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Abstract— Laplacian instability is the physical mechanism that
drives pattern formation in many disparate natural phenomena.
However, current algorithms for simulating this instabili ty are
impractically slow and memory intensive. We present a new
algorithm that is over three orders of magnitude faster than
previous methods and decreases memory use by two orders of
magnitude. Our algorithm is based on the dielectric breakdown
model from physics, but is faster, more intuitive, easier to
implement, and simpler to control. We demonstrate the ability
of our algorithm to simulate various natural phenomena and
compare its performance with previous techniques.

Index Terms— procedural texturing, natural phenomena, frac-
tals, diffusion limited aggregation, dielectric breakdown model

I. I NTRODUCTION

Laplacian instability occurs when a smooth interface evolv-
ing under a Laplacian field develops rapidly growing spikes
and branches. Many fields are Laplacian, including the steady-
state heat equation, electric potential, and an incompressible
fluid pressure field. The instability has been connected to
many disparate phenomena, such as dendrites on snowflakes,
forks on lightning, quasi-steady-state fracture, lobes onlichen,
coral, riverbeds, vasculature, and urban sprawl patterns.Since
the formation of non-smooth features from smooth initial
conditions is counter-intuitive, this topic has attractedattention
in physics, chemistry, and material science.

Simulating Laplacian instability, orLaplacian growth, has
not been a widely used technique in computer graphics,
perhaps because existing algorithms, specifically thedielectric
breakdown model(DBM) [1], have prohibitive space and
time requirements, and are daunting to implement efficiently.
However, many natural structures arise through this instability,
thus fast simulations of Laplacian instability can providea
powerful, general, and physically-based method for describing
a wide variety of natural phenomena.

In this paper, we present a fast Laplacian growth algorithm
that is structurally similar to DBM but simulates a different
physical case,fuse breakdown[2]. Our algorithm admits a
spherical harmonic solution, which allows it to take into
account arbitrary boundary data, such as an environment
map. We have not found a similar algorithm elsewhere in
the literature, and our method appears to be novel from a
physics standpoint as well, as it suggests that Laplacian growth
does not require the evolving interface to be an equipotential
surface. The main contributions of this paper are:

• A fast, exact, memory-optimal fractal growth algorithm;
• A spherical harmonic formulation that takes into account

arbitrary boundary information, such as environment
maps;

• A user parameter that allows high-level modulation of
dimension, along with intuitive controls for low-level
detail;

• Simple implementation that requires neither the linear
system solvers nor point location data structures of pre-
vious methods;

• Proof-of-concept demonstration of our algorithm on mod-
eling of several natural phenomena and pattern formation.

We apply our algorithm to generation of the tree and
lightning as shown in Figures 4 and 5(a), and to the Tesla
coil discharge in Figure 7. We measured a performance gain
of over three orders of magnitude, and two orders of mag-
nitude in memory savings over previous techniques. We also
demonstrate the use of our algorithm to augment the existing
framework of L-Systems [3], as shown in Figure 6.

II. PREVIOUS WORK

Laplacian growth algorithms are closely related to fractals,
as they can often produce structures with a fractal dimension.
The term ‘fractal’ was coined by Mandelbrot [4] to character-
ize non-integral, or ‘fractional’ values for physical dimension.
In addition to the usual 1D, 2D and 3D, Mandelbrot defined
in-between dimensions such as 1.71D or 2.55D. The Koch
snowflake and the Mandelbrot set have since become instantly
recognizable computer-generated structures, and fractalter-
rains, fractal textures [5], and L-Systems [3] are now standard
visual effects tools.

There are three classes of Laplacian growth algorithms.
Listed in order of increasing generality they are: diffusion
limited aggregation [6], the dielectric breakdown model [1],
and Hastings-Levitov iterative conformal mapping [7]. We
will abbreviate them respectively as DLA, DBM, and HLCM.
While HLCM is the most general algorithm, it is also the most
mathematically involved, and can be difficult to interpret phys-
ically. Alternately, DLA has a simple physical interpretation,
but can only produce a narrow set of fractal structures. By
comparison, DBM offers clean physical intuition while still
producing a rich variety of growth structures.

In computer graphics, DLA has been used to produce ice
[8], lichen [9], and DBM has been used to create lightning
[10]. Many other natural phenomena can be generated by
these algorithms [11], but they require supercomputer-scale
resources for the simulation. However, the efficiency of our
algorithm should make the generation of these phenomena
practical on commodity desktop PCs.

A. The Dielectric Breakdown Model

As our algorithm is structurally similar to DBM, we will
briefly describe the DBM algorithm here. DBM was first
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Fig. 1. (a) Initial conditions for 2D DBM. Red:φ = 0, Blue: φ = 1 (b)
2D Laplace stencil (c) Initial conditions for 3D DBM (Octantcut away for
clarity). (d) 3D Laplace stencil

described by Niemeyer et al. [1] to simulate the branching
patterns that occur in electric discharge. While the model
generalizes to many natural phenomena, we will describe it
intuitively in terms of electrical discharge. The simulation
proceeds in three steps:

1) Calculate the electric potentialφ on a regular grid
according to some boundary condition.

2) Select a grid cell as a ‘growth site’ according toφ.
3) Add the growth site to the boundary condition.

One application of these three steps is considered a single
iteration of DBM. The algorithm is iterated until the desired
growth structure, oraggregate, is obtained.

The 2D initial boundary conditions described in the original
paper [1] are shown in Figure 1(a). The red cells represent a
boundary condition ofφ = 0, and the blue cells areφ = 1.
Intuitively, φ = 0 corresponds to a region of negative charge,
and φ = 1 a region of positive charge. The potentialsφ in
the neutral white cells are obtained by solving the Laplace
equation,

∇2φ = 0, (1)

according to these boundary conditions. In 2D, the Laplace
equation can be solved by constraining the values of the grid
cells according to the 5 point Laplacian stencil (Figure 1(b)).
These constraints produce a linear system that can then be
solved with an efficient solver such as conjugate gradient.

Once the potentialφ is known, a growth site must be
selected. All grid cells that are adjacent to negative charge
are considered candidate growth sites. The growth site is
then randomly selected from a distribution weighted according
to the local potential at each candidate site. The weighted
probability function is given in Eqn. 2,

Fig. 2. From left to right: Results of DLA, our algorithm, and DBM.
Despite the fact that we are solving a different physical case, the characteristic
branching patterns of Laplacian growth are still observed.

pi =
(φi)

η

∑n

j=1(φj)η
(2)

wherei is the index of some candidate growth site,n is the
total number of candidate growth sites,φi is the potential at
site i, and pi is the probability of selection for sitei. Once
the site has been selected, it is set toφ = 0, and treated as
a boundary condition in subsequent iterations. The algorithm
proceeds until the desired growth structure is obtained. Three-
dimensional growth can be obtained by instead solving the
7 point Laplacian stencil (Figure 1(d)) over a 3D grid, with
an initial enclosing sphere instead of a circle (Figure 1(c)).
The initial boundary condition in Fig. 1 is arbitrary, and could
be set to other configurations to produce different discharge
patterns.

The η term in Eqn. 2 is a user parameter that controls
the dimension of the growth structure. Atη = 0, a fully
2D growth structure known as anEden clusteris produced
[12], and atη = 4, a 1D line is obtained [13]. Therefore, by
tuning η between 0 and 4, the entire spectrum of structures
between 1 and 2 dimensions can be obtained. Similarly, in
three dimensions, the spectrum between 1D and 3D can be
obtained by tuningη.

III. FAST SIMULATION OF LAPLACIAN INSTABILITY

In this section, we will propose a faster, more memory
efficient Laplacian growth algorithm. In DBM, a large amount
of computation time is spent on the first step. Computing
the potential is expensive because we are numerically treating
the interior of the aggregate as a perfect conductor, and the
charge redistributes drastically even if only a small perturba-
tion to the boundary is introduced. Therefore, computing the
potential field for this new distribution is still expensive. In
order to circumvent this problem, we constrain the interiorof
the aggregate to be a perfect insulator instead. Even under
these different physical conditions, we have found that the
branching patterns characteristic of Laplacian instability still
occur (Figure 2). Physically, this suggests that the conductivity
of the aggregate is not an essential component of Laplacian
instability.

DBM simulates dielectric breakdown; when breakdown
occurs an insulator (ie dielectric) is converted into a conduc-
tor. Our algorithm instead simulates the opposite case,fuse
breakdown [2], where a conductor converts into an insulator.
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A. Solving the Laplace Equation

In the first step of DBM, the solution of Laplace equation
can be determined by solving a large linear system correspond-
ing to a uniform grid. However, as the grid size increases, the
linear system quickly becomes intractable. Each step of the
DBM algorithm increases the size of the aggregate by one, so
growing an aggregate of sizen takesn timesteps. Given a grid
containingG cells, growing an aggregate of sizen takes at best
O(n × G1.5) time. As G is typically very large, particularly
in 3D, this running time scales poorly.

It appears that a conjugate gradient solver should be able
to solve the linear system very efficiently since the shape of
the aggregate changes relatively slowly between timesteps.
However, as stated before, the charge distribution on the
interior of the aggregate changes rapidly in order to enforce
the φ = 0 boundary condition along the aggregate surface,
causing non-trivial changes in the potential field. There exist
variants of DBM that try to solve for this charge distribution
directly, such as [14], but their formulations involve solving a
denseG × G linear system.

In contrast, we instead treat the interior as an insulator
and no longer require a large regular grid. Therefore, we can
eliminate the need to solve a large linear system. Conceptually,
we replace theφ = 1 and φ = 0 boundary conditions with
positive and negative point charges. By summing the fields
induced by these point charges, we can compute the potential
field produced by a collection of insulated point charges.
Formally, this is still a valid solution to the Laplace equation
because the Laplace equation is linear, and admits superposed
solutions.

We must first determine the field induced by one such
insulated point charge. In order to facilitate later performance
comparisons to DBM, we utilize boundary conditions that are
analogous to those in DBM. Assume we have anN ×N ×N

grid, whereh is the physical length of a grid cell. The initial
case of DBM corresponds to the case where a negatively
charged circle of radiusR1 = h

2 is located at the center of
the grid, and is surrounded by a larger, positively charged ring
of radiusR2 = Nh

2 . The potential in the space between the
circle and ring is then defined by the Laplace equation (Eqn.
1). We can solve forφ analytically in this initial case by using
the spherical form of the Laplace equation:

∇2φ(r, θ, β) =
∂2φ

∂r2
+

1

r2

∂2φ

∂θ2
+

1

r2 sin2 θ

∂2φ

∂β2
+

2

r

∂φ

∂r
= 0.

(3)
The positive hollow sphere and negative sphere can then be
stated as Dirichlet boundary conditions:

φ(R1, θ, β) = 0 (4)

φ(R2, θ, β) = 1. (5)

In this case, the boundary conditions are independent ofθ and
β, so we can drop the middle two terms, reducing the PDE to
an Euler equation whose solution is the 3D Green’s function:

φ = c1 +
c2

r
(6)

The constants can then be solved for using the boundary
conditions:

c1 = −(
R1

R2
− 1)−1 (7)

c2 = (
1

R2
−

1

R1
)−1. (8)

As R2 approaches infinity, this function reduces to:

φ = 1 −
R1

r
(9)

TheR2 → ∞ case is arguably what DBM is trying to simulate
in the first place. In nature, we do not often encounter nega-
tive charges surrounded by uniform rings of positive charge.
Instead, we assume that the universe is charge conserving,
and for every negative charge, the universe contains sufficient
positive charge to balance it out. However, these positive
charges are only well approximated by a homogeneous ring
when they are very far away from the negative point charge.

Now that we know the potential induced by a single point
charge as shown in Eqn. 9, we can solve for the potential field
induced by many insulated point charges by simply summing
their respective fields. For some grid cell of indexi, the
potential can then be calculated by:

φi =
n

∑

j=0

(

1 −
R1

ri,j

)

(10)

where j is the index of a point charge,ri,j is the distance
between grid celli and point chargej, and n is the total
number of point charges. By treating the aggregate as an
insulator instead of a conductor, we have now circumvented
the most computationally expensive step of DBM.

B. Algorithm Description

We will now use Eqn. 10 to design a new fast algorithm
for simulating Laplacian instability. DBM solves the Laplace
equation over a large regular grid because the linear system
requires a numerical medium through which far away bound-
ary conditions can be propagated to the candidate sites. Our
formulation requires no such propagators. While Eqn. 10 may
appear to be an expensive series to compute, we only need
to compute it at the candidate sites. Additionally, we observe
that there would be a good deal of repeated work between
successive iterations. Unlike in DBM, the potential field we
construct changes very slowly, as the addition of a single point
charge does not force a charge redistribution in the rest of the
aggregate. In fact, the values ofφi from the previous iteration
are already correct, save for one new charge. In order to exploit
this coherence, the potential at each candidate site can instead
be computed as:

φt+1
i = φt

i + (1 −
R1

ri,t+1
) (11)

where φt+1
i corresponds to the potential at positioni at

timestept + 1, φt
i is the potential at the same point at the

previous timestep, and(1− R1

ri,t+1
) is the potential contributed

by the new (t + 1)th point charge.
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Finally, we observe that in DBM, the value of the potential
field is constrained to the[0, 1] range. In our formulation,
this constraint no longer holds. However, in order for theη

exponent in Eqn 2 to be effective, this constraint must be
enforced. Therefore, prior to growth site selection, we nor-
malize the potential values according to the current minimum
and maximum potential values,φmin andφmax:

pi =
(Φi)

η

∑n

j=1(Φj)η
(12)

where:

Φi =
φi − φmin

φmax − φmin

. (13)

We have now described all the components of the fast growth
algorithm. To sum up, the algorithm is initialized as follows:

1) Insert a point charge at the origin,
2) Locate the candidate sites around the charge. On a

square 2D (3D) grid, these would be the eight (twenty-
six) neighbors,

3) Calculate the potential at each candidate site according
to Eqn. 10.

An iteration of the algorithm is as follows:

1) Randomly select a growth site according to Eqn. 12.
2) Add a new point charge at the growth site.
3) Update the potential at all the candidate sites according

to Eqn. 11.
4) Add the new candidate sites surrounding the growth site.
5) Calculate the potential at new candidate sites using Eqn.

10.

We note that while Eqn. 10 is the Green’s function for the
3D case, we also use it when growing 2D fractals. The 2D
solution to the Laplace equation requires an impractical charge
conservation constraint to be enforced due to the presence of
a logarithm. Details are in Appendix A of the supplemental
materials.

C. Spherical Harmonic Solution

The algorithm we have described generalizes to arbitrary
Dirichlet boundary conditions, allowing the incorporation of
spherical functions such as an environment map into the
growth conditions. This is accomplished by replacing the outer
sphere of uniform positive charge with a function. The new
boundary conditions can be stated as:

φ(R1, θ, β) = 0

φ(R2, θ, β) = f(θ, β).

The function introduces angular dependency, so we must now
solve the full spherical Laplace equation (Eqn. 3). Methods
of solving this equation are well-known, and are available in
any book on partial differential equations. First we replace
f(r, θ, β) with its spherical harmonic series

f(θ, β) =
∞
∑

n=0

n
∑

k=−n

AknY k
n (θ, β), (14)

where Y k
n (θ, β) is a spherical harmonic basis function and

Akn is its corresponding coefficient. The spherical Laplace
equation is usually solved for as the product of a radial, polar,
and azimuthal function. Eqn. 14 already satisfies the polar
and azimuthal components, but we must choose an appropriate
radial function. Only two radial harmonic functions,rn and
r−n−1, are capable of satisfying our boundary conditions. Our
potential function thus takes the form:

φ(r, θ, β) =

∞
∑

n=0

(anrn + bnr−n−1)

n
∑

k=−n

AknY k
n (θ, β). (15)

The coefficientsan andbn solve to:

an =
Rn+1

2

R2n+1
2 − R2n+1

1

bn =

(

R
−(n+1)
2 −

Rn
2

R2n+1
1

)

−1

.

In order to incorporate the spherical harmonic solution into
the overall algorithm, we then use Eqn. 15 in place of Eqn. 9.

However, we cannot setR2 = ∞ as we did in the
homogeneous case. Consider the limit ofbn:

lim
R2→∞

(

R
−(n+1)
2 −

Rn
2

R2n+1
1

)

−1

= 0.

All bn are forced to zero with the exception of then = 0 case:

lim
R2→∞

(

1

R2
−

1

R1

)

−1

= −R1.

The same holds true foran. Thus, if we try to setR2 = ∞,
we obtain the following result:

φ(r, θ, β) =

(

1 −
R1

r

)

A00.

Note that this equation is exactly the same as Eqn. 9, but
scaled by the global average of the spherical function,A00. In-
tuitively, this occurs because the outer boundary condition has
been pushed out so far that any angular variation is completely
suppressed, and only the overall average remains. Therefore,
in order for angular effects to appear in the simulation,R2

must be set to some finite value. In our simulations, we set
R2 to twice the expected radius of the final aggregate.

D. Algorithm Analysis and Comparison

Over n iterations, the running time of our algorithm is
O(n2). For a single iteration, steps 1, 3, and 5 of our algorithm
require O(n) time, and steps 2 and 4 requireO(1) time.
Therefore, overn iterations, the running time isO(n2). This
is optimal for any exact potential field approach because
the contribution of a new point charge must be computed
every iteration. As electric potentials have infinite support,
this requires updatingO(n) candidate sites. By comparison,
the running time of DBM is approximatelyO(n∗G1.5), since
conjugate gradient runs in roughlyO(G1.5). Sincen << G,
this running time is considerably larger than our algorithm.
An exact bound on the running time of DLA is difficult to
obtain, as the algorithm contains a Monte Carlo step. However,
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experimental results [15] suggest that in 2D, DLA runs in
approximatelyO(n1.71), and in 3D,O(n2.55).

Our algorithm requiresO(n) memory, wheren is the
number of growth sites in the final aggregate. We only need
to track the locations of the point charges and candidate sites,
so a large uniform grid is unnecessary. By contrast, DBM
requiresO(G) space, whereG is the number of cells in a
uniform grid. In general,n << G, so the memory savings are
significant, especially in 3D. DLA requires a point location
data structure, for which we chose Delaunay triangulation,
which has a worst case memory bound ofO(n2). For our
DLA implementation, we used the off-lattice DLA version
described in [11]. Because our basic algorithm structure differs
significantly from that of DLA, any quantitative comparison
will necessarily be somewhat tenuous. However, the running
time of the off-lattice version does not involve a grid factor
G, making comparison to our algorithm more natural.

Total Runtime Memory Use
DBM O(n ∗ G

1.5) O(G)
2D DLA O(n1.71) O(n2)
3D DLA O(n2.55) O(n2)

Our Algorithm O(n2) O(n)

TABLE I

Asymptotic Analysis:THE FIRST COLUMN IS THE TOTAL TIME TO GROW AN

AGGREGATE OF SIZEn, AND THE SECOND COLUMN IS THE MEMORY

REQUIREMENTS OF EACH ALGORITHM. IN ALL COLUMNS , G IS THE SIZE

OF A UNIFORM GRID. IN GENERAL, G IS MUCH LARGER THAN n, SO

ELIMINATING THE G TERM RESULTS IN A SIGNIFICANT SPEEDUP.

E. User Parameters

As our fast algorithm still utilizes theη variable, the ability
to generate a final structure of arbitrary dimension is retained.
However, the 2D to 1D transition range of0 ≤ η ≤ 4 shifts
to approximately0 ≤ η ≤ 10. It is unclear if the switch from
a conductor to an insulator alone is responsible for this shift.
The exact mapping ofη to the dimensionality of the aggregate
is still an area of active research in physics, so further study
is necessary to determine the significance of this shift.

The algorithm also permits the use of repulsors and attrac-
tors. The growth can be repulsed from user specified regions
by inserting extra negative charges into the simulation, and
neglecting to add candidate sites around these charges. The
growth will then be repulsed from that region of extra charge.
Conversely, positive charge can be inserted into the simulation,
and growth will be attracted to this positive charge. These
two parameters can be used to ‘paint’ a desired path for the
aggregate. The spherical harmonic version of the algorithm
provides an efficient method of representing and simulatinga
dense, complex array of distant repulsors and attractors.

The attractors and repulsors are not restricted to point
charges, but can be any geometry that has a closed form
solution to the Laplace equation. Therefore, geometries such as
infinite lines, planes, and cylinders can be used to manipulate
the growth.

steps DLA
(sec)

DBM
(sec)

our al-
gorithm
(sec)

speedup
over
DLA

speedup
over
DBM

2000 434 21821 6 72x 3636x
4000 1691 43119 20 84x 2156x
6000 3571 64650 43 83x 1503x
8000 6099 89199 73 83x 1221x
10000 9093 115466 110 82x 1049x
12000 12881 143165 156 82x 917x
14000 16987 171825 209 81x 822x
16000 21548 202364 269 80x 752x
18000 26592 234085 336 79x 696x
20000 31907 267016 410 77x 651x

(a)

steps our al-
gorithm
(KB)

DBM
(KB)

memory
savings

2000 1064 687865 646x
4000 1916 687865 359x
6000 2844 687865 241x
8000 3552 687865 193x
10000 4336 687865 158x
12000 5360 687865 128x
14000 4668 687865 147x
16000 5552 687865 123x
18000 6528 687865 105x
20000 7252 687865 94x

(b)

Fig. 3. Performance comparison. The top table is compares the running time
of our algorithm to that of DBM in the lightning scene in Figure 5(a). The
bottom table shows the memory consumption for the same scene. Overall,
our algorithm is651 times faster than DBM,77 times faster than DLA, and
consumes94 times less memory than DBM.

IV. I MPLEMENTATION AND RESULTS

We implemented the our algorithm in C++ using the linked
list and multimap templates available in STL. We implemented
DBM with Incomplete Cholesky Conjugate Gradient as its
solver. The solver exploits the Intel SSE instruction set, has
the Laplace equation hard-coded into the calculations, and
was compiled under ICL 8.0. Compared to the commonly
available IML++ [16] implementation, our solver performs an
average of 7 times faster. The DBM solver was allowed to
terminate at a generous 4 digits of precision; adding more
digits increased running time by roughly a factor of 2 per
digit. The infinity norm was used instead of the usual 2-
norm, as it more accurately characterizes the precision of
the solution at the candidate sites. DLA requires a point
location data structure that allows incremental construction
and nearest neighbor queries. We used the optimized Delaunay
triangulation module of CGAL [17] for this purpose. All the
timings were collected on a 3.2 GHz Xeon PC.

A. Tree Benchmark

The tree in Figure 4 was created by running our algorithm
to 1 million particles withη = 3. In order to simulate the
effects of the ground and sun, we placed an infinite plane
of negative charge under the initial charge. The potential of
this plane was calculated as1

r
, wherer is the perpendicular

distance of a point in space to the plane.
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We mirrored these environmental conditions in DBM by
also placing a negatively charged plate under the initial charge.
A plate of positive charge was also placed along the top edge
of the simulation grid because DBM requires the presence
of some positive charge. The grid resolution was set to
2563 because visual artifacts become unacceptable at lower
resolutions, andη was set to 1 to match the visual results
of the tree generated using our algorithm. We mirrored our
algorithm’s conditions in DLA by emitting particles from a
far away plate in the positive y direction. The ground could
not be simulated because DLA does not admit any notion of
a ‘repulsor’.

Our algorithm generated the 1-million-particle tree in Fig-
ure 4. (Please see the supplementary document for a pho-
tograph of a real maple tree with similar characteristics as
the tree shown here.) Due to the massive running time of
DBM, we had to limit our comparisons to the first 20,000
particles of the simulation. Our algorithm generated 20,000
particles1,112 times faster than DBM and reduced memory
consumption by a factor of95. Compared to DLA, our
algorithm generated 20,000 particles132 times faster. The
supplementary appendices also contain a side-by-side visual
comparison between an image of our tree and a photograph
of a real maple.

The pioneering work L-Systems work of Prusinkiewicz,
Lindenmayer, and collaborators [3] has been widely used in
computer graphics to generate plants. While our algorithm
does not approach the performance of L-Systems, we have
found that the two can work in tandem to efficiently simulate
plant growth under complex lighting conditions. The spherical
harmonic version of our algorithm can be implemented as
an L-System environmental module [18]. In that work, the
lighting conditions are taken into account by solving the
volume rendering equation on a regular grid. By using our
spherical harmonic solution in place of this more expensive
solver, our algorithm provides a highly efficient, approximate
alternative. The result can be seen in Fig. 6, where biased tree
growth adds only a few seconds to the overall running time,
yet well captures the influence of directional lighting effects
on plant growth.

B. Lightning Benchmark

The lightning in Figure 5(a) was created by running our
algorithm to 250,000 particles and settingη = 6.3. We again
simulated the ground as a plane of infinite charge, but switched
the polarity to positive, and placed the initial charge veryfar
from the plane. The initial conditions for DBM and DLA were
set identically to the tree scene because although the specific
phenomena being simulated was different, the basic notion of
a branching object growing towards a faraway plane remained
the same.

Again, due to the massive running time of DBM, we limited
our comparison to the first 20,000 particles. Our algorithm
generated the first 20,000 particles651 times faster than
DBM, and 77 times faster than DLA (Figure 3(a)). While
the performance gain over DBM may appear inferior to that
witnessed in the tree scene, it should be noted that we ran
DBM at half the resolution of our algorithm.

Our algorithm’s lightning simulation corresponds to a5123

DBM simulation, but due to resource limitations, we were only
able to obtain timing data for a2563 grid DBM simulation.
Running a 5123 grid DBM simulation to 20,000 particles
would require 5.5 GB of memory and several months of
computation. However, we project that our algorithm would
give a factor of nearly30, 000 speedup and a memory savings
factor of nearly400 using the same grid size of5123.

Figure 7 shows a Tesla coil discharge simulated by our
algorithm. Tesla coils are known for discharging the type of
electrical streamers that are common in science fiction and
fantasy films. Previous lightning methods [19] can produce
visually distracting self-intersections when simulatingsuch
large scale patterns. In contrast, our physically-based algorithm
causes the streamers to naturally repulse each other, producing
a self-avoiding pattern without any user intervention. In order
to suppress grid aliasing artifacts, we jittered each particle
inside its grid cell.

C. Terrain Generation

Our algorithm can be used to generate heightfields for
terrain representation. The lower left image in Figure 5(b)
shows a heightfield representation of the SIGGRAPH logo.
The fractal used in this scene was generated in less than
2 minutes with anη of 7 and an initial boundary charge
configuration designed to constrain the fractal growth to a
region resembling the SIGGRAPH logo. We sampled the
resulting potential field on a regular grid and used these
values to generate the heightfield, which was then rendered in
Blender. Please see the supplementary video for a fly-through
of this terrain. (This animation also appeared in the Electronic
Theatre at SIGGRAPH 2005.)

D. 2D Benchmarks

All the 2D forms in Figure 5(b) were computed in under
2 minutes. Explicit timing comparisons are difficult because
they were generated using user parameters that have no clear
analogs in DBM and DLA. Instead, we performed timing
comparisons with the canonical configuration (Figure 1(a))and
found that our algorithm is up to5,748 faster than DBM in
2D. Additional 2D timing data is available in Appendix B of
the supplemental materials.

E. Rendering

For the tree rendering (Fig. 4), the leaves were placed at
every fifth particle, and the results were rendered as swept
sphere cubic splines in POV-Ray. The hybrid tree images
were rendered in Blender using L-Systems derived from the
environmentally-sensitive systems [18]. The lightning scene
was modeled in POV-Ray, and the lightning was rendered
using the method described by Kim and Lin [10]. The Tesla
coil scene was composed and rendered in Blender, with
postprocessing applied using the same method. The 2D fractal
forms in Figure 5(b) were rendered by calculating Eqn. 10
at every pixel, and then colored according to the method
described by Mandelbrot and Evertsz [20]. The colormaps
were taken from the popular Fractint program.
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F. Discussion and Limitations

The memory requirements of our algorithm at runtime are
less stringent than those of DBM. Memory consumption for
DBM is constant because it must allocate all the memory
it will use over the lifetime of the simulation at the very
beginning. This requirement quickly becomes intractable,as a
10243 DBM simulation would require over 44 GB of RAM, a
size that is beyond most commodity hardware. By comparison,
our algorithm allocates memory incrementally during the
simulation and uses orders of magnitude less overall.

From Table I, it may appear that 2D DLA is faster than the
2D version of our algorithm; but in practice, we have found
that 2D DLA only excels at generating structures of precisely
dimension 1.71D using the canonical configuration (Figure 1).
Our algorithm appears to outperforms DLA in all other cases.
See Appendix B for more details.

V. CONCLUSIONS ANDFUTURE WORK

We have presented a fast, simple algorithm for simulating
Laplacian instability. Our algorithm is mathematically similar
to previous methods, but is near optimal in both space and
time. We hope that this algorithm will make the simulation of
many large-scale Laplacian growth phenomena practical. This
method is suitable for simulating several natural phenomena,
such as snowflakes, lightning, fracture, lichen, coral, riverbeds,
vasculature, and urban sprawl patterns. Therefore, the ripest
avenues for future work are rigorous investigations of the
physical and mathematical connections between our algorithm
and these seemingly disparate phenomena.

Although we artificially constrained our simulation to a
virtual square grid, nothing prevents us from generating can-
didate sites at arbitrary neighbor locations. As such, we could
introduce anisotropies into the simulation that were previously
impossible due to non-physical grid tiling constraints.

Finally, the Green’s function for the Laplace equation is
known to exist in arbitrarily high dimensions. For any dimen-
sion D > 2, the function is:

φ = a +
b

rD−2

wherer is the 2-norm of the difference between two vectors
for lengthD, anda andb are constants. Using our algorithm,
we can use these formulæ to construct ‘hyperfractals’ of
arbitrarily high dimension. While it is unclear how to interpret
these higher-dimensional fractals, they present an interesting
avenue for further investigation.
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Fig. 4. A tree generated with one million particles using only our algorithm,1112 times faster than DBM and132 times faster than DLA.

Fig. 5. a) Lightning generated with a 250,000 particle aggregate. Ouralgorithm is at least3 orders of magnitude fasterthan existing methods and consumes
at least2 orders of magnitude lessmemory.b) 2D Fractal forms generated with our algorithm. The SIGGRAPHlogo is a frame from a short animation
featured in the SIGGRAPH 2005 Electronic Theater.
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Fig. 6. A tree demonstrating bias toward a light source (in the upper right), automatically generated with our method incorporated into “environmentally-
sensitive” L-Systems. Inset: a tree grown with the same L-System, without environmental bias.

Fig. 7. A Tesla coil discharging, generated with 500,000 particles with our algorithm. The physical foundation of our algorithm makes the simulated lightning
streams repulse each other naturally, producing a self-avoiding pattern without any user intervention.


