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Abstract 
We present an efficient algorithm for preserving the total 

volume of a solids undergoing free-form deformation using 
discrete level-of-detail representations. Given the boundary 
representation of a solid and user-specified deformation, the 
algorithm computes the new node positions of the deformation 
lattice, while minimizing the elastic energy subject to the volume-
preserving criterion. During each iteration, a non-linear 
optimizer computes the volume deviation and its derivatives based 
on a triangular approximation, which requires a finely tessellated 
mesh to achieve the desired accuracy.  To reduce the 
computational cost, we exploit the multi-level representations of 
the boundary surfaces to greatly accelerate the performance of 
the non-linear optimizer.  This technique also provides interactive 
response by progressively refining the solution. Furthermore, it is 
generally applicable to lattice-based free-form deformation and 
its variants. Our implementation has been applied to several 
complex solids.  We have been able to achieve an order of 
magnitude performance improvement over the traditional 
methods. 
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1 Introduction 
Engineering design and shape styling often require the capability 
to manipulate flexible objects, including bending, twisting, 
compressing or stretching parts of the model or its entire 
geometry.  Several modeling techniques and design  

methodologies have been proposed to provide intuitive 
manipulation and interactive deformation of flexible objects 
[Bech94].  One of the most versatile and powerful tools for 
representing and modeling flexible objects is free-form 
deformation (FFD) introduced by Sederberg and Parry [SP86].  
FFD unifies both the free-form surfaces and solid modeling into a 
common framework for deforming solid geometry, as well as 
surfaces, in a free-form manner.  A more general extension to 
FFD (EFFD) was later presented by Coquillart [Coqu90, CP91]. 

However, none of these methods associates any physical 
constraints with geometric deformation of solids.  Recently, the 
integration of geometric design and physically-based modeling 
techniques has emerged as an attractive alternative; it is a natural 
and systematic approach to constraint-based design, shape 
blending and a variety of solid modeling problems [Auma92, 
TQ94, QT95a, QT95b, RSB95, RSB96, AB97, GMP98].  The 
principles of physics govern the dynamic behaviors of objects in 
the physical world. Direct manipulation and interactive sculpting 
of geometric models should also be compliant with the laws of 
physics in order to give designers an intuitive grasp of the object. 
One of the important governing laws of Newtonian physics is the 
conservation of mass.  When the density of a given material is 
constant, this implies the preservation of volume.   

A volume-preservation constraint allows designers to keep the 
required relative proportionality of object sizes (in terms of their 
volumes) in the design of a complex assembly consisting of 
multiple parts.  Another example is the design of a container 
whose capacity is given a priori.  The volume inside should be 
preserved when the designer modifies the shape of the container.  
Volume-preserving free-form deformation is not only a useful tool 
for modeling, but also is a powerful visual aid in engineering 
animation and virtual prototyping as well. This technique can also 
be used to automatically create the standard squash and stretch 
effects in computer animation and help bring life to the animated 
characters. 

Main Contribution: We present a new approach for volume-
preserving free-form deformation using multi-level-of-detail 
representations.  Our method has following characteristics. 

• Total Volume Preservation of Embedded Solids: Given a 
boundary representation of solid geometry and user-specified 
constraints, the algorithm preserves the total volume of 
embedded solid geometry.  The hard constraint of volume 
preservation is satisfied by an augmented Lagrangian 
method. 

• Capability of Handling Large deformations:  Our algorithm 
computes the new node positions of the deformation lattice 
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by minimizing the elastic energy of deformation.  Quadratic 
energy functions have often been used because they can 
linearize the minimization problem.  Such linear behavior, 
however, defies the intrinsically non-linear nature of all large 
deformations.  We use a spring network whose energy 
function simulates non-linear elasticity. 

• Efficiency and Interactivity:  Our algorithm computes the 
volume deviation and its derivatives based on an 
approximation method that requires a finely tessellated mesh 
to achieve the desired accuracy.  To reduce the 
computational cost, we exploit the multi-level-of-detail 
representations of the boundary surfaces to provide 
progressive refinement while the user interactively 
manipulates the object and examines the deformed shape. 

• Versatility:  Our method is applicable to any models, 
including polyhedra and solids defined by NURBS or Bezier 
surfaces, as long as multi-LOD meshes for the model can be 
computed. 

To the best of our knowledge, none of the previous methods for 
volume-preserving FFD have achieved these goals 
simultaneously. 

Although our implementation is based on the trivariate 
Bernstein basis FFD, the proposed technique is generally 
applicable to other lattice-based free-form deformations and their 
variants [SP86, GP89, Coqu90, MJ96]. Our algorithm simulates 
the physical behaviors of the solids subject to the volume-
preserving constraint.  We have been able to achieve an order of 
magnitude speedup over the conventional optimization methods. 

Organization:  The rest of this paper is organized as follows.  
Section 2 reviews related work.  Section 3 explains the core of our 
method based on triangular approximation..  Section 4 describes a 
novel method which exploits multi-resolution representations to 
accelerate the optimization convergence and adapt this method to 
deform solids with curved boundaries.  Section 5 presents our 
implementations and gives the performance results on several 
complex models.  Section 6 concludes the paper with future 
research directions. 

2 Related Work 

2.1 Free-Form Deformation 
An R3→R3 mapping was defined for deforming solids in [Barr84] 
and brief mention of deformation was made much earlier in 
[Sabin70, Bezier74].  Free-form deformation (FFD) was first 
formally proposed in [SP86] both as a representation for free-form 
solids and as a method for sculpturing solid models.  One of many 
advantages of FFD is versatility, i.e. its general applicability to all 
representations of embedded geometry.  Through a 3D 
parallelpiped lattice, the users can manipulate the geometry of the 
embedded object.  

Griessmair and Purgathofer [GP89] utilized a trivariate B-
spline representation for FFD.  A general extension to FFD was 
proposed in [Coqu90, CP91], by allowing the combination of 
multiple general lattice structures to form arbitrary shaped spaces.  
A generalized deCasteljau approach to 3D free-form deformation 
based on [Barr84] was developed by Chang and Rockwood 
[CR94].  It allows the user to modify the axes defined as Bezier 
curves during the deformation, but restricts ways in which the 
surrounding spaces can be altered.  MacCracken and Joy designed 

a FFD technique based on the Catmull-Clark subdivision 
methodology that successively refines a 3-dimensional lattice into 
a sequence of lattices converging uniformly to a region of 3D 
space [MJ96]. 

[BB91, HHK92] presented methods for direct manipulation of 
the deformed object, leading to better control of the deformation 
and a more intuitive user-interface.  Given a user’s selection of 
input points on the objects, these techniques automatically 
compute the necessary movement of the control points using a 
least-square formulation. 

2.2 Physically-Based Deformation 
In computational mechanics, finite element methods (FEM) have 
been widely used to simulate deformation [OP92, LeTal94, GL84, 
Donz95].  Application of FEM in computer animation can also be 
found in [GTT89].  FEM are usually geometry dependent.  
Elements are generated directly from solid models by meshing, 
whereas FFD is independent of the embedded geometry.  The 
continuities across finite elements are usually just C0 since higher 
order continuity is not essential for simulating elastic solids 
[OP92].  In geometric modeling or computer graphics applications 
C1 or higher continuity is often desirable for aesthetic or 
manufacturing reasons.  FFD can guarantee such continuity. 

FEM is, however, compatible with FFD.  In FEM, each 
element is a partition in the internal space of the solid model.  In 
FFD, the deformation function consists of piecewise polynomial 
functions defined in similar partitions. We can use each ‘partition’ 
of FFD as an element.  Such a combination of FEM and FFD is 
used in [RSB95, RSB96] and [FVT97] to simulate static and 
dynamic behaviors respectively.  Each FFD lattice can be seen as 
an element with trivariate Bernstein polynomials for shape 
functions. An embedded object is approximated by an elastic unit 
cube or cubes aligned with the parameter space.  Therefore, the 
physical behavior is independent of the embedded geometry in the 
simulation. Various numerical methods [OP92] in computational 
mechanics are used to integrate elastic energy inside 
heterogeneous materials.  Such methods are applicable to 
integrate the energy function for the solid geometry embedded in 
FFD, but the computational cost is significantly higher. 

2.3 Volume Preserving Deformation 

There are three different definitions of volume preservation: 
(a) Local volume is analytically preserved. 
(b) Local volume is numerically preserved. 
(c) Global volume is preserved. 

(a) is the strongest condition.  If a deformation function satisfies 
(a), the volume of any differential element (local volume) is 
constant.  [SP86] implies that there is a special class of FFDs that 
belongs to this category.  This condition is so strict that admissible 
deformation seems to encumber free user manipulation.  (b) also 
implies local volume preservation, but in a much relaxed sense 
based on “weak formulation.”  This is a well-known technique 
which simulates incompressible materials by using FEM [GL84]. 

In this paper, we focus on (c).  We are not concerned with the 
local volume change, but only the total volume of a solid (global 
volume).  [RSB95,RSB96] proposed a method that preserves the 
volume of a unit cube in a deformation lattice.  [AB97] was the 
first to show preservation of the total volume of an embedded 
solid, but deformable objects were limited to polyhedra.  This 
technique uses a generalized direct manipulation FFD based on a 



   

least-square energy function proposed by [BB91, Bech94] and is 
not ideal for very large deformations (see Section 3). 

No algorithm published so far is capable of applying large 
deformations to embedded solid geometry of arbitrary topology 
with curved boundaries at interactive rates. 

3 Mathematical Formulations 
In this section, we present the mathematical formulation for 
volume-preserving free-form deformation using a triangular 
approximation method. 

3.1  Deformation Function  
We define a deformation function ϕ  that transforms the original 
space into a deformed one via the transformation: 

                                              (1) 
We have chosen the original FFD [SP86] for the ease of 
discussion and demonstration.  This method uses a set of node 
points (also called control points)  that deform the entire 
space that contains the object.  The deformation is independent of 
the representation of the embedded geometry.  The nodes present 
intuitive handles for interactive manipulation of the deformation.  
Using the control points, the deformation can now be described 
as: 

                                              (2) 

where the function φI  defines the scalar field that specifies the 
influence of the nodes in the space, and n is the number of nodes.  
We also define X as a 3×n matrix 

.                                             (3) 
In our implementation, we use the trivariate tensor product 
Bernstein polynomials for φI: 

      (4) 

where the  construct a 3D 

lattice of node points,  are the Bernstein polynomials, and 
(u, v, w) is the parameterization of the original position xT=(x, y, 
z): 

                                 (5) 
A is a 4 x 3 matrix, which represents an affine transformation. It is 
defined such that the FFD lattice encloses the volume being 
deformed.  

3.2 Problem Definition 
We assume that a triangle mesh can be obtained from the surface 
boundary of the embedded solid, either provided by the user or 
generated using a standard boundary tessellation algorithm.  We 
also assume the deformation can be approximated by “per-vertex” 
mapping, where the points on each triangle are linearly 
interpolated after the mapping of triangle vertices.  We will 
discuss the mathematical accuracy of this approximation in 
Section 4.  The triangle mesh consists of m vertices, which are 
denoted by a 3×m matrix .  is mapped 

by the function ϕ  that is defined by node points .  Therefore 

the volume of the deformed solid is a function  of .  
The volume deviation  from the original shape is also a 

function of ; i.e.  where 

denotes the original configuration of nodes before user 

manipulation. 

We also define a deformation energy function  of the 

solid. simulates the potential energy of elastic solids, and 
is a measure of the amount of deformation.  The user can 
interactively deform the object by moving one or more node 
points.  This operation may change the volume as well as the 
energy .  Our goal is to find a new configuration of , 
which preserves the total volume of embedded geometry.  We can 
formulate the problem as a constrained minimization, in which we 
search for the minimum energy configuration of the node points 
subject to the constraint of volume preservation: 

                       (6) 
The user normally would specify more constraints, namely, by 
pinning down the positions of several nodes. 

3.3 Volume Computation 
The total volume of the solid is computed by summing the volume 
contributions of each triangle of the polygonal mesh.  Each 
contribution is the volume swept out by the triangle through its 

projection onto the x-y plane.  This is shown in Figure 1. 

Figure 1: The volume contribution of a triangle is the volume swept 
out by the triangle through its projection onto the x-y plane.  

This volume is calculated by multiplying the area of the projected 
triangle Axy with the average height of the triangle as follows:  

                      (7) 

The area of the projection is found by 
                           (8) 

which is positive in the case where the triangle faces upward, 
otherwise negative.  The total volume V is then 

                                                      (9) 

where Vith triangle is the volume contribution of the ith triangle.  Note 
that we do not consider self intersection. 

The volume deviation (ΔV) between the current and original 
states of the object can be measured simply by taking the 
difference between the two total volumes: 

                                                      (10) 

x-y plane 
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The derivatives of the volume deviation (w.r.t. the node vector X) 
are also computed to facilitate the minimization process explained 
later.  Using the chain rule: 

                                              (11) 

The components of can be computed as corresponding 

values of : φI in equation (2). 

 can be computed by looking at the volume deviation 

contribution from each triangle (Figure 2). 

Figure 2: The volume deviation induced by the displacement  

of the vertex . 

If a point  on a triangle moves a distance , the volume 
deviation can be expressed as 

.               (13a) 
Therefore 

.                           (13b) 

This is the contribution of a triangle to .  Again, the 

summation over all triangles gives the total value of the 
derivative. 

3.4 Deformation Energy Function 
The elastic deformation energy is a functional of the deformation 
function ϕ.  Since ϕ is defined by the node points X, the 
deformation energy is a function of X.  The choice of the 
deformation energy may appear to be insignificant since in the 
scope of physically-based modeling we are merely trying to 
incorporate physically sound behavior to the object so that users 
can manipulate it intuitively.  But a poor choice of the 
deformation energy makes the behavior of deformation 
unpredictable.  For large deformations, in particular, special care 
is required.  The following discussion is based on literature of 
solid mechanics such as [Ciar88], [Ogde84], and [LeTal94].  
[TPBF87] describes the similar theory using differential geometry 
terminology. 

The elastic deformation energy measures the amount of 
deformation.  The deformation is essentially local stretches in 
various directions. If the mapping ϕ: x → xϕ is simply a rigid 
transformation, meaning that it preserves the distances between all 
particles (no stretches), the energy must be zero.  The local 
deformation is governed by the deformation gradient F=∇ϕ, a 
3×3 matrix. The right Cauchy-Green tensor C=FTF measures the 
length of an elementary vector after deformation, and is 
insensitive to rigid body transformations.   

Let E be the energy density function of an elastic solid under 
the deformation ϕ.  The total energy is obtained by integrating E 
over the entire volume of the solid.  The axiom of frame 
indifference states that E may not depend on the frame in which 
the deformation ϕ is observed [LeTal94].  A right Cauchy-Green 
tensor C contains all information in F except for rotation.  Hence 
by the axiom of frame indifference, E can only be expressed as a 
function of the C for elastic materials unless zero E is allowed for 
a non-rigid transformation ϕ (spurious zero-energy mode). 

In fact, the simplest law uses a quadratic function of the right 
Cauchy-Green tensor C [LeTal94].  Since F and C are a linear and 
quadratic functions of X respectively, E is at least a quartic 
function of X.  Although quadratic energy functions of X have 
been used in many direct manipulation FFD methods[FVT97, 
HHK92, RSB95, RSB96] and analysis of small deformation 
[OP92], they are unsuitable for large deformations because 
quadratic functions are either allowing spurious zero-energy mode 
or they are not frame indifferent. 

We have chosen the energy function of a spring network that 
connects 14 neighboring nodes in the FFD lattice.  In the color 
plates of our examples.  Nodes are shown as cubes; springs are 
drawn as line segments between those nodes.  The energy 
function can be written as: 

(14) 
where j is the index of a spring, sj and ej are the indices of 

nodes which are connected by the spring. Lj is the natural length 
of the spring. 

Despite its simplicity, this spring energy function is frame-
indifferent because only the distances between nodes affect the 
energy.  A rigid body transformation does not have any effect on 
the function.  Spurious zero-energy modes are not allowed for 
non-rigid transformations, either.  Recall that the essence of 
deformation is the change of distances between particles.  The 
spring network captures this essence.  Interestingly, the 
polynomial degree of Espring is well over quartic (infinity).  
Therefore, the spring-network is capable of handling any large 
deformation.  The spring network presents an intuitive metaphor 
for users, and its physical behavior is quite predictable.  The 
drawback of the spring-network, however, is that it overestimates 
the energy because the actual deformation of the object is smaller 
than the deformation of the FFD lattice.  We also have to 
emphasize that this energy function has no connection to the 
embedded geometry.  The deformation may not be exactly what 
the user would expect from the shape of the solid model.  

The minimization algorithm described later requires the first 
derivative of the energy function, which can be easily obtained by 
the partial differentiation of Espring(X). 

3.5 Numerical Method for Constrained Minimization 
Let us now restate our constrained minimization problem: 

                               (15) 

The problem can be converted to a saddle point finding problem: 
                                                   (16) 

where L is called Lagrangian, which is in the form of 

P1 

P3 

P2 

P1 + dP1 



   

.                         (17) 

λ is an unknow parameter called Lagrange Multiplier.  The 
solution satisfies two conditions: 

           (18) 

Here note that 

 

The first condition coincides with the original constraint.  The 
second condition corresponds to the resulting influence by both 
the spring forces and the volume preserving forces.  These volume 
preserving forces can be seen as the hydrostatic pressure 
concentrating on node points.  The Lagrange Multiplier scales the 
hydrostatic pressure properly against the spring forces to reach an 
equilibrium point between the two. 

For computational efficiency, we use a slightly more complex 
Augmented Lagrangian method [Flet87] which is widely used for 
solving mechanical engineering problems [GL84, Donz95].  
Figure 3 illustrates the adaptation of the algorithm to our specific 
problem.  Here, we explain our algorithm in a rather informal way 
by using associated physical concepts. 

First the Lagrangian L is augmented with a penalty term 

), which penalizes against volume deviation.  

This term simulates the stored energy of a fictitious compressible 
material similar to air.  The coefficient σ scales the penalty term 
appropriately in the optimization process.  The augmented 
Lagrangian La and its derivative are 

 

            (19) 

The gradient of the penalty term  can be 
viewed as an approximated “air pressure” acting on node points.  

λ is initialized to be zero, therefore there is no hydrostatic 
pressure which preserves the volume at the beginning.  Instead, 
the “air pressure” works against compression or decompression of 
the volume.  This makes the problem an unconstrained 
minimization problem because the penalty term does not impose a 
hard constraint.  This  unconstrained nonlinear minimization can 
be solved by typical gradient descent algorithms [PTVF92].  The 
minimization process converges to an equilibrium node 
configuration X, which balances between the spring forces and the 
penalty forces due to air pressure. As a result, the volume 
deviation ΔV is reduced.  If ΔV is not smaller than the tolerance 
(ε , specified by the user), the unconstrained minimization is 
applied again.  But in the second round, we have a good guess for 
the hydrostatic pressure, which is the air pressure.  Therefore we 
can update λ in such a way that the constraint forces (the 
hydrostatic pressure) match the penalty forces (the air pressure) 
i.e. 

.               (20) 

We can eliminate the common factor and obtain 

.                                               (21) 
Now, both the air and the hydrostatic pressures are in effect, 

which further reduces ΔV.  In the second round, λ is updated in 
such a way that both of the air pressure and the hydrostatic 
pressure match the new hydrostatic pressure (see “Lagrange 
Multiplier Update” in Figure 3). This process is repeated until  ΔV 
reaches a value below the user specified tolerance. 

The convergence of this method can be accelerated by 
increasing the penalty scalar σ.  However, an excessively large 
value of σ leads to numerical instability.  We use an internal feed-
back loop which enforces the linear convergence of the algorithm.  
The loop monitors the convergence rate of ΔV, and doubles σ 
until ΔV is reduced to half  of the value in the previous iteration 
[Powe69].  The advantage of this method is that we do not have to 
know the proper value of σ a priori.  The algorithm automatically 
finds the minimum value of σ  that guarantees linear convergence.  
In practice, however, this enforcement loop sometimes increases 
the value of σ  to be undesirably large, which jeapordizes the 
accuracy of the unconstrained minimization.  In our 
implementation, we set an upper bound for σ to avoid the adverse 
effects. 
 



   

Figure 3: Constrained Minimization by Augmented Lagrangian 
Method.  The Penalty Factor Update enforces linear convergence. 

4 Multi-Level Refinements 
Most solid objects we encounter in solid modeling and 
engineering animation have curved boundary surfaces.  The 
method described above does not handle such objects directly. In 
this section, we present a novel approach that extends the 
computational framework in Section 3 to general objects using 
multi-level-of-detail representations. 

4.1 Computation of Volume as Numerical Integration 
Let us first examine the complexity of computing the volume 
enclosed by a deformed curved boundary.  For the purpose of 
illustration, we use a parametric surface in this discussion.  
However, the basic argument is applicable to other types of 
surfaces as well. 
The general form of a parametric surface is given as 

,     (22) 
where f, g, and h are scalar functions, and S is the domain of the 
surface in parameter space s-t.  The volume enclosed by this 
surface (before deformation) is (according to [GMP98]): 

,                                                   (23) 

where n is the normal vector on the surface (faces outside of the 
solid), and nz is its z component.  After the deformation ϕ: x→xϕ, 
the surface becomes 

   (24) 

The corresponding volume is 

                (25)

 

As we saw in section 3.1, ϕ is defined as a linear combination 
of column vectors of .  Therefore the volume function 

 is a cubic function of . Next, we will examine the 
practicality of pre-computing this function for an arbitrary value 
of .  Suppose we are using tricubic Berstein polynomial FFD, 
each of xϕ yϕ and zϕ has 43=64 terms. Therefore, after 
expansion, has 643(≅260,000) independent terms, whose 
coefficients must be integrated over S independently.  The 
degrees, in terms of s and t, of the function to be integrated are far 
higher than the degrees of f, g, and h (33 =27 times higher), which 
makes the pre-computation very unattractive.  But the 
fundamental problem of this approach is that the domain of 
integration S often has very irregular boundaries (e.g. trimming 
curves).  An on-the-fly numerical integration, on the other hand, 
seems to be a practical solution. 

4.2 Error Estimation of Triangular Approximation Method 
Now we have to determine what kind of numerical integration 
method to use.  If we look at the Equation (25) carefully, we find 

is the area of a differential element projected 

onto the plane and is the height of the element.  
Comparing this with Figure 1, Equation (7) and (8), we see the 
triangular approximation as a discretized version of integration 
(25).  Since it is a quadrature method based on piecewise linear 
approximation, the total error is O(h2) where h is a sampling 
interval.  The number of samples m (which is the number of the 
vertices of triangles) is O(1/h2) because the sampling happens in 
the 2D domain S.  It implies that the integration error is O(1/m), 
hence O(1/NTri) where NTri is the number of triangles.  If we want 
to reduce the error to half, we have to double the number of 
triangles. 

The accuracy of the constrained minimization depends on the 
accurate evaluation of the constraint function  

.                               (26) 

The approximated version is written as 

.               (27) 

where denotes the approximation of the boundary 
surface with NTri triangles.  The integration error is 
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    (28) 

The constant C can be roughly estimated by two computations of 
the volume with different numbers of triangles: 

                    (29) 

We can carefully select NTri such that |C/NTri| is well below a 
given tolerance.  We can compute with reasonable 
confidence, unless the deformed surface is highly discontinuous.  
The obvious problem of the triangular approximation is that it 
requires relatively high tessellation to achieve high accuracy. 
However, a large value of NTri slows down the evaluation of 

 significantly. 

4.3 Multi-Level Optimization 
We propose a Multi-Level Optimization algorithm to alleviate the 
problem of the expensive  evaluation. The algorithm is 
designed based on the following observations: 
a) The number of steps (Nstep) required for the unconstrained 

minimization (see Figure 3) is greatly affected by the initial 
guesses of , , and . 

b) There is no significant relationship between the number of 
steps Nstep and the number of triangles NTri.  In other word, 
the minimization requires about the same number of steps 
regardless of the resolution of triangle mesh. 

c) Each step of the minimization requires the re-computation of 
the deformed vertex positions, the volume deviation, and its 
derivatives, while the computation of the spring energy and 
its derivatives is relatively inexpensive.  Therefore, the 
computational cost of each step is proportional to the number 
of vertices (m), and also Ntri. 

a) and c) imply that we should avoid applying the 
minimization with bad initial guesses when the resolution of 
triangle mesh is high (i.e. NTri is large).  Before we use a fine 
tessellation (large NTri) to achieve high accuracy, we need a good 
initial guess.  Suppose we have a coarser mesh, i.e. an 
approximation of the same model with fewer triangles.  The 
behavior of the for the coarser mesh is similar to that of 
that for a fine mesh.  By applying the minimization to the coarser 
mesh, we can obtain an approximate solution of X, which can be 
used as a “good” initial guess for the minimization to the fine 
mesh.  (b) and (c) imply that the minimization for the coarser 
mesh requires less time.  The minimization for the fine mesh 
converges faster because of the improved initial guess.  Thus we 
can expect that this two-level optimization is faster than one-level 
optimization.  If it is the case, we can also expect that the 

minimization for the coarser mesh can be accelerated by a good 
initial guess obtained by applying minimization to an even coarser 
mesh.  Thus, given multiple levels of mesh representation, we can 
successively refine the optimization. 

 
 

Figure 4:  Multi-Level Optimization Algorithm  

This “multi-level boot-strapping” process is illustrated in  
Table 2.  The user moves the selected nodes (light ones) to new 
“fixed” positions.  By this manipulation, a torus (see Plate 1) is 
compressed.  As a result, the volume is reduced.  Now, the 
volume-preserving energy minimization is invoked for the lowest 
resolution mesh.  The first minimization run converges quickly 
despite its large Nstep value of 90, due to a coarse tessellation with 
a very small NTri value of 16.  The resulting parameters X(1), σ(1), 
and λ(1) are fed to the next level of minimization with Ntri=64, 
which converges after much fewer steps (Nstep=15).  Note that, at 
this point, X is already very close to the final position (The node 
moves at most 3.7% of the object size after this level.) shown in 
the bottom row of the table.  This progressive nature of the multi-
level optimization method enables fast visual feedback to the user, 
which facilitates interactive manipulation of the solid model.  The 
algorithm monitors the changes of X between successive levels.  
If the maximum difference among X's components is less than a 
tolerance ε (0.1% of the object size in our implementation), the 
algorithm assumes the optimization reached convergence.  In this 
particular example, the final volume deviation ΔV is 0.05% of the 
original volume Vorg.  The flowchart of the algorithm is given in 
Figure 4. 

In Figure 4, α is the rate of refinement between levels.  α must 
be significantly larger than one.  Otherwise, two successive levels 
will have about the same numbers of triangles, and the X 
computed at both levels may have very close values, which would 
results in a premature convergence.  We empirically picked a 
value of 4 for α, which means that, at each refinement, the 
resolution of triangles doubles in each direction of the surface 
parameter space. 

X(0)User Manipulates Deformation 
Initialize: k0, σ(0)1, λ(0)0 

Apply Constrained Minimization 

 using  
 to obtain X(k+1), σ(k+1), λ(k+1) 

Yes 

No 

k←k+1 

End 

 



   

To verify the superior performance of multi-level optimization, 
we also applied the minimization process directly to the finest 
mesh (with NTri=4096 in this example) without multi-level-of-
detail representations.  The total computation cost for this run was 
more than 10 times higher than that of the multi-level 
optimization method.  Note that if we did not use the multi-level 
optimization method, we would have to use a finer mesh based on 
a conservative error estimation, making the total computation cost 
even higher.  More examples are presented in section 5.. 
 

Multi-level meshes can be generated by tessellating curved or 
polygonal boundary surfaces.  If a finely tessellated mesh is 
available, one can also generate multi-level meshes by using 
various simplification algorithms [CVM+96,CMO97,GH97] 
preferably with local and global errors so that surface deviation of 
simplified model from the original one is minimized.  In any case, 
the generated mesh may not be self-intersecting, a condition 
which is not handled properly by our algorithm.  Note also that it 
is no longer a good idea to approximate a large flat area by a 
polygon because a deformation turns the polygon into a curved 
surface.  A relatively uniform distribution of triangles is desirable. 

5 Implementation and Performance 

5.1  Implementation 
We have successfully implemented our algorithm in C++.  The 
image generation and the user interface are developed using the 
OpenGL and GLUT library.  All timing data was obtained on an 
SGI Onyx2 with 195MHz R10000 MIPS processors. 

5.2  Results 
We have tested our system on various models undergoing  
deformation.  The color images are available at our web site 
(http://www.cs.unc.edu/~geom/ffd).  We analyze its performance 
using four examples here. 
1) Torus compression (Plate 1 and Table 2): This example is 

described in section 4.  A torus (left image) is deformed by a 
3×3×3 lattice.  The upper and lower 3×3 nodes in light color 
are vertically moved toward the center, compressing the 
torus (center image) and then fixed in their places.  The 
algorithm finds the new positions of the central nodes to 
regain the original volume (right image).  The multi-level 
meshes are generated by uniformly sampling the parameter 
space. 

2) Torus stretch (Plate 2): The same torus is now stretched by 
using a 5×2×2 lattice (center image).  The upper and lower 
2×2×2 nodes in light color are fixed to enforce strong 
stretching at both ends.  After the optimization process, the 
central 2×2 nodes have moved all the way across to the 
diagonal sides to produce lateral contraction. 

3) Rounded Club Partial Compression (Plate 3): A club with 
rounded ends (left image) is deformed by a 5×2×2 lattice.  
The left side of the club is compressed (center image) and the 
right side swells to compensate the volume lost by the 
compression.  The club is modeled as a sphere deformed by 
the FFD.  The multi-level meshes are generated by a 
polygonal simplification algorithm [GH97] applied on a 
densely sampled sphere.  The number of triangles at each 
level is approximately the same as for the torus in previous 
example. 

4) Cow Bending (Plate 4): A cow model is bent by a 5×2×2 
lattice.  The rather unnatural aspect of the user-deformed cow 
(center image) is “improved” by our algorithm (right image).  
The cow model has 5804 triangles and multi-level meshes 
are generated in the same way as for the rounded club. 

 

Figures 5,6,7, and 8 illustrate the convergence of the multi-
level optimization.  The x-axis show cumulative CPU time, and 
the y-axis shows the maximum error of node positions estimated 
as the distance deviation between the nodes before and after the 
optimization.  The distance is normalized by the size of the object.  
In all our examples the node points converge to the approximately 
correct positions in a fraction of a second.  These results 
demonstrate that our method can be used for interactive 
applications.  In our implementation, the intermediate states of 
nodes and objects are rendered during the unconstrained 
minimization iterations, thus providing even faster feedback to the 
user.  

Table 1 shows the performance improvement of the multi-
level optimization over the usual optimization method.  We have 
consistently achieved about an order of magnitude speedup using 
the multi-level optimization.  The torus stretch example has an 
interesting property that is worth mentioning.  If we start the 
algorithm from a fine mesh (NTri≥4096), the shape converges to a 
different configuration than it does if we start with a coarse mesh 
(Plate 6).  This is not surprising because there are often multiple 
local minimum states in near symmetric constraints.  Our method 
seeks only a local minimum, therefore the result may not be 
consistent for different starting levels.  Plate 7 is an example of 
very large deformation.  The rounded club is bent almost 180°.  
Our algorithm handles these situations without numerical 
problems.  In Plate 5, The bottom half of a water pitcher model 
(6176 triangles) is compressed by the user.  As a result of the 
optimization, the upper part is expanded. 
 



   

 
Figure 5: Convergence Curve for Torus compression. 
 

 
Figure 6: Convergence Curve for Stretched Torus. 

 

 
Figure 7: Convergence Curve for Rounded Club Partial 
Compression. 

 
Figure 8: Convergence Curve for Bending Cow. 

 

Example T1 T2 T1/T2 NTri 
ΔV/Vor

g 

Torus  
Compression 21000 1760 12 4096 0.05% 

Torus Stretch 677400 11080 61 65536 0.08% 
Club Partial 
Compressioin 40990 3530 12 16384 0.07% 

Cow Bending 15810 2240 7 5804 0.07% 

Table 1: Performance Improvement by Multi-Level Optimization.  T1 
and T2 are the total CPU time (msec) without and with Multi Level 
Optimization respectively. ΔV/Vorg is the final relative volume 
deviation after Multi-Level Optimization.  NTri is the mesh size at the 
terminal level. 

6 Conclusion and Future Work 
We have presented an efficient algorithm for volume-preserving 
free-form deformation using multi-level-of detail representations 
and a triangular approximation.  This method is capable of large 
deformation, efficient, versatile.  It gives designers and engineers 
real-time visual feedback and an intuitive physical feel of free-
form solids, during geometric design and shape modification.  We 
are currently improving our system by adding linear constraints to 
enable direct manipulation and continuity preservation.  We also 
plan to extend this technique to the preservation of inertia tensor 
and center of mass.  Higher order integration methods such as 
Gauss quadrature should also be investigated. 
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Plate 1: Torus Compression Example 

   



   

Plate 2:  Stretched Torus Example.  The triangle mesh at the convergence is 16 times denser than the mesh shown here. 

   

Plate 3:  Rounded Club with Partial Compression 

   
Plate 4:  Bending Cow 

   
Plate 5:  Water Pitcher Bottom Compression 

   
Plate 6:  A Different Equilibrium State                  Plate 7: Large Deformation. The club in plate 3 is bent by a user (left) resulting in the right one. 

 



   

Table 2:  Performance chart of multi-level optimization for a compressed torus example (Plate 1).  The level k corresponds to the minimization at 
the kth level of an approximation with NTti triangles.  Light and dark cubes denote fixed and free nodes respectively.  Node points X(k), penalty factor 
σ(k), and Lagrange multiplier λ(k) are inherited from one level to the next. ΔX is the maximum change in  the coordinates of node points X relative to 
the size (the maximum extent) of the object.  Nstep is the total number of internal minimization steps at each level.  T is CPU time (in msec) spent for 
the minimization at the kth level.  Tc is cumulative CPU time. 

k NTri 
Before minimization. After minimization ΔX Nstep T Tc 

0 16 

  

25% 90 120 120 

1 64 

  

7.9% 15 60 180 

2 256 

  

3.3% 19 290 470 

3 1024 

  

0.4% 13 700 1170 

4 4096 

  

0.01% 3 590 1760 
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