

Fast Volume-Preserving Free Form Deformation
Using Multi-Level Optimization

Gentaro Hirota Renee Maheshwari  Ming C. Lin

Department of Computer Science

University of North Carolina at Chapel Hill
{hirota, renee, lin}@cs.unc.edu

www.cs.unc.edu/~geom/ffd

Abstract
We present an efficient algorithm for preserving the total

volume of a solids undergoing free-form deformation using
discrete level-of-detail representations. Given the boundary
representation of a solid and user-specified deformation, the
algorithm computes the new node positions of the deformation
lattice, while minimizing the elastic energy subject to the volume-
preserving criterion. During each iteration, a non-linear
optimizer computes the volume deviation and its derivatives based
on a triangular approximation, which requires a finely tessellated
mesh to achieve the desired accuracy. To reduce the
computational cost, we exploit the multi-level representations of
the boundary surfaces to greatly accelerate the performance of
the non-linear optimizer. This technique also provides interactive
response by progressively refining the solution. Furthermore, it is
generally applicable to lattice-based free-form deformation and
its variants. Our implementation has been applied to several
complex solids. We have been able to achieve an order of
magnitude performance improvement over the traditional
methods.

Keywords: Free-Form Deformation, Physically Based Modeling,

1 Introduction
Engineering design and shape styling often require the capability
to manipulate flexible objects, including bending, twisting,
compressing or stretching parts of the model or its entire
geometry. Several modeling techniques and design

methodologies have been proposed to provide intuitive
manipulation and interactive deformation of flexible objects
[Bech94]. One of the most versatile and powerful tools for
representing and modeling flexible objects is free-form
deformation (FFD) introduced by Sederberg and Parry [SP86].
FFD unifies both the free-form surfaces and solid modeling into a
common framework for deforming solid geometry, as well as
surfaces, in a free-form manner. A more general extension to
FFD (EFFD) was later presented by Coquillart [Coqu90, CP91].

However, none of these methods associates any physical
constraints with geometric deformation of solids. Recently, the
integration of geometric design and physically-based modeling
techniques has emerged as an attractive alternative; it is a natural
and systematic approach to constraint-based design, shape
blending and a variety of solid modeling problems [Auma92,
TQ94, QT95a, QT95b, RSB95, RSB96, AB97, GMP98]. The
principles of physics govern the dynamic behaviors of objects in
the physical world. Direct manipulation and interactive sculpting
of geometric models should also be compliant with the laws of
physics in order to give designers an intuitive grasp of the object.
One of the important governing laws of Newtonian physics is the
conservation of mass. When the density of a given material is
constant, this implies the preservation of volume.

A volume-preservation constraint allows designers to keep the
required relative proportionality of object sizes (in terms of their
volumes) in the design of a complex assembly consisting of
multiple parts. Another example is the design of a container
whose capacity is given a priori. The volume inside should be
preserved when the designer modifies the shape of the container.
Volume-preserving free-form deformation is not only a useful tool
for modeling, but also is a powerful visual aid in engineering
animation and virtual prototyping as well. This technique can also
be used to automatically create the standard squash and stretch
effects in computer animation and help bring life to the animated
characters.

Main Contribution: We present a new approach for volume-
preserving free-form deformation using multi-level-of-detail
representations. Our method has following characteristics.

• Total Volume Preservation of Embedded Solids: Given a
boundary representation of solid geometry and user-specified
constraints, the algorithm preserves the total volume of
embedded solid geometry. The hard constraint of volume
preservation is satisfied by an augmented Lagrangian
method.

• Capability of Handling Large deformations: Our algorithm
computes the new node positions of the deformation lattice

Vital Images, Inc., reneem@vitalimages.com

by minimizing the elastic energy of deformation. Quadratic
energy functions have often been used because they can
linearize the minimization problem. Such linear behavior,
however, defies the intrinsically non-linear nature of all large
deformations. We use a spring network whose energy
function simulates non-linear elasticity.

• Efficiency and Interactivity: Our algorithm computes the
volume deviation and its derivatives based on an
approximation method that requires a finely tessellated mesh
to achieve the desired accuracy. To reduce the
computational cost, we exploit the multi-level-of-detail
representations of the boundary surfaces to provide
progressive refinement while the user interactively
manipulates the object and examines the deformed shape.

• Versatility: Our method is applicable to any models,
including polyhedra and solids defined by NURBS or Bezier
surfaces, as long as multi-LOD meshes for the model can be
computed.

To the best of our knowledge, none of the previous methods for
volume-preserving FFD have achieved these goals
simultaneously.

Although our implementation is based on the trivariate
Bernstein basis FFD, the proposed technique is generally
applicable to other lattice-based free-form deformations and their
variants [SP86, GP89, Coqu90, MJ96]. Our algorithm simulates
the physical behaviors of the solids subject to the volume-
preserving constraint. We have been able to achieve an order of
magnitude speedup over the conventional optimization methods.

Organization: The rest of this paper is organized as follows.
Section 2 reviews related work. Section 3 explains the core of our
method based on triangular approximation.. Section 4 describes a
novel method which exploits multi-resolution representations to
accelerate the optimization convergence and adapt this method to
deform solids with curved boundaries. Section 5 presents our
implementations and gives the performance results on several
complex models. Section 6 concludes the paper with future
research directions.

2 Related Work

2.1 Free-Form Deformation
An R3→R3 mapping was defined for deforming solids in [Barr84]
and brief mention of deformation was made much earlier in
[Sabin70, Bezier74]. Free-form deformation (FFD) was first
formally proposed in [SP86] both as a representation for free-form
solids and as a method for sculpturing solid models. One of many
advantages of FFD is versatility, i.e. its general applicability to all
representations of embedded geometry. Through a 3D
parallelpiped lattice, the users can manipulate the geometry of the
embedded object.

Griessmair and Purgathofer [GP89] utilized a trivariate B-
spline representation for FFD. A general extension to FFD was
proposed in [Coqu90, CP91], by allowing the combination of
multiple general lattice structures to form arbitrary shaped spaces.
A generalized deCasteljau approach to 3D free-form deformation
based on [Barr84] was developed by Chang and Rockwood
[CR94]. It allows the user to modify the axes defined as Bezier
curves during the deformation, but restricts ways in which the
surrounding spaces can be altered. MacCracken and Joy designed

a FFD technique based on the Catmull-Clark subdivision
methodology that successively refines a 3-dimensional lattice into
a sequence of lattices converging uniformly to a region of 3D
space [MJ96].

[BB91, HHK92] presented methods for direct manipulation of
the deformed object, leading to better control of the deformation
and a more intuitive user-interface. Given a user’s selection of
input points on the objects, these techniques automatically
compute the necessary movement of the control points using a
least-square formulation.

2.2 Physically-Based Deformation
In computational mechanics, finite element methods (FEM) have
been widely used to simulate deformation [OP92, LeTal94, GL84,
Donz95]. Application of FEM in computer animation can also be
found in [GTT89]. FEM are usually geometry dependent.
Elements are generated directly from solid models by meshing,
whereas FFD is independent of the embedded geometry. The
continuities across finite elements are usually just C0 since higher
order continuity is not essential for simulating elastic solids
[OP92]. In geometric modeling or computer graphics applications
C1 or higher continuity is often desirable for aesthetic or
manufacturing reasons. FFD can guarantee such continuity.

FEM is, however, compatible with FFD. In FEM, each
element is a partition in the internal space of the solid model. In
FFD, the deformation function consists of piecewise polynomial
functions defined in similar partitions. We can use each ‘partition’
of FFD as an element. Such a combination of FEM and FFD is
used in [RSB95, RSB96] and [FVT97] to simulate static and
dynamic behaviors respectively. Each FFD lattice can be seen as
an element with trivariate Bernstein polynomials for shape
functions. An embedded object is approximated by an elastic unit
cube or cubes aligned with the parameter space. Therefore, the
physical behavior is independent of the embedded geometry in the
simulation. Various numerical methods [OP92] in computational
mechanics are used to integrate elastic energy inside
heterogeneous materials. Such methods are applicable to
integrate the energy function for the solid geometry embedded in
FFD, but the computational cost is significantly higher.

2.3 Volume Preserving Deformation

There are three different definitions of volume preservation:
(a) Local volume is analytically preserved.
(b) Local volume is numerically preserved.
(c) Global volume is preserved.

(a) is the strongest condition. If a deformation function satisfies
(a), the volume of any differential element (local volume) is
constant. [SP86] implies that there is a special class of FFDs that
belongs to this category. This condition is so strict that admissible
deformation seems to encumber free user manipulation. (b) also
implies local volume preservation, but in a much relaxed sense
based on “weak formulation.” This is a well-known technique
which simulates incompressible materials by using FEM [GL84].

In this paper, we focus on (c). We are not concerned with the
local volume change, but only the total volume of a solid (global
volume). [RSB95,RSB96] proposed a method that preserves the
volume of a unit cube in a deformation lattice. [AB97] was the
first to show preservation of the total volume of an embedded
solid, but deformable objects were limited to polyhedra. This
technique uses a generalized direct manipulation FFD based on a

least-square energy function proposed by [BB91, Bech94] and is
not ideal for very large deformations (see Section 3).

No algorithm published so far is capable of applying large
deformations to embedded solid geometry of arbitrary topology
with curved boundaries at interactive rates.

3 Mathematical Formulations
In this section, we present the mathematical formulation for
volume-preserving free-form deformation using a triangular
approximation method.

3.1 Deformation Function
We define a deformation function ϕ that transforms the original
space into a deformed one via the transformation:

 (1)
We have chosen the original FFD [SP86] for the ease of
discussion and demonstration. This method uses a set of node
points (also called control points) that deform the entire
space that contains the object. The deformation is independent of
the representation of the embedded geometry. The nodes present
intuitive handles for interactive manipulation of the deformation.
Using the control points, the deformation can now be described
as:

 (2)

where the function φI defines the scalar field that specifies the
influence of the nodes in the space, and n is the number of nodes.
We also define X as a 3×n matrix

. (3)
In our implementation, we use the trivariate tensor product
Bernstein polynomials for φI:

 (4)

where the construct a 3D

lattice of node points, are the Bernstein polynomials, and
(u, v, w) is the parameterization of the original position xT=(x, y,
z):

 (5)
A is a 4 x 3 matrix, which represents an affine transformation. It is
defined such that the FFD lattice encloses the volume being
deformed.

3.2 Problem Definition
We assume that a triangle mesh can be obtained from the surface
boundary of the embedded solid, either provided by the user or
generated using a standard boundary tessellation algorithm. We
also assume the deformation can be approximated by “per-vertex”
mapping, where the points on each triangle are linearly
interpolated after the mapping of triangle vertices. We will
discuss the mathematical accuracy of this approximation in
Section 4. The triangle mesh consists of m vertices, which are
denoted by a 3×m matrix . is mapped

by the function ϕ that is defined by node points . Therefore

the volume of the deformed solid is a function of .
The volume deviation from the original shape is also a

function of ; i.e. where

denotes the original configuration of nodes before user

manipulation.

We also define a deformation energy function of the

solid. simulates the potential energy of elastic solids, and
is a measure of the amount of deformation. The user can
interactively deform the object by moving one or more node
points. This operation may change the volume as well as the
energy . Our goal is to find a new configuration of ,
which preserves the total volume of embedded geometry. We can
formulate the problem as a constrained minimization, in which we
search for the minimum energy configuration of the node points
subject to the constraint of volume preservation:

 (6)
The user normally would specify more constraints, namely, by
pinning down the positions of several nodes.

3.3 Volume Computation
The total volume of the solid is computed by summing the volume
contributions of each triangle of the polygonal mesh. Each
contribution is the volume swept out by the triangle through its

projection onto the x-y plane. This is shown in Figure 1.

Figure 1: The volume contribution of a triangle is the volume swept
out by the triangle through its projection onto the x-y plane.

This volume is calculated by multiplying the area of the projected
triangle Axy with the average height of the triangle as follows:

 (7)

The area of the projection is found by
 (8)

which is positive in the case where the triangle faces upward,
otherwise negative. The total volume V is then

 (9)

where Vith triangle is the volume contribution of the ith triangle. Note
that we do not consider self intersection.

The volume deviation (ΔV) between the current and original
states of the object can be measured simply by taking the
difference between the two total volumes:

 (10)

x-y plane

P1

P2

P3

Axy

Vtriangle

The derivatives of the volume deviation (w.r.t. the node vector X)
are also computed to facilitate the minimization process explained
later. Using the chain rule:

 (11)

The components of can be computed as corresponding

values of : φI in equation (2).

 can be computed by looking at the volume deviation

contribution from each triangle (Figure 2).

Figure 2: The volume deviation induced by the displacement

of the vertex .

If a point on a triangle moves a distance , the volume
deviation can be expressed as

. (13a)
Therefore

. (13b)

This is the contribution of a triangle to . Again, the

summation over all triangles gives the total value of the
derivative.

3.4 Deformation Energy Function
The elastic deformation energy is a functional of the deformation
function ϕ. Since ϕ is defined by the node points X, the
deformation energy is a function of X. The choice of the
deformation energy may appear to be insignificant since in the
scope of physically-based modeling we are merely trying to
incorporate physically sound behavior to the object so that users
can manipulate it intuitively. But a poor choice of the
deformation energy makes the behavior of deformation
unpredictable. For large deformations, in particular, special care
is required. The following discussion is based on literature of
solid mechanics such as [Ciar88], [Ogde84], and [LeTal94].
[TPBF87] describes the similar theory using differential geometry
terminology.

The elastic deformation energy measures the amount of
deformation. The deformation is essentially local stretches in
various directions. If the mapping ϕ: x → xϕ is simply a rigid
transformation, meaning that it preserves the distances between all
particles (no stretches), the energy must be zero. The local
deformation is governed by the deformation gradient F=∇ϕ, a
3×3 matrix. The right Cauchy-Green tensor C=FTF measures the
length of an elementary vector after deformation, and is
insensitive to rigid body transformations.

Let E be the energy density function of an elastic solid under
the deformation ϕ. The total energy is obtained by integrating E
over the entire volume of the solid. The axiom of frame
indifference states that E may not depend on the frame in which
the deformation ϕ is observed [LeTal94]. A right Cauchy-Green
tensor C contains all information in F except for rotation. Hence
by the axiom of frame indifference, E can only be expressed as a
function of the C for elastic materials unless zero E is allowed for
a non-rigid transformation ϕ (spurious zero-energy mode).

In fact, the simplest law uses a quadratic function of the right
Cauchy-Green tensor C [LeTal94]. Since F and C are a linear and
quadratic functions of X respectively, E is at least a quartic
function of X. Although quadratic energy functions of X have
been used in many direct manipulation FFD methods[FVT97,
HHK92, RSB95, RSB96] and analysis of small deformation
[OP92], they are unsuitable for large deformations because
quadratic functions are either allowing spurious zero-energy mode
or they are not frame indifferent.

We have chosen the energy function of a spring network that
connects 14 neighboring nodes in the FFD lattice. In the color
plates of our examples. Nodes are shown as cubes; springs are
drawn as line segments between those nodes. The energy
function can be written as:

(14)
where j is the index of a spring, sj and ej are the indices of

nodes which are connected by the spring. Lj is the natural length
of the spring.

Despite its simplicity, this spring energy function is frame-
indifferent because only the distances between nodes affect the
energy. A rigid body transformation does not have any effect on
the function. Spurious zero-energy modes are not allowed for
non-rigid transformations, either. Recall that the essence of
deformation is the change of distances between particles. The
spring network captures this essence. Interestingly, the
polynomial degree of Espring is well over quartic (infinity).
Therefore, the spring-network is capable of handling any large
deformation. The spring network presents an intuitive metaphor
for users, and its physical behavior is quite predictable. The
drawback of the spring-network, however, is that it overestimates
the energy because the actual deformation of the object is smaller
than the deformation of the FFD lattice. We also have to
emphasize that this energy function has no connection to the
embedded geometry. The deformation may not be exactly what
the user would expect from the shape of the solid model.

The minimization algorithm described later requires the first
derivative of the energy function, which can be easily obtained by
the partial differentiation of Espring(X).

3.5 Numerical Method for Constrained Minimization
Let us now restate our constrained minimization problem:

 (15)

The problem can be converted to a saddle point finding problem:
 (16)

where L is called Lagrangian, which is in the form of

P1

P3

P2

P1 + dP1

. (17)

λ is an unknow parameter called Lagrange Multiplier. The
solution satisfies two conditions:

 (18)

Here note that

The first condition coincides with the original constraint. The
second condition corresponds to the resulting influence by both
the spring forces and the volume preserving forces. These volume
preserving forces can be seen as the hydrostatic pressure
concentrating on node points. The Lagrange Multiplier scales the
hydrostatic pressure properly against the spring forces to reach an
equilibrium point between the two.

For computational efficiency, we use a slightly more complex
Augmented Lagrangian method [Flet87] which is widely used for
solving mechanical engineering problems [GL84, Donz95].
Figure 3 illustrates the adaptation of the algorithm to our specific
problem. Here, we explain our algorithm in a rather informal way
by using associated physical concepts.

First the Lagrangian L is augmented with a penalty term

), which penalizes against volume deviation.

This term simulates the stored energy of a fictitious compressible
material similar to air. The coefficient σ scales the penalty term
appropriately in the optimization process. The augmented
Lagrangian La and its derivative are

 (19)

The gradient of the penalty term can be
viewed as an approximated “air pressure” acting on node points.

λ is initialized to be zero, therefore there is no hydrostatic
pressure which preserves the volume at the beginning. Instead,
the “air pressure” works against compression or decompression of
the volume. This makes the problem an unconstrained
minimization problem because the penalty term does not impose a
hard constraint. This unconstrained nonlinear minimization can
be solved by typical gradient descent algorithms [PTVF92]. The
minimization process converges to an equilibrium node
configuration X, which balances between the spring forces and the
penalty forces due to air pressure. As a result, the volume
deviation ΔV is reduced. If ΔV is not smaller than the tolerance
(ε , specified by the user), the unconstrained minimization is
applied again. But in the second round, we have a good guess for
the hydrostatic pressure, which is the air pressure. Therefore we
can update λ in such a way that the constraint forces (the
hydrostatic pressure) match the penalty forces (the air pressure)
i.e.

. (20)

We can eliminate the common factor and obtain

. (21)
Now, both the air and the hydrostatic pressures are in effect,

which further reduces ΔV. In the second round, λ is updated in
such a way that both of the air pressure and the hydrostatic
pressure match the new hydrostatic pressure (see “Lagrange
Multiplier Update” in Figure 3). This process is repeated until ΔV
reaches a value below the user specified tolerance.

The convergence of this method can be accelerated by
increasing the penalty scalar σ. However, an excessively large
value of σ leads to numerical instability. We use an internal feed-
back loop which enforces the linear convergence of the algorithm.
The loop monitors the convergence rate of ΔV, and doubles σ
until ΔV is reduced to half of the value in the previous iteration
[Powe69]. The advantage of this method is that we do not have to
know the proper value of σ a priori. The algorithm automatically
finds the minimum value of σ that guarantees linear convergence.
In practice, however, this enforcement loop sometimes increases
the value of σ to be undesirably large, which jeapordizes the
accuracy of the unconstrained minimization. In our
implementation, we set an upper bound for σ to avoid the adverse
effects.

Figure 3: Constrained Minimization by Augmented Lagrangian
Method. The Penalty Factor Update enforces linear convergence.

4 Multi-Level Refinements
Most solid objects we encounter in solid modeling and
engineering animation have curved boundary surfaces. The
method described above does not handle such objects directly. In
this section, we present a novel approach that extends the
computational framework in Section 3 to general objects using
multi-level-of-detail representations.

4.1 Computation of Volume as Numerical Integration
Let us first examine the complexity of computing the volume
enclosed by a deformed curved boundary. For the purpose of
illustration, we use a parametric surface in this discussion.
However, the basic argument is applicable to other types of
surfaces as well.
The general form of a parametric surface is given as

, (22)
where f, g, and h are scalar functions, and S is the domain of the
surface in parameter space s-t. The volume enclosed by this
surface (before deformation) is (according to [GMP98]):

, (23)

where n is the normal vector on the surface (faces outside of the
solid), and nz is its z component. After the deformation ϕ: x→xϕ,
the surface becomes

 (24)

The corresponding volume is

 (25)

As we saw in section 3.1, ϕ is defined as a linear combination
of column vectors of . Therefore the volume function

 is a cubic function of . Next, we will examine the
practicality of pre-computing this function for an arbitrary value
of . Suppose we are using tricubic Berstein polynomial FFD,
each of xϕ yϕ and zϕ has 43=64 terms. Therefore, after
expansion, has 643(≅260,000) independent terms, whose
coefficients must be integrated over S independently. The
degrees, in terms of s and t, of the function to be integrated are far
higher than the degrees of f, g, and h (33 =27 times higher), which
makes the pre-computation very unattractive. But the
fundamental problem of this approach is that the domain of
integration S often has very irregular boundaries (e.g. trimming
curves). An on-the-fly numerical integration, on the other hand,
seems to be a practical solution.

4.2 Error Estimation of Triangular Approximation Method
Now we have to determine what kind of numerical integration
method to use. If we look at the Equation (25) carefully, we find

is the area of a differential element projected

onto the plane and is the height of the element.
Comparing this with Figure 1, Equation (7) and (8), we see the
triangular approximation as a discretized version of integration
(25). Since it is a quadrature method based on piecewise linear
approximation, the total error is O(h2) where h is a sampling
interval. The number of samples m (which is the number of the
vertices of triangles) is O(1/h2) because the sampling happens in
the 2D domain S. It implies that the integration error is O(1/m),
hence O(1/NTri) where NTri is the number of triangles. If we want
to reduce the error to half, we have to double the number of
triangles.

The accuracy of the constrained minimization depends on the
accurate evaluation of the constraint function

. (26)

The approximated version is written as

. (27)

where denotes the approximation of the boundary
surface with NTri triangles. The integration error is

Penalty Factor
Update

Initialization

Unconstrained Minimization
minimize

to obtain
 and

 End

 Yes

No

Yes
No

Lagrange Multiplier Update

 (28)

The constant C can be roughly estimated by two computations of
the volume with different numbers of triangles:

 (29)

We can carefully select NTri such that |C/NTri| is well below a
given tolerance. We can compute with reasonable
confidence, unless the deformed surface is highly discontinuous.
The obvious problem of the triangular approximation is that it
requires relatively high tessellation to achieve high accuracy.
However, a large value of NTri slows down the evaluation of

 significantly.

4.3 Multi-Level Optimization
We propose a Multi-Level Optimization algorithm to alleviate the
problem of the expensive evaluation. The algorithm is
designed based on the following observations:
a) The number of steps (Nstep) required for the unconstrained

minimization (see Figure 3) is greatly affected by the initial
guesses of , , and .

b) There is no significant relationship between the number of
steps Nstep and the number of triangles NTri. In other word,
the minimization requires about the same number of steps
regardless of the resolution of triangle mesh.

c) Each step of the minimization requires the re-computation of
the deformed vertex positions, the volume deviation, and its
derivatives, while the computation of the spring energy and
its derivatives is relatively inexpensive. Therefore, the
computational cost of each step is proportional to the number
of vertices (m), and also Ntri.

a) and c) imply that we should avoid applying the
minimization with bad initial guesses when the resolution of
triangle mesh is high (i.e. NTri is large). Before we use a fine
tessellation (large NTri) to achieve high accuracy, we need a good
initial guess. Suppose we have a coarser mesh, i.e. an
approximation of the same model with fewer triangles. The
behavior of the for the coarser mesh is similar to that of
that for a fine mesh. By applying the minimization to the coarser
mesh, we can obtain an approximate solution of X, which can be
used as a “good” initial guess for the minimization to the fine
mesh. (b) and (c) imply that the minimization for the coarser
mesh requires less time. The minimization for the fine mesh
converges faster because of the improved initial guess. Thus we
can expect that this two-level optimization is faster than one-level
optimization. If it is the case, we can also expect that the

minimization for the coarser mesh can be accelerated by a good
initial guess obtained by applying minimization to an even coarser
mesh. Thus, given multiple levels of mesh representation, we can
successively refine the optimization.

Figure 4: Multi-Level Optimization Algorithm

This “multi-level boot-strapping” process is illustrated in
Table 2. The user moves the selected nodes (light ones) to new
“fixed” positions. By this manipulation, a torus (see Plate 1) is
compressed. As a result, the volume is reduced. Now, the
volume-preserving energy minimization is invoked for the lowest
resolution mesh. The first minimization run converges quickly
despite its large Nstep value of 90, due to a coarse tessellation with
a very small NTri value of 16. The resulting parameters X(1), σ(1),
and λ(1) are fed to the next level of minimization with Ntri=64,
which converges after much fewer steps (Nstep=15). Note that, at
this point, X is already very close to the final position (The node
moves at most 3.7% of the object size after this level.) shown in
the bottom row of the table. This progressive nature of the multi-
level optimization method enables fast visual feedback to the user,
which facilitates interactive manipulation of the solid model. The
algorithm monitors the changes of X between successive levels.
If the maximum difference among X's components is less than a
tolerance ε (0.1% of the object size in our implementation), the
algorithm assumes the optimization reached convergence. In this
particular example, the final volume deviation ΔV is 0.05% of the
original volume Vorg. The flowchart of the algorithm is given in
Figure 4.

In Figure 4, α is the rate of refinement between levels. α must
be significantly larger than one. Otherwise, two successive levels
will have about the same numbers of triangles, and the X
computed at both levels may have very close values, which would
results in a premature convergence. We empirically picked a
value of 4 for α, which means that, at each refinement, the
resolution of triangles doubles in each direction of the surface
parameter space.

X(0)User Manipulates Deformation
Initialize: k0, σ(0)1, λ(0)0

Apply Constrained Minimization

 using
 to obtain X(k+1), σ(k+1), λ(k+1)

Yes

No

k←k+1

End

To verify the superior performance of multi-level optimization,
we also applied the minimization process directly to the finest
mesh (with NTri=4096 in this example) without multi-level-of-
detail representations. The total computation cost for this run was
more than 10 times higher than that of the multi-level
optimization method. Note that if we did not use the multi-level
optimization method, we would have to use a finer mesh based on
a conservative error estimation, making the total computation cost
even higher. More examples are presented in section 5..

Multi-level meshes can be generated by tessellating curved or
polygonal boundary surfaces. If a finely tessellated mesh is
available, one can also generate multi-level meshes by using
various simplification algorithms [CVM+96,CMO97,GH97]
preferably with local and global errors so that surface deviation of
simplified model from the original one is minimized. In any case,
the generated mesh may not be self-intersecting, a condition
which is not handled properly by our algorithm. Note also that it
is no longer a good idea to approximate a large flat area by a
polygon because a deformation turns the polygon into a curved
surface. A relatively uniform distribution of triangles is desirable.

5 Implementation and Performance

5.1 Implementation
We have successfully implemented our algorithm in C++. The
image generation and the user interface are developed using the
OpenGL and GLUT library. All timing data was obtained on an
SGI Onyx2 with 195MHz R10000 MIPS processors.

5.2 Results
We have tested our system on various models undergoing
deformation. The color images are available at our web site
(http://www.cs.unc.edu/~geom/ffd). We analyze its performance
using four examples here.
1) Torus compression (Plate 1 and Table 2): This example is

described in section 4. A torus (left image) is deformed by a
3×3×3 lattice. The upper and lower 3×3 nodes in light color
are vertically moved toward the center, compressing the
torus (center image) and then fixed in their places. The
algorithm finds the new positions of the central nodes to
regain the original volume (right image). The multi-level
meshes are generated by uniformly sampling the parameter
space.

2) Torus stretch (Plate 2): The same torus is now stretched by
using a 5×2×2 lattice (center image). The upper and lower
2×2×2 nodes in light color are fixed to enforce strong
stretching at both ends. After the optimization process, the
central 2×2 nodes have moved all the way across to the
diagonal sides to produce lateral contraction.

3) Rounded Club Partial Compression (Plate 3): A club with
rounded ends (left image) is deformed by a 5×2×2 lattice.
The left side of the club is compressed (center image) and the
right side swells to compensate the volume lost by the
compression. The club is modeled as a sphere deformed by
the FFD. The multi-level meshes are generated by a
polygonal simplification algorithm [GH97] applied on a
densely sampled sphere. The number of triangles at each
level is approximately the same as for the torus in previous
example.

4) Cow Bending (Plate 4): A cow model is bent by a 5×2×2
lattice. The rather unnatural aspect of the user-deformed cow
(center image) is “improved” by our algorithm (right image).
The cow model has 5804 triangles and multi-level meshes
are generated in the same way as for the rounded club.

Figures 5,6,7, and 8 illustrate the convergence of the multi-
level optimization. The x-axis show cumulative CPU time, and
the y-axis shows the maximum error of node positions estimated
as the distance deviation between the nodes before and after the
optimization. The distance is normalized by the size of the object.
In all our examples the node points converge to the approximately
correct positions in a fraction of a second. These results
demonstrate that our method can be used for interactive
applications. In our implementation, the intermediate states of
nodes and objects are rendered during the unconstrained
minimization iterations, thus providing even faster feedback to the
user.

Table 1 shows the performance improvement of the multi-
level optimization over the usual optimization method. We have
consistently achieved about an order of magnitude speedup using
the multi-level optimization. The torus stretch example has an
interesting property that is worth mentioning. If we start the
algorithm from a fine mesh (NTri≥4096), the shape converges to a
different configuration than it does if we start with a coarse mesh
(Plate 6). This is not surprising because there are often multiple
local minimum states in near symmetric constraints. Our method
seeks only a local minimum, therefore the result may not be
consistent for different starting levels. Plate 7 is an example of
very large deformation. The rounded club is bent almost 180°.
Our algorithm handles these situations without numerical
problems. In Plate 5, The bottom half of a water pitcher model
(6176 triangles) is compressed by the user. As a result of the
optimization, the upper part is expanded.

Figure 5: Convergence Curve for Torus compression.

Figure 6: Convergence Curve for Stretched Torus.

Figure 7: Convergence Curve for Rounded Club Partial
Compression.

Figure 8: Convergence Curve for Bending Cow.

Example T1 T2 T1/T2 NTri
ΔV/Vor

g

Torus
Compression 21000 1760 12 4096 0.05%

Torus Stretch 677400 11080 61 65536 0.08%
Club Partial
Compressioin 40990 3530 12 16384 0.07%

Cow Bending 15810 2240 7 5804 0.07%

Table 1: Performance Improvement by Multi-Level Optimization. T1
and T2 are the total CPU time (msec) without and with Multi Level
Optimization respectively. ΔV/Vorg is the final relative volume
deviation after Multi-Level Optimization. NTri is the mesh size at the
terminal level.

6 Conclusion and Future Work
We have presented an efficient algorithm for volume-preserving
free-form deformation using multi-level-of detail representations
and a triangular approximation. This method is capable of large
deformation, efficient, versatile. It gives designers and engineers
real-time visual feedback and an intuitive physical feel of free-
form solids, during geometric design and shape modification. We
are currently improving our system by adding linear constraints to
enable direct manipulation and continuity preservation. We also
plan to extend this technique to the preservation of inertia tensor
and center of mass. Higher order integration methods such as
Gauss quadrature should also be investigated.

7 Acknowledgements
We are grateful to Army Research Office, National Science
Foundation and Intel for their support. We would also like to
thank Kenneth E. Hoff III for providing us an interactive FFD
package, and Andrei State for technical advice.

8 References
[AB97] F. Aubert and D. Bechmann, Volume-preserving space deformation,
Computer & Graphics, 21(5), pp. 625-639, 1997.
[Auma92] G. Aumann, Two algorithms for volume-preserving approximation
of surfaces of revolution. Computer-Aided Design, 24(12), pp. 651-657, 1992.
[Barr84] A. Barr. Global and local deformations of solid primitives. ACM
Computer Graphics, vol. 18, pp. 21--30, 1984.
[Bech94] D. Bechmann, Space Deformation Models Survey. Computer &
Graphics, 18(4), pp. 571-586, 1994
[BB91] P. Borrel and D. Bechmann, Deformation of n-dimensional objects.
Intl. Journal of Computational Geometry and Applications, 1(4), 1991. Also in
ACM Symposium on Solid Modeling, pp. 351-370, 1991.

[Bezier74] P. Bezier, Mathematical and practical possibilities of UNISURF. in
Computer Aided Geometric Design, Barnhill and Riesenfeld, eds., Academic
Press, pp. 127-152, 1974.
[BF93] R. L. Burden, J. D. Faires, Numerical Analysis 5th ed.,. PWS
Publishing Company, 1993.
[Ciar88] P. G Ciarlet., Mathematical Elasticity. North-Holland, 1988.
[CR94] Y. Chang and A. Rockwood, A generalized deCasteljau approach to 3D
free-form deformation. Computer Graphics (Proc of SIGGRAPH'94), pp. 257-
260, 1994.
[CVM96+] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P.
Agarwal, F. Brooks and W. Wright, "Simplification Envelopes". Proc. of ACM
SIGGRAPH'96, pp. 119-128, 1996.
[CMO97] J. Cohen, D. Manocha and M. Olano, "Simplifying polygonal
models using successive mappings". Proc. of IEEE Visualization'97, pp.395-
402, 1997.
[Coqu90] S. Coquillart, Extended free form deformation: a sculpturing tool
for 3D geometric design. Computer Graphics(Proc. of SIGGRAPH'90), 24(4),
pp. 187-193, 1990
[CP91] S. Coquillart and P. Jancene, Animated free-form deformation: An
interactive animation technique. Computer Graphics (Proc. of SIGGRAPH'91),
vol. 25, pp. 23-26, 1991
[Deca96] P. Decaudin, Geometric Deformation by Merging a 3D Object with
a Simple Shape. Graphics Interface'96, p 55--60. Toronto, Canada, pp. 23-26 ,
1996
 [Donz95] P. S. Donzelli A Mixed-Penalty Contact Finite Element
Formulation for Biphasic Soft Tissues, PhDThesis, Dept. of Mechanical
Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic
Institute, Troy, NY, 1995.
[Flet87] R. Fletcher, Practical Methods of Optimization 2nd ed.,. PWS
Publishing Company, 1993.
[FVT97] P. Faloutsos, M. van de Panne and D. Terzopolous, Dynamic Free-
Form Deformations for Animation Synthesis. IEEE Trans. on Vis. and
Computer Graphics, 3(3), pp. 201-214, 1997.
[GH97] M. Garland and P. S. Heckbert, Surface Simplification Using Quadric
Error Metrics. SIGGRAPH'97, 1997, pp. 209--216
[GMP98] C. Gonzales-Ochoa, S. McCammon and J. Peters, Computing
moments of objects enclosed by piecewise polynomial surfaces. ACM Trans.
on Graphics, 17(3), pp. 143-157, 1998.
[GL84] R. Glowinski and P. Le Tallec, Numerical solution of problems in
incompressible finite elasticity by augmented Lagrangian methods II. Three-
dimesional problems. SIAM Journal on Applied Mathematics, 44(4), pp. 710-
733, 1984.
[GP89] J. Griessmair and W. Purgathofer, Deformation of solids with trivariate
B-splines. Eurographics'89, pp.134-148.
[GTT89] J. Gourret, N.M. Thalmann, D. Thalmann. Simulation of Object
and Human Skin Deformations. SIGGRAPH'95, 1989, pp. 21--30.
[HHK92] W. S. Hsu, J. F. Hughes and H. Kaufman, Direct Manipulation of
Free-Form Deformations. Computer Graphics, 26(2), pp. 177-184, 1992.

[KR91] A. Kaul and J. Rossignac. Solid-interpolating deformations:
construction and animation of PIPs. In Proc. Eurographics, 1991, pp. 493--
505.
[LCSW95] S. Lee, K. Chwa, S. Shin, and G. Wolberg. Image Metamorphosis
Using Snakes and Free-Form Deformations. SIGGRAPH 95 Conference
Proceedings, pp. 439--448, 1995.
[LeTal94] P. Le Tallec, Numerical methods for solids. in Handbook of
Numerical Analysis, Ciarlet and Lions, eds., North-Holland, 1994.
[MJ96] R. MacCracken and K. Joy, Free-form deformation with Lattices of
arbitrary topology. Computer Graphics (Proc. of SIGGRAPH'96), pp. 181-188,
1996.
[Ogde84] R. W. Ogden, Non-Linear Elastic Deformation,. Dover
Publications, Inc., 1984.
[OP92] N. Ottosen and H. Petersson, Introduction to Finite Element Method.
Prentice Hall, 1992.
[Parent95] R. Parent. Implicit Function Based Deformations of Polyhedral
Objects. In Implicit Surfaces '95, 1995.
[[Powe69] M. J. D. Powell, A method for nonlinear constraints in
minimization problems, in Optimization, R. Fletcher, eds., Academic Press,
London, 1969.
[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery,
Numerical Recipes in C, 2nd ed., Cambridge, 1994.
[QT95a] H. Qin and D. Terzopoulos, Dynamic NURBS swung surfaces for
physics-based shape design. Computer Aided Design, 27(2), 1995.
[QT95b] H. Qin and D. Terzopolous, Dynamic manipulation of Triangular
B-Splines, Proc. of ACM Symposium on Solid Modeling'95, pp. 351-360, 1995.
[RSB95] A. Rappoport, A. Sheffer and M. Bercovier, Volume-preserving
free-form solids. ACM Symposium on Solid Modeling'95, pp. 361-370, 1995.
[RSB96] A. Rappoport, A. Sheffer and M. Bercovier, Volume-preserving
free-form solids. IEEE Trans. on Vis. and Computer Graphics, 2(1), pp. 19-27,
1996.
[Sabin70] M. A. Sabin, Interrogation techniques for parametric surfaces,
Proc. of Computer Graphics'70, 1970.
[SP86] T. Sederberg and S.. Parry. Free-Form Deformation of Solid Geometric
Models. ACM Computer Graphics (SIGGRAPH '86 Proceedings), vol. 20, pp.
151--160, 1986.
[TPBF87] D. Terzopoulos, J. Platt, A. Barr and K. Fleischer, Elastically
Deformable Models, ACM Computer Graphics (SIGGRAPH'87 Proceedings),
v.21(4), pp. 205-214, 1987.
[TQ94] D. Terzopolous and H. Qin, Dynamic NURBS with geometric
constraints for interactive sculpturing, ACM Trans. on Graphics, 13(2), pp.
103-136, 1994.

Plate 1: Torus Compression Example

Plate 2: Stretched Torus Example. The triangle mesh at the convergence is 16 times denser than the mesh shown here.

Plate 3: Rounded Club with Partial Compression

Plate 4: Bending Cow

Plate 5: Water Pitcher Bottom Compression

Plate 6: A Different Equilibrium State Plate 7: Large Deformation. The club in plate 3 is bent by a user (left) resulting in the right one.

Table 2: Performance chart of multi-level optimization for a compressed torus example (Plate 1). The level k corresponds to the minimization at
the kth level of an approximation with NTti triangles. Light and dark cubes denote fixed and free nodes respectively. Node points X(k), penalty factor
σ(k), and Lagrange multiplier λ(k) are inherited from one level to the next. ΔX is the maximum change in the coordinates of node points X relative to
the size (the maximum extent) of the object. Nstep is the total number of internal minimization steps at each level. T is CPU time (in msec) spent for
the minimization at the kth level. Tc is cumulative CPU time.

k NTri
Before minimization. After minimization ΔX Nstep T Tc

0 16

25% 90 120 120

1 64

7.9% 15 60 180

2 256

3.3% 19 290 470

3 1024

0.4% 13 700 1170

4 4096

0.01% 3 590 1760

XX (1)(1) ,,σσ {1}{1} ,,λλ (1)(1)

X(2),σ{2},λ(2)

X(4),σ{4},λ(4)

X(3),σ(3),λ(3)

x

