running tim@ey were generated using user parameters that have no clear

yet well captures the influence of directional lighting etee @nalogs in DBM and DLA. Instead, we performed timing
on plant growth. comparisons with the canonical configuration (Figure 14ay

found that our algorithm is up t6,748faster than DBM in
B. Lightning Benchmark 2D. Additional 2D timing data is available in Appendix B of

The lightning in Figure 5(a) was created by running Ol}Pe supplemental materials.

algorithm to 250,000 particles and setting= 6.3. We again ]
simulated the ground as a plane of infinite charge, but seitchE- Rendering
the polarity to positive, and placed the initial charge veay For the tree rendering (Fig. 4), the leaves were placed at
from the plane. The initial conditions for DBM and DLA wereevery fifth particle, and the results were rendered as swept
set identically to the tree scene because although thefigpedphere cubic splines in POV-Ray. The hybrid tree images
phenomena being simulated was different, the basic nofionwere rendered in Blender using L-Systems derived from the
a branching object growing towards a faraway plane remainedvironmentally-sensitive systems [18]. The lightningrse
the same. was modeled in POV-Ray, and the lightning was rendered
Again, due to the massive running time of DBM, we limitedising the method described by Kim and Lin [10]. The Tesla
our comparison to the first 20,000 particles. Our algoritheoil scene was composed and rendered in Blender, with
generated the first 20,000 particl&®1 times faster than postprocessing applied using the same method. The 2D ffracta
DBM, and 77 times faster than DLA (Figure 3(a)). Whileforms in Figure 5(b) were rendered by calculating Eqn. 10
the performance gain over DBM may appear inferior to that every pixel, and then colored according to the method
witnessed in the tree scene, it should be noted that we m@ascribed by Mandelbrot and Evertsz [20]. The colormaps
DBM at half the resolution of our algorithm. were taken from the popular Fractint program.
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The memory requirements of our algorithm at runtime aRDECOM.
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wherer is the 2-norm of the difference between two vectors
for length D, anda andb are constants. Using our algorithm,
we can use these formulse to construct ‘hyperfractals’ of
arbitrarily high dimension. While it is unclear how to inpeet
these higher-dimensional fractals, they present an istiege

avenue for further investigation.
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Fig. 4. tree generated with one million prticles usingyoolir algorithm,1112times faster than DBM and32 times faster than DLA.

. pmcl aqurcgatle. cugu
at least2 orders of magnitude lessmemory.b) 2D Fractal forms generated with our algorithm. The SIGGRABgb is a frame from a short animation

featured in the SIGGRAPH 2005 Electronic Theater.



Fig. 6. A tree demonstrating bias toward a light source (& tipper right), automatically generated with our methodriporated into “environmentally-
sensitive” L-Systems. Inset: a tree grown with the same &8y, without environmental bias.

¢
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Fig. 7. A Tesla coil discharging, generated with 500,00Qigas with our algorithm. The physical foundation of ougalithm makes the simulated lightning
streams repulse each other naturally, producing a seifliagppattern without any user intervention.




