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Fig. 1. Our new algorithm based on deep reinforcement learning can be used to control 2D coupled fluid/rigid animations. We use fluid jets (red blocks in (a))
to control a rigid body to exhibit desired behaviors. In this example, we use two fluid jets to play a cooperative ball game, where the goal is to push the ball
back and forth. In these frames, the ball first flies to the right (a) and the right jet shoots the ball back (b). Next, the ball flies to the left (c), the left jet shoots it
back (d). We use DRL to compute appropriate ghost forces at the fluid-solid boundary to control the ball’s trajectory.

We present a learning-based method to control a coupled 2D system involv-
ing both fluid and rigid bodies. Our approach is used to modify the fluid/rigid
simulator’s behavior by applying control forces only at the simulation do-
main boundaries. The rest of the domain, corresponding to the interior,
is governed by the Navier-Stokes equation for fluids and Newton-Eulerś
equation for the rigid bodies. We represent our controller using a general
neural-net, which is trained using deep reinforcement learning. Our formu-
lation decomposes a control task into two stages: a precomputation training
stage and an online generation stage. We utilize various fluid properties,
e.g., the liquid’s velocity field or the smoke’s density field, to enhance the
controller’s performance. We set up our evaluation benchmark by letting
controller drive fluid jets move on the domain boundary and allowing them
to shoot fluids towards a rigid body to accomplish a set of challenging 2D
tasks such as keeping a rigid body balanced, playing a two-player ping-pong
game, and driving a rigid body to sequentially hit specified points on the
wall. In practice, our approach can generate physically plausible animations.
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1 INTRODUCTION
Fluid animation has been widely studied in computer graphics and
related areas. Over the years, different techniques have been pro-
posed to achieve visual plausibility on desktop machines. As a result,
fluid simulators are used as standard tools in animation systems,
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e.g., Houdini and Naiad. Besides generating visually plausible ani-
mations, an additional requirement is for an artist to edit or control
the fluid behaviors in a goal-directed or intuitive manner. Numerous
methods, such as [Fattal and Lischinski 2004; McNamara et al. 2004;
Pan et al. 2013; Pan and Manocha 2017; Shi and Yu 2005; Thuerey
2016; Treuille et al. 2003], have been proposed to this end.

The current control schemes do not account for the interactions
between the fluid and other physical objects in the scene, such as
solid boundaries or free-flying rigid objects. Ignoring these objects
is reasonable for keyframe-based control applications where the
goal is to deform the fluid into a target shape. However, in many
other scenarios, the resulting simulation and control are based on
fluid/rigid-body interactions. Typical applications of such scenarios
include controlling a floating boat in a movie and controlling a
volleyball using water jets in an AI game. In these scenarios, control
is facilitated by applying forces on the fluid body, and the fluid
body, in turn, influences the rigid body by applying forces and
torques. Many prior algorithms [Fattal and Lischinski 2004; Shi
and Yu 2005] apply virtual artificial control forces, or the so-called
ghost forces, in the simulation domain to achieve controlling goals.
Instead, we consider a much more challenging problem of boundary-
condition-induced control, i.e. the controller only influences the fluid
body at the simulation domain boundaries through physical actions
(e.g., using steerable water jets). Therefore, the controller serves
as providing variable boundary conditions, exactly preserving the
natural physical governing law over the simulation domain with no
artificial force terms added.
It is rather difficult to extend previous fluid control methods to

solve our problem of controlling fluid/rigid systems. Some meth-
ods [McNamara et al. 2004; Pan and Manocha 2017; Treuille et al.
2003] formulate the fluid control problem as a continuous trajectory
optimization, which can be solved using gradient-based optimiza-
tion. However, with fluid/rigid interactions, the resulting control
problem becomes a non-smooth optimization that cannot be solved
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continuously. The non-smoothness arises from the frequent contact
point changes between fluid and rigid body interfaces. In addition
to trajectory optimization, [Fattal and Lischinski 2004; Shi and Yu
2005] describe simple methods to control the fluid by matching the
fluid shape with a target shape. However, these techniques assume
that the target shape of the fluid is known as a prior. Unfortunately,
in our problem, the concept of targets is only well-defined for rigid
bodies, but not for fluid bodies. On the other hand, it is difficult to
extend techniques for low-DOF rigid body control [Popović et al.
2003, 2000; Twigg and James 2007, 2008] to handle such coupled
cases. This is because the controller needs to account for the high-
dimensional state of the fluid body to achieve the indirect control
of the rigid body, resulting in a high-DOF control problem.
Main Results: Inspired by recent advances in deep reinforce-

ment learning (DRL) for animation problems [Liu and Hodgins 2017;
Peng et al. 2017; Won et al. 2017], we present a novel learning-based
approach to control coupled fluid/rigid systems in 2D domains. DRL
has been shown to exhibit good performance in terms of control-
ling non-smooth dynamic systems, such as contact-rich character
locomotions. In our formulation, the control task is decomposed
into two stages: the training stage and the generation stage. During
the training stage, we parameterize the controller using a two-block
neural-net, where the first block extracts the low-dimensional fea-
tures from high-dimensional fluid states and the second block maps
the features to control inputs. We optimize the first block using an
auto-encoder and the second block using a DRL algorithm [Schul-
man et al. 2015a]. Our proposed network design allows the simulta-
neous training of the two network blocks to reduce the time cost in
the training stage. After the training, coupled fluid/rigid animations
can be generated at realtime with the small overhead of evaluating
the neural-net.
Our approach achieves efficient and effective control that pre-

serves exact natural physical dynamics on a 2D coupled system. We
have evaluated our method on a set of 2D benchmarks as illustrated
in Figure 2. We first achieve effective control in simple tasks such
as keeping a single rigid ball at a fixed altitude by counteracting
gravitational forces using liquid jets. We have also evaluated the per-
formance on more complex tasks involving two controllers, where
the goal is to play a ping-pong or volleyball game (frames are illus-
trated in Figure 1). In addition to controllers that achieve a single
goal, our method can also train a multi-target controller to drive a
ball to hit different points on a ceiling at specified time instances.
Finally, we extend our method to 3D scenarios, where we control
a rigid ball floating on water simulated using the shallow water
equation. Training time ranges from a few hours to about one day,
from the simplest to the most complex benchmarks. These results
show that our algorithm can provide robust control over different
rigid body shapes, control objectives, and fluid-related features.
The rest of the paper is organized as follows. We first review

related works on fluid simulation, fluid control, and learning-based
control in Section 2. Then we formulate the coupled fluid control
problems in the DRL setting in Section 3. Our approach to train the
controller is described in Section 4 and results are highlighted in
Section 5.

(a) (b)

(d) (c)

Fig. 2. We show different control tasks generated by our realtime algorithm.
(a): We keep the ball in the center of screen by counteracting gravity. (b):
We drive the ball to hit different keys (blue blocks) on the ceiling. (c,d): We
run a two-player ball game, where the two players can be either cooperative
(c) or competitive (d). All these control tasks are realized using fluid jets
located in the boundary of the simulation domain (red blocks).

2 RELATED WORK
In this section, we review previous works on fluid simulation, fluid
control, and learning-based control.

Fluid Simulation has been extensively studied in computer
graphics and different techniques have been proposed. Fluid simu-
lators can be categorized according to the discretization methods,
which include grid-based methods [Enright et al. 2002], particle-
based methods [Becker and Teschner 2007], and hybrid methods
[Losasso et al. 2008; Zhu and Bridson 2005]. Simulators can also be
categorized according to the type of underlying integrators, which
include explicit methods [Becker and Teschner 2007], time-split
methods [Zhu and Bridson 2005], and fully implicit methods [Mullen
et al. 2009]. In addition, current fluid simulation systems can model
general scenarios involving multiple physics models using two-
way coupling. Two-way coupling methods have been developed
for grid-based simulators [Batty et al. 2007; Robinson-Mosher et al.
2008] and particle-based simulators [Akinci et al. 2012; Becker et al.
2009]. Grid-based simulators perform more computations during
each timestep, but can take larger timestep sizes. On the other hand,
particle-based simulators are faster during each timestep, but work
under small timesteps.

Fluid Control algorithms are developed on top of fluid simula-
tors and provide additional capability so that the artists can direct
the fluid animations. Different fluid control methods can be classi-
fied based on the user-interfaces. Many methods [McNamara et al.
2004; Pan and Manocha 2017; Shi and Yu 2005; Treuille et al. 2003]
are keyframe-based, where the user provides a set of keyframes and
the fluid tends to form similar shapes at the specific time instances.
Some of these methods rely on a specific kind of fluid simulator. For
example, [McNamara et al. 2004; Pan and Manocha 2017; Treuille
et al. 2003] assume that the entire simulation process is a function
whose gradient information can be computed, which is compu-
tationally costly. Other methods, such as [Fattal and Lischinski
2004; Shi and Yu 2005], can work with any fluid simulators. Be-
sides keyframe-based methods, there are other techniques [Bonev
et al. 2017; Raveendran et al. 2014; Thuerey 2016] that synthesize
fluid animations by interpolating existing animation data. These
methods do not use physically-based simulators. In practice, they
are faster, but the results may not be physically correct. Contrary
to our method, all these methods control a non-coupling system
with only fluid body and solid boundaries, and no other dynamic
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objects within the simulation domain are considered. In contrast,
our DRL-based controller can also work with any fluid simulator
because our method treats the simulator as a black-box.
Learning-basedControlmethods differ fromfluid controlmeth-

ods in that the controller is parameterized and these parameters
are computed as part of a preprocess. These parameters are usually
determined by optimizing the controller’s performance on a set of
typical control tasks. Such techniques have been used to control
low-DOF dynamic systems, including articulated characters [Wang
et al. 2012; Yin et al. 2007]. Some of the earlier works were limited
to controllers with simple parameterization and optimized using
sampling-based methods [Hansen and Ostermeier 2001]. However,
prior sampling-based methods do not scale to high-DOF dynamic
systems or high-DOF controller parametrizations such as controllers
represented using deep neural-nets. Recent developments in DRL
methods [Levine et al. 2016; Schulman et al. 2015a] have resulted in
new methods to optimize the controllers, which allow us to train
deep neural-nets that map directly from high-DOF observations of
the environment, such as the entire fluid velocity field, to the output
of the controller. Although DRL methods have been used to control
articulated characters [Liu and Hodgins 2017; Peng et al. 2017; Won
et al. 2017], our approach is motivated by these developments and
we present a DRL method to control coupled fluid/rigid systems.

3 PROBLEM FORMULATION
In this section, we give a brief overview of the mathematical model-
ing of a coupled fluid/rigid system. Next, we introduce the Markov
Decision Process (MDP) used by DRL to formulate the control prob-
lem.

3.1 Coupled Fluid/Rigid System
As illustrated in Figure 3, a coupled fluid/rigid system models a
combined domain of fluid body Ωf and rigid body Ωr . Within Ωf
the fluid body is governed by the Navier-Stokes equation, while
in Ωr the rigid body is governed by Newton-Euler’s equation, as
follows:

∀x ∈ Ωf :

{
Ûu + (u · ∇)u = −∇p + f ∇ · u = 0
Ûρ + (u · ∇)ρ = 0

∀x ∈ Ωr :



u = v + ω × (x − o)

M

(
Ûv
Ûω

)
+

( ∫
∂Ωr

pds

ω × Iω +
∫
∂Ωr

p(x − c) × ds

)
= 0(

Ûc
ÛR

)
=

(
v

[ω]R

)
∀x ∈ Ωf ∪ Ωr : u ∈ C0 . (1)

In the fluid region Ωf , we denote u as its velocity field,p as its scalar
pressure field, and f as the external force field. All these vectors are
2D vectors in our scenarios. We denote ρ as the fluid’s density field
of smoke or the level-set field of liquid, which is passively advected
by u. In the rigid region Ωr , we denoteM as its generalized mass-
matrix, v as its linear velocity, and ω as its angular velocity. We
denote c,R as the rigid body’s center of mass and global orientation,
respectively. Finally, we enforce the boundary condition between
fluid and rigid bodies by making u C0-continuous everywhere in
Ωf ∪ Ωr .

In our work, the governing equations are time-integrated using
the method proposed in [Robinson-Mosher et al. 2008], which is
a grid-based fluid solver. However, when the fluid is a liquid, we
find it important that the liquid only applies pushing forces on
the rigid body. This is achieved by enforcing a positive pressure in
grid cells neighboring the rigid body. We achieve this by using the
wall-separating boundary condition proposed in [Batty et al. 2007].
The simulation complexity is linear in the number variables or the
number of grid-cells, i.e. O(n2) in 2D cases, where n is the number
of grid cells in each spatial dimension. Typically, n is around 102 so
that the number of grid cells is about 104. Solving for such a large
number of unknowns is the major computational bottleneck of our
control problem. Therefore, we use an adaptive grid [Zhu et al. 2013]
to reduce the computational overhead. Specifically, we simulate fluid
using finer grids in a small subset Ωf ine

f ⊂ Ωf surrounding the
rigid body.

Ωf

Ω
f ine
f

Ωr

Fig. 3. We use an adaptive grid
to discretize the simulation domain
where the highest resolution is used
around the rigid body. We illustrate
different subdomains in our cou-
pled fluid/rigid simulation: the fluid
domain Ωf (black grid region), the
rigid domain Ωr (blue grid region),
and the fine domain Ω

f ine
f (red

grid region).

Given all the variables in Equa-
tion 1, only u, ρ, f , v,ω, c, and R
are independent variables, and p
is a dependent variable. We de-
note f in Ωf as a control vari-
able, which can be directly mod-
ified by the controller. All other
variables are denoted as state vari-
ables, which are governed by phys-
ical laws and cannot be modified
directly. In many cases, we further
constraint the control variable f by
enforcing f to be non-zero within
only a small subset of Ωf . Consid-
ering the scene in Figure 5, to con-
trol the rigid body using water jets,
f can only be non-zero within the
small jet source region near the do-
main boundary. The specific cases
of f is example-dependent, and we
introduce an additional state vari-
able I representing example-dependent information, e.g. the water
jet location, and express the external force field as a function f(I) as
illustrated in Figure 4. The final state vector is S =

(
u ρ v ω c R I

)
.

Note that since the dimension of controllable variable f is much
lower than the entire state variable S, i.e. |f | ≪ |S|, our control
problem is highly under-actuated (see, for example, [Fantoni and
Lozano 2001]).

3.2 Control Problem Formulation
Based on the above dynamic system, we can formulate our control
problem usingMDP.MDP formulation ismore general then previous
fluid control formulations such as trajectory optimization [Treuille
et al. 2003] or shape matching [Shi and Yu 2005], which automat-
ically takes non-smooth problems into consideration. Under this
setting, the coupled fluid/rigid simulator is represented as a function
F that brings state Si to Si+1. F consists of two sub-equations:(
u ρ v ω c R

)
i+1 = Ff ,r (

(
u ρ v ω c R

)
i , f(Ii )) Ii+1 = FI(Ii , ai ),
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Fig. 5. We illustrate the state variables u, v, ω , c, and R. We illustrate the
external force f , which is non-zero only in the source regions (the water jet in
the black box). We first extract the fluid’s velocity field using a convolutional
autoencoder (Section 4.1). The encoded features and other rigid features
are combined and then feed into the multilayer perceptron (MLP) to get
the action. The MLP and the encoder are trained using a DRL algorithm
[Schulman et al. 2015a] (Section 4.2), which is marked with dashed lines.

Fig. 4. A water jet can be
modelled by a wind force
(red arrows) directing at
the spout of the water jet.

where Ff ,r corresponds to Equation 1. FI
is the evolution function for state variable
I, and is example-dependent. For exam-
ple, to control a rigid ball using a water
jet, FI specifies how the water jet moves.
Note that this dynamic system only takes
ai as input, which is called “action” in
MDP terminology. The control action is
generated by a so-called stochastic control
policy π (a|S,θ ), which is the probabilistic
distribution function over the possible ac-
tion set {a}, given the state S. The control policy’s performance
can be maximized by optimizing its parameters, θ . In our method,
π (a|S,θ ) is represented as a neural network and θ are the weights
of the neurons. Representing our controller using a probabilistic
function instead of a deterministic function is the key to tackling
non-smoothness in DRL. Finally, in order to formulate the control
objectives, we assume that, on reaching the state Si+1 using control
action ai , the controller receives a reward r (Si , Si+1, ai ). Our goal is
to maximize the weighted sum of reward over all timesteps. Finally,
the control problem can be formulated as an optimization problem:

argmax
θ

ES0,a0, · · ·∼π (θ )

[
∞∑
i=0

γ ir (Si , Si+1, ai )

]
, (2)

where γ < 1 is a discount factor. The expectation ES0,a0, · · ·∼π [•]

is calculated over the set of possible state-action trajectories
{S0, a0, · · · } under policy π . Note that it is necessary for the reward
function to be a function of both state S and control action a. For
example, in keyframe-based control framework [Treuille et al. 2003],
the S-related term models the similarity between keyframes and the
a-related term models the control force regularization. Therefore,
previous fluid control methods can be considered as a special case
of our MDP formulation.

4 CONTROLLER DESIGN AND OPTIMIZATION
In this section, we present the details of our neural-net controller
parametrization andDRL optimization algorithm. Our control pipeline
is illustrated in Figure 5. As mentioned in Section 1, the two main
challenges are the high-dimensionality of fluid state space S and
the non-smoothness of the controller optimization problem. In our

Encoder
(Figure 5)

Decoder
(Figure 5)

MLP
(Figure 5)conv1,2,3

conv4,5

fc0

fc1 fc2 fc3 fc4
Fig. 6. Our autoencoder uses a mirrored structure (separated by dashed
line) with the following specifications: conv1(7, 7, 64, 2), conv2(7, 7, 64, 2),
conv3(5, 5, 128, 2), conv4(5, 5, 128, 1), conv5(5, 5, 128, 1), and fc0(128). Here
each convolutional layer is specified by its (kernel width, kernel height, #fil-
ters, stride), and each fully connected layer is specified by its (#neurons).
Our 5-layer Encoder and Decoder part is a scaled down version of AlexNet
[Krizhevsky et al. 2012]. AlexNet was originally used for image classification.
Here we apply it to the fluid’s velocity field due to its uniform grid structure.
After autoencoder training, we concatenate E and an MLP with the follow-
ing specifications: fc1(128), fc2(64), fc3(64), and fc4(32). We use a similar
structure as [Peng et al. 2017] for MLP, which is sufficient for representing
complex locomotion tasks.

method, the high-dimensional S is reduced using a convolutional au-
toencoder (Section 4.1) and the non-smoothness is addressed using
a stochastic policy gradient method (Section 4.2).

4.1 Controller Parametrization
In this section, we define our neural-net controller π (a|S,θ ), which
maps from the state vector S to the low-dimensional action a. In
previous works [Peng et al. 2017; Won et al. 2017] for controlling
articulated bodies, S is low-dimensional and π is parametrized using
a multilayer perceptron (MLP). However, using MLP to directly
map high-dimensional fluid-related state vectors u, ρ will result in
too many parameters θ to be optimized, which in-turn requires
a large amount of data to fit θ . For example, an MLP for a small
50 × 50 grid involves 8 × 104 parameters for the first layer with 32
neurons. Indeed, it has been shown in [Tompson et al. 2016] that
the fluid’s velocity field is internally correlated so that most of the
dimensions can be redundant. Therefore, we choose to extract a
low-dimensional feature vector from the high-dimensional velocity
field u using a convolutional autoencoder [Masci et al. 2011; Zeiler
et al. 2010]. This architecture uses less than 5 × 104 parameters to
parametrize the entire controller for a 2D grid of arbitrarily high
resolution.
Convolutional autoencoders belong to the category of unsuper-

vised feature learning algorithms. Unsupervised learning is pre-
ferred in our case because labelling the velocity field is not a trivial
task. We also compare the autoencoder with supervised learning,
where the labels are the external forces and torques on the rigid
body. However, such labels only focus on the rigid body and ig-
nore fluid regions far away from the rigid body. Therefore, features
extracted using unsupervised learning cover more comprehensive
information, which results in better controller performance.
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Autoencoders can be represented by a pair of encoder E(•,θ E ),
which maps from a high-dimensional input to a low-dimensional
feature vector, and decoder D(•,θD ), which maps from the feature
vector back to the high-dimensional input. The encoder and decoder
are both represented by convolutional neural-nets (CNN) with a
mirrored structure, as illustrated in Figure 6, and separate parame-
ters θ E ,θD . Given a dataset of sampled velocity fields {ui=1, · · · ,N }

in Equation 1, θ E can be found by optimizing the following cyclic
loss function:

argmin
θ E,θD

N∑
i=1

∥D(E(ui ,θ E ),θD ) − ui ∥2. (3)

After the training, our state feature is reduced to S̄ =
(
E(u) v ω c R I

)
where |S̄| < 100 and we use this reduced state vector throughout
the rest of the paper. Note that ρ is excluded from the training data
and we validate this formulation in two cases. For smoke control, ρ
is used for visualization only and does not influence the dynamics
at all. Therefore, ρ can be discarded without a loss of information.
For liquid control, ρ represents the free-surface boundary condition
and discarding it does cause information loss because velocity in-
formation is meaningless outside the liquid region. However, we
can preserve this information by setting the velocity to be zero
outside the liquid region. In our experiments, after a few iterations
of optimizing Equation 3, the autoencoder quickly learns to identify
liquid regions using this simple treatment.

4.2 TRPO Policy Optimization
Given the encoded low-dimensional state S̄, we can now optimize
Equation 2 in a stochastic manner using the TRPO algorithm [Schul-
man et al. 2015a]. In order to perform this step, we discard the
decoder D after optimizing θ E and concatenate fc0 in E with a
4-layer MLP illustrated in Figure 6 parameterized by θMLP. TRPO
algorithm simultaneously optimizes the θ =

(
θ E θMLP

)
, i.e. end-

to-end training.
TRPO algorithm is a kind of policy gradientmethod [Kakade 2001]

that limits the search step size by using additional KL divergence
constraints. The policy gradient method updates θ in the direction
of increasing the expected reward E

[∑∞
i=0 γ

iri
]
. [Schulman et al.

2015a] further proved that by optimizing a computationally tractable
surrogate reward, the true reward will also reduce at every iteration,
thus greatly improving the robustness of the policy gradient method.
Specifically, if we update θ to some arbitrary θ̄ , the change in the
expected reward is approximated as:

Eθ̄

[
∞∑
i=0

γ i ri

]
− Eθ

[
∞∑
i=0

γ i ri

]
=

∞∑
i=0
ES̄i∼π (θ̄ )

[
γ iEπ (fi |S̄i , θ̄ )

[
Aπ (θ̄ )(S̄i , ai )

] ]
≈

∞∑
i=0
ES̄i∼π (θ )

[
γ iEπ (fi |S̄i , θ̄ )

[
Aπ (θ̄ )(S̄i , ai )

] ]
, (4)

where the last equation above is the surrogate reward, where the
first expectation is sampled according to current policy π (θ ) instead
of the unknown π (θ̄ ). Here A is the advantage function defined as:

Aπ (S̄, f) = Eπ

[
∞∑
i=0

γ i ri |S̄0 = S̄, a0 = a

]
− Eπ

[
∞∑
i=0

γ i ri |S̄0 = S̄

]
,

Algorithm 1 Training Coupled Fluid/Rigid Controller

1: Initialize θ0
2: for i = 0, 1, 2, ... K do
3: Sample a set of T trajectories {S̄0, a0, S̄1, · · · }
4: each having N timesteps
5: Update θ E ,θD by solving Equation 3 using 10000
6: iterations of Adam optimizer [Kingma and Ba 2014]
7: Update θ by solving Equation 4
8: under the constraint KL(π (θ )|π (θ̄ )) < ϵ
9: Update ϵ dynamically according to
10: Algorithm 4.1 in [Nocedal and Wright 2006]
11: end for

which measures how much taking a specific action f will improve
the follow-up cumulative reward. In order to have the surrogate
reward approximate the true reward, [Schulman et al. 2015a] in-
troduced an additional trust region constraint: KL(π (θ )|π (θ̄ )) <
ϵ , where the difference between π (θ ) and π (θ̄ ), defined by the
Kullback-Leibler divergence KL, must to be smaller than ϵ . Op-
timizing Equation 4 will decrease the true reward in Equation 4 if
ϵ is infinitesimal and the expectations in Equation 4 are evaluated
exactly. In practice, the two expectations in Equation 4 are approx-
imated using importance sampling and the trust region size ϵ is
tuned dynamically using the standard algorithm in [Nocedal and
Wright 2006] to improve the convergence speed of the controller
learning algorithm.

4.3 Overall Algorithm
Our final algorithm for learning the coupled system controller in-
terleaves autoencoder learning and policy optimization. In each
step, we first sample a set of trajectories {S̄0, a0, S̄1, · · · } according
to current π (θ ) by calling the fluid simulator (Equation 1). Next, we
optimize θ E by solving Equation 3. We also update θ by maximiz-
ing Equation 4 under the trust region constraint. And finally we
dynamically update the trust region ϵ . The outline of our pipeline
is summarized in Algorithm 1.

5 EXPERIMENTS

βjet

xjet

c∗ − c

Fig. 7. Illustration of rigid body bal-
ancing scenario.

We evaluate the effectiveness and
robustness of our method using a
set of benchmarks. Our testbed is
a cluster of nodes, each with four
2.5GHz Intel Xeon E5 CPUs (32
cores in all) and 1 GPU (Nvidia
GTX1080). A typical 2D controller
training takes 10 hours. After the
training, 2D controlled liquid or
smoke animations can be gener-
ated in realtime at 5FPS. In the following, we detail and analyze all
the benchmarks.

5.1 Rigid Body Balancing
In our first benchmark, our goal is to have a rigid body balanced at
a fixed position. Since the gravity force is applied to the rigid body,
a smoke or liquid jet must continuously shoot fluid towards the
rigid body to counteract that gravity, achieving dynamic stability. A
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screenshot of this benchmark is given in Figure 2 (a). We assume
that we only have a single fluid jet located at the bottom of Ωf .
We also assume that the fluid jet can move horizontally but not
vertically, that the jet’s heading can be changed, and finally that
the controller can determine whether the jet shoots liquid or not.
Therefore, the example-dependent information I in this benchmark

is I =
(
xjet Ûxjet βjet Ûβjet

)T
and the action is a =

(
Üxjet Üβjet δjet

)T
,

where xjet is the fluid jet’s horizontal position, βjet is the fluid jet’s
heading, and finally δjet is an indicator of whether the jet shoots
fluid or not. Note that we use acceleration to control the position
and orientation of the fluid jet so that it can move smoothly even if
π (a|S) is noisy. The coupled system updates itself according to the
following equations:

FI(I, a) =

©«
min(max(xjet + Ûxjet∆t + Üxjet∆t

2, 0),W )

Ûxjet + Üxjet∆t
min(max(βjet + Ûβjet∆t + Üβjet∆t

2,−βmax), βmax)
Ûβjet + Üβjet∆t

ª®®®¬
f(I) = wind(xjet, rjet, βjet)δjet.

Here rjet is the spout radius of the fluid jet and wind(•, •, •) is the
wind force template centered at xjet as illustrated in Figure 7 as red
arrows. FI together with Equation 1 completes our definition of F
for the first benchmark.

We evaluated four variants of the rigid body balancing benchmark
using two different fluid types, liquid and smoke, and two different
rigid body shapes, a ball and a cross. In all four cases we use the
following reward function:
r (S, a) = wcexp(−∥c − c∗∥2) +wvexp(−∥v∥2) +we (1 − δjet), (5)
where the first term penalizes position mismatch against the target
position c∗, the second term penalizes velocity mismatch, and the
last term encourages the controller to use a minimal amount of
control forces (indicated by δjet). For the cross-shaped rigid body,
we can control its orientation in addition to its center of mass by
adding the following reward function:

w Ûθ exp(−∥
Ûθ − Ûθ∗∥2),

where we penalize mismatch in the rotational speed. All the param-
eters used in these benchmarks are summarized in Table 2.

5.2 Ball Game

(a)

(b)

x1
jet x2

jet

y1
jet

y2
jet

HB

Fig. 8. Illustration of parameters in
the two ball game: win-win game
(a) and zero-sum game (b).

In our second benchmark, we
use two fluid jets that are in-
dependently controlled by two
neural-nets with same structure
and shared weights. Our example-
dependent information I, the ac-
tion a, and the system updating
equation FI in this benchmark
takes the same form as those in
Section 5.1, but we use two sep-
arate sets of I, a for the two jets.
These two actions are generated
by evaluating the same neural-net twice using mirrored features.
The two jets are supposed to push a rigid body to the other

side in order to gain a reward, as illustrated in Figure 2 (c,d). Two
different variants of reward functions corresponding to competitive

and cooperative actions are discussed below. In addition, we assume
that each of these two controllers is unaware of the other controller’s
action when it tries to optimize the outcome. However, indirect
observation is still possible by observing the fluid’s velocity field
in the scene. This benchmark is more challenging because it is an
multi-agent problem and also because this is a partially-observed
MDP (POMDP) problem, where each agent does not have complete
information about the environment (the other controller’s action is
unknown). A similar setting is adopted in [Lowe et al. 2017].
We use a ballgame-like scene setting for this benchmark. The

scene is separated into two halves by a vertical guard-board. The two
water jets are located to the left and right of the wall, respectively.
As illustrated in Figure 8, we tested two variants of the ballgame.

In our first variant, the two water jets can move freely on the
bottom of their half-domain, as two players move as in a volleyball
game. Moreover, in this example, the goal of both controllers is to
cooperate with each other to push the ball back and forth. This
results in a win-win game. To achieve this behavior, we use the
following reward function:

rleft(S, a) = wsideexp( |eT0 v |) +whitδhit +we(1 − δjet) (6)

rright(S, a) = wsideexp( |eT0 v |) +whitδhit +we(1 − δjet),

where we use the first term to determine whether the ball is flying
across the guard-board with a high horizontal speed, in which case
we reward both controllers. We use δhit as an indicator of whether
the rigid ball hits the ground or the guard-board, in which case we
apply a negative reward on both sides. We again use the last term
to encourage the controllers to use the minimal amount of control
forces.

In the second variant, the two water jets can move freely on the
two opposite sides of the simulation domain, in a similar manner as
two players standing on the two opposite sides of a pingpong game
board. The goal of each controller is to defeat the other controller
according to the rules of ball game, i.e. one loses if the rigid ball
touches the ground, side wall, or the guard-board on its own side.
This results in a zero-sum game. The ball will bounce back with mir-
rored vertical velocity when it hits the ceiling. We use the following
reward function:

r (S, a) = δwin − δlose, (7)

where we use δwin,δlose to indicate winner and loser, respectively.
Unlike our first variant, these reward functions have no other pa-
rameters or additional regularization terms and the sum of reward
functions is always zero. The parameters used in both experiments
are summarized in Table 3 (parameters with same values as those
in Table 2 are omitted).

5.3 Music Ball Player
In our last and most challenging benchmark, we steer the rigid
body to accomplish multiple tasks using the same neural-net con-
troller. Our tasks can vary in two ways: First, we steer the rigid
body to reach different target positions. In addition, we specify a
different expected time of arrival (target time) for the rigid body.
By combining these two varieties, we can have a rigid ball to play
a small sheet of music through by hitting different pads at certain
rhythms. Therefore, the example-dependent information I as well as
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the system updating equation are the same as those in Section 5.1,
as illustrated in Figure 9.

βjet

xjet

pad1 pad7

(a) (b)

Fig. 9. (a): Illustration of parameters inmusic ball player. (b):We use periodic
boundary condition so that the simulation domain Ωf can be identified
with the side of a cylinder.

We have 7 pads on the ceiling of Ωf as possible hitting targets.
These pads correspond to the 7 notes (Do Re Mi Fa Sol La Ti). To
enable multi-task training, we introduce two variables: the target
pad id l∗ ∈ {1, · · · , 7} and the target time t∗. Both l∗, t∗ are input
to the neural-net as additional features in the last layer of encoder
E (fc0 in Figure 6). We also introduce an additional parameter tac ,
which is the accepted time window. Whenever the rigid body hits
the pad within [t∗ − tac , t

∗ + tac ], we consider the hit successful.
Finally, we use the following reward function for training:

r (Si , ai ) =


wfall δhit = 1 ∨ |i∆t − t∗ | ≥ tac

werr otherwise
whit −wt |i∆t − t∗ | l = l∗ ∧ |i∆t − t∗ | < tac

, (8)

where we apply a negative rewardwhit if the ball falls to the bottom
of domain or the hitting time is outside the time window. We apply
a negative reward werr if the ball hits a wrong pad. Finally, we
reward the controller by whit when it hits a correct pad, and we
use an additionalwt term to encourage timely hits. During training,
we choose a series of target music pads to be hit. This is done
by repeatedly picking a number from 1 − 7 at random, which is
different from the previous number. For each pad ID, we then pick a
specific target time to be hit. This is done during the first iteration of
Algorithm 1. Following the principle of Common Random Number
[Glasserman and Yao 1992], we fix the target positions and the
target hitting times for the rest of the iterations. This formulation
reduces the variance of importance sampling and allow us to use
a smaller number of samples N . In addition, we use a periodic
boundary condition along the x-axis. This is because we found
it very challenging for the liquid jet to steer the ball to the far
right, when it is currently hitting the leftmost pad. As a result, our
simulation domain becomes the side of a cylinder. All the parameters
in this training are summarized in Table 4 (parameters with the same
values as those in Table 2 are omitted).

5.4 Controlling the 3D Shallow Water Equation
Extending our method to 3D scenarios is computationally imprac-
tical due to the high cost of 3D Navier-Stokes simulation and the
large number of simulated samples required by DRL training. In our
simulator, for example, collecting 500 samples at a grid-resolution
of 160 × 96 × 96 takes approximately 2 hours, so that a full training
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Fig. 10. The average reward plotted against the number of iterations of
Algorithm 1 for the music ball player benchmark.

(a)

(b)

Fig. 11. (a): We
control a floating,
rigid red ball on
the left to cross
a high hill in
the middle and
reach the green
target on the right.
The controller
can modify the
water depths at a
column of 5 source
regions on the left
(red boxes). (b):
The controlled
trajectory of the
rigid ball shown as
the red curve.

would require 166 days. However, if we use a simplified fluid model
that allows fast simulation such as the shallow water equation [Lay-
ton and van de Panne 2002] or the wave equation, then extensions
to 3D scenarios are possible.
In this benchmark, we control a rigid ball floating on 3D water

simulated using the shallow water equation, as illustrated in Fig-
ure 11. The shallow water equation is discretized and simulated
using the numerical scheme proposed in [Kurganov and Petrova
2007], which has proved stability and supports modelling of dry-wet
region changes. The 3D scenario is illustrated in Figure 11 (a), which
involves two regions separated by a high hill in the middle. The
floating ball starts on the left and the goal of the control is to drive
it to reach a set of target positions on the right. As a result, the rigid
ball must move in all 3 dimensions in order to reach the target. Our
controller controls the movement of the ball by changing the depth
of the water at a column of 5 source regions on the left boundary.
We use the following reward function:

r (S, a) =
δ
y
cross

|x − x∗ | + 0.1
, (9)

where δycross indicates whether the rigid body moves past the target
position along the y-axis. When the rigid body passes the target
position, we grant a reward based on the distance between the
rigid body and the target position along the x-axis. As in the music
ball player, our shallow water controller is a multi-task controller
because the target position (x∗,y∗, z∗) is taken as a 3-DOF input
feature to our neural network. During the training, we sample 48
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Fig. 12. The average reward plotted against the number of iterations of
Algorithm 1 for the 3D shallow water equation benchmark.

trajectories in each iteration of Algorithm 1. The target positions for
these 48 trajectories are selected at random during the first iteration
of Algorithm 1 and fixed in later iterations. This training takes 20
hours and the convergence history is illustrated in Figure 12. All
the parameters used in this benchmark are listed in Table 5.

5.5 Analysis
In this section, we analyze the performance of our algorithm and an-
alyze the performance based on four characteristics: computational
cost of training, convergence of algorithm, parameter selection, and
reward function selection. The correctness and performance of our
algorithm can be characterized by the following two properties:
• Controlled fluid animation generated using our method follows

physical laws exactly where f is zero.
This property follows from Equation 1 and the fact that f is non-

zero in a very small region on the simulation domain boundary.
During the simulations, the control can be achieved by injecting
liquids into the coupled system instead of applying f . Similarly, this
happens only in the boundary region. For the simulator, the influ-
ence from the controller can be interpreted as resetting or specifying
new boundary conditions, including force, velocity and non-zero di-
vergence, etc. during each simulation step. The property highlighted
in this property also explains why our approach can generate con-
trolled fluid animation with better visual plausibility than methods
that use non-zero ghost forces throughout the simulation domain
such as [Fattal and Lischinski 2004; Shi and Yu 2005].
• The average reward of a trajectory generated using π will reach

local minima after Algorithm 1 converges, if ϵ → 0 and T × N → ∞.
T is the number of sampled trajectories and N is the per-trajectory
length in Line 2 of Algorithm 1.

This property is shown in [Schulman et al. 2015a] and we apply it
to Algorithm 1. Although DRL training is sensitive to the underlying
parameters, this property guides users to perform meta-parameter
search for T × N and to design strategies to tune ϵ . Ideally, each
iteration of Algorithm 1 should strictly decrease the expected reward.
In practice, this depends on whether ϵ is small enough and whether
T × N is large enough. First, if T × N is large enough then the
expected reward will strictly decrease, since we use an adaptive

ϵ to guarantee this property. As a result, the only reason for non-
decreasing expected reward is a too smallN . In this case, the number
of sampled trajectories should be increased.

Next, we analyze the performance governed by four characteris-
tics.

Cost of Training: As mentioned in Section 4, the training cost
depends on the number of sampled trajectories, the number of itera-
tions, and the resolution of the simulation grid. For these parameters,
we use the values in Table 2 for all our benchmarks. Under these
settings, our coupled fluid/rigid system has 50000 − 600000 DOFs
and each iteration of the training algorithm takes ∼ 1(min) for liquid
control examples and ∼ 5(min) for smoke control examples. This is
because a liquid body only occupies a small fraction of simulation
domain Ωf on average, while a smoke body always occupies the
entire Ωf . As a result, it takes more computation for the fluid simu-
lator to solve for the state of smoke body during next timestep. The
simulation time for all our examples are summarized in Table 1.
Example Training Time Example Training Time

Rigid Body Balancing
Liquid+Ball 2.5h Rigid Body Balancing

Smoke+Ball 6.5h

Rigid Body Balancing
Liquid+Cross 3h Rigid Body Balancing

Smoke+Cross 11.5h

Cooperative Ball Game 12h Competitive Ball Game 3h

Music Ball Player 16h 3D Shallow Water Equation 20h

Table 1. Training time for each benchmark until convergence.

Convergence of Our Algorithm: In order to evaluate the con-
troller trained by our algorithm, we plot the average reward after
each iteration of Algorithm 1. During training, less failure cases
happen as the algorithm converges. The convergence history of
rigid ball balancing benchmark (Section 5.1) is shown in Figure 13
(a). Our algorithm usually converges within 500 iterations, which
involve samples collected from 1.7 million fluid simulations. In addi-
tion, we compared our encoder+MLP controller with an MLP-only
controller in Figure 13 (b). It shows that by adding fluid velocity
features, our algorithm converges faster and the controller achieves
a significantly higher average reward on convergence. To achieve
such higher performance, we found it important to update both
the autoencoder and the MLP in each iteration of Algorithm 1. In
fact, the autoencoder is updated in two places (Line 5 and Line 7)
in our current implementation. According to our experiments, one
can choose to only update θMLP in Line 7 without a loss of perfor-
mance. For the more challenging cooperative ball game benchmark
(Section 5.2), the training converges faster than the simpler rigid
body balancing benchmarks and the learned control policy looks
very effective in pushing the ball to the other side. The convergence
history of this variant is illustrated in Figure 14. However, for the
competitive ball game benchmark, we observe that a ball game be-
tween two highly skilled player should last for a long period of
time. Therefore, we plot the average number of timesteps before
the game ends (in Figure 15). The shape of this plot is consistent
with our observation where the average game length increases and
eventually converges. Finally the convergence history for the music
ball player benchmark (Section 5.3) is provided in Figure 10. Under
this setting, the trained controller performs very accurately after
500 iterations.
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Fig. 13. (a): The average reward plotted against the number of iterations
of Algorithm 1 for four variants of the rigid body balancing benchmark:
liquid+ball, smoke+ball, liquid+cross, and smoke+cross. Since the rewards
are locally noisy, we also fit a solid curve to reflect the time averaged trend
of reward. Our algorithm converges within 500 iterations for all 4 variants.
(b): We run the smoke+ball setting using our controller and a controller
without fluid velocity features, where the output of E is removed from fc0.
By adding a fluid velocity feature, our controller converges a lot faster and
the controller achieves a higher reward on convergence.
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Fig. 14. The average reward plot-
ted against the number of iterations
of Algorithm 1 for the win-win ball
game example.
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Fig. 15. The average timesteps be-
fore game ends plotted against the
number of iterations of Algorithm 1
for the zero-sum ball game example.

Parameter Selection: The performance of trained controller us-
ing our method can be sensitive to the parameters. There are two
sets of parameters used in our benchmarks. The first set of parame-
ters determine the scenarios, including size of Ωf , max tilt angle βjet,
or the density of rigid body. Currently we set these parameters for
each benchmark, as explained in Section 5.1, 5.2, and 5.3. The second
set of parameters are the weights of the reward functions.We choose
these parameters using grid-based meta-parameter search, which
is well known and widely used in machine learning community
to avoid training falling into local minima (see e.g., [Claesen and
De Moor 2015] for an introduction). Specifically, for a set of reward
weights, we fix one of them to 1 and run multiple DRL training
using different values for other weights. The grid size for search
is always 1 except for we in Table 2 for which we use 0.01. After
meta-parameter search, we use the controller that performs the
best on a same rescaled reward. The weights we show in Table 2,
Table 3, and Figure 10 are the weights of the rescaled reward. Meta-
parameter search makes our method more friendly to end-user and
less sensitive to manual tweaking. Although we can also take the
first set of parameters into the search, we found that our results are
less sensitive to them. For example, in Figure 16 we show another
rigid ball balancing example with a different rigid ball radius, gravi-
tational coefficient, and rigid body density. After meta-parameter
search, our controller performs equally well on the rescaled reward
function Equation 5 with weights in Table 2.

0 50 100 150 200 250 300 350 400
Iteration Number

0

500

1000

1500

2000

2500

3000

Ep
iso

de
 R

ew
ar

d

Original
Greater Density and Larger Radius

Fig. 16. A comparison of two convergence histories of liquid+ball bench-
mark. In the second example (blue), we twiced the rigid ball radius, we
also twiced rigid body density. The controller performs equally well on
convergence on the rescaled reward function in Table 2.

Reward Function Selection: One major issue in using DRL is
that the selection of reward function can be arbitrary and sometimes
requires manual tweaking. Most of the reward functions used in
our benchmarks (Equation 5, Equation 6, and Equation 7) combine
exponential terms and binary terms. These terms and functions
are chosen to be similar to those in character control [Liu and
Hodgins 2017; Peng et al. 2017]. However, the reward function used
by our music ball player (Equation 8) has a non-standard form.
Parameters in the reward functions are computed using grid-based
meta-parameter search.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK
We present a learning-based control approach for coupled fluid/rigid
systems. In our approach, we use DRL to compute the ghost forces
the boundary of the simulation domain to control the system. As
a result, the natural internal dynamics of the fluid and rigid body
are preserved. Our controller can automatically handle various con-
trolling tasks involving high-dimensional state features, different
control objectives, and a different number of tasks. By designing an
auto-encoder-facilitated DRL neural-net and simultaneously train-
ing the autoencoder and control policy, our approach achieves a
high convergence rate. Control decisions through neural-nets after
training can be generated in real-time during runtime simulation
on a desktop machine.

Our method has some inherent limitations. For example, our cur-
rent algorithm is sensitive to the specific implementation of the
fluid solver, the scenario and reward function, and usually requires
re-training if these parameters change. This implies that transfer-
ring the learned control skills to new fluid simulators or real-life
scenarios is difficult. In addition, our method inherits the limita-
tions of a general deep learning algorithm. The method does not
guarantee successful control for arbitrary tasks. For example, using
only non-loop boundary in the music ball play benchmark may not
result in satisfactory results, mainly because the limited controls
from a single jet do not support timely hit on targets.
In the future, we would like to try more challenging control

problems, e.g., scenarios involving heavier rigid bodies and mov-
ing music pads. We also plan to extend our framework to handle
multiple interacting rigid bodies, where the control objectives can
be formulated based on their interactions. Due to the generality
of our algorithm, we are also considering extending our method
to control a 3D Navier-Stokes system. To alleviate the prohibitive
computational overhead in training, recent research in improving
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the sampling efficiency of DRL such as [Mnih et al. 2016; Schulman
et al. 2015b, 2017] can be used. Another way to reduce the computa-
tional overhead of the 3D simulator is by using GPU acceleration as
is done in [Chentanez and Müller 2011].
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A PARAMETERS

Parameter Explanation Value

W ,H Width,Height of Ωf 5,3(m)
xjet ∈ [ajet,bjet] Horizontal range of water jet movement [0,W ]

yjet Vertical position of water jet 0
βmax Max tilt angle of water jet 60◦
nW ,nH Effective number of grid cells along W,H 160,96
K Max number of iterations in Algorithm 1 2000
T Number of trajectories collected in each iteration 32
N Number of timesteps per trajectory 500
rjet Spout radius 0.12(m)
c∗ Target position 2.5,1.5(m)
Ûθ∗ Target rotational speed ±1(rad/s)
wc,w Ûθ ,wv,we Weights of reward 10,5,2,1

dr /df Density ratio between rigid bod dr and fluid df 1.5
д Gravity coefficient 9.81(ms−2)
∆t Timestep size 0.02(s)

Table 2. Common parameters used in four rigid body balancing bench-
marks. Note that the absolute densities of fluid and rigid bodies do not alter
dynamics behaviors so that we only show their density ratio.

Parameter Explanation Value

W ,H Width, Height of Ωf 5, 3 (m)

Win-Win Parameters Explanation Value

x1
jet ∈ [a1

jet,b
1
jet] Horizontal range of left jet movement [0,W /2]

x2
jet ∈ [a1

jet,b
2
jet] Horizontal range of right jet movement [W /2,W ]

y1,2
jet Vertical position of the two jets 0
HB Height of the guard-board W /3
wside,whit,we Weights of reward 5,−1, 0.05

Zero-Sum Parameters Explanation Value

y1
jet ∈ [ajet,bjet] Vertical range of left jet movement [0,H ]

y2
jet ∈ [ajet,bjet] Vertical range of right jet movement [0,H ]

x1
jet,x

2
jet Horizontal position of the two jets 0,W

HB Height of the guard-board 2W/5

Table 3. Additional parameters used in ball game benchmarks. Other pa-
rameters are the same as those in Table 2.

Parameter Explanation Value

N Number of timesteps per trajectory 500
tac Accepted time window 1
wfall,werr,whit,wt Weights of reward −10,−1, 3, 1

dr /df Density ratio between rigid bod dr and fluid df 1.2

Table 4. Parameters used in the music ball player benchmark.

Parameter Explanation Value

W ,H Width, Height of Ωf 2.5, 1.5 (m)
D Depth of the water tank 1 (m)
Hhill Height of the hill 0.6 (m)
Dinit Initial water depth 0.37 (m)
Dsrc Maximal water depth at the source region 0.75 (m)
nW ,nH Effective number of grid cells along W,H 160,96
T Number of trajectories collected in each iteration 48
N Number of timesteps per trajectory 500

dr /df Density ratio between rigid bod dr and fluid df 0.1

Table 5. Parameters used in the 3D shallow water equation benchmark.
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