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Abstract

We present an algorithm for fast computation of discrete
generalized Voronoi diagrams. Given a set of geometric
primitives, and a distance metric, our algorithm efficiently
computes the Voronoi diagram along a uniform grid by eval-
uating distance fields. We use a multipass approach and
divide the computation into intervals along each dimension.
We present an efficient culling algorithm to reduce the region
for distance-field computation and use conservative bounds
on Voronoi regions in 2D and 3D to cull away primitives. We
have implemented our algorithm on programmable graphics
hardware and applied it to compute the discrete Voronoi di-
agram of complex 2D and 3D datasets. We compute the
discrete Voronoi diagram of 20, 000 primitives on a 2D grid
of size 1200× 1200 in less than 1 second. Our experimental
results indicate a two to four times improvement over prior
algorithms and implementations.

Keywords: generalized Voronoi diagram, distance field,
medial axis, graphics hardware

1 Introduction

Given a set of objects (‘sites’), the Voronoi diagram under
a distance function is a spatial subdivision of the space into
regions all points in a region have the same closest site ac-
cording to the given distance function [Vleugels and Over-
mars 1998]. Voronoi diagrams can be generalized based on
different distance functions, types of sites, and number of
closest sites. The Voronoi diagram also provides information
about the distance field which is defined at each point by the
smallest distance from the point to the objects. Moreover,
the medial axis of a geometric object is the set of interior
points that have at-least two closest points on the boundary
of the object and is closely related to the Voronoi diagram
of the boundary of the closed object.

The Voronoi diagram is a fundamental geometric data struc-
ture which has been used for solving a large number of prob-
lems in the field of computational geometry [Aurenhammer
1991; Fortune 1992; Okabe et al. 1992]. Voronoi diagrams
and medial axes have been used for a number of applica-
tions, including collision and proximity queries [Hoff et al.
2001], motion planning and navigation [Foskey et al. 2001;
Hoff et al. 2000], point-location [Edelsbrunner et al. 1986],
clustering [Schreiber 1991], mesh generation and finite ele-
ment analysis [Sheffer et al. 1998; Suresh 2003], solid mod-
eling [Blanding et al. 1999], design and interrogation [Pa-
trikalakis and Gürsoy 1990; Wolter 1992], and shape simpli-
fication [Tam and Heidrich 2003].

The problem of computing Voronoi diagrams has been well
studied in computational geometry and related areas. Good

theoretical and practical algorithms are known for comput-
ing ordinary Voronoi diagrams of points in any dimensions.
However accurate and efficient computation of Voronoi di-
agrams of higher order primitives, such as lines, polygons
or higher-degree algebraic primitives remains a major chal-
lenge. The Voronoi boundaries are defined using non-linear
algebraic equations and no good practical algorithms are
known for computing them robustly.

Many authors have proposed algorithms to compute ap-
proximate Voronoi diagrams. At a broad level, they can
be classified into point-based approximate Voronoi diagram
computation and discretized Voronoi diagram computation
The point-based Voronoi diagram algorithms approximate
each higher order site with points and compute an ordinary
Voronoi diagram of the point primitives. The discretized
Voronoi diagrams compute the closest sites at a finite set
of sample points in R

3. Typically the set of points are the
vertices of a uniform or an adaptive grid. Moreover, the
computation of discretized Voronoi diagrams on a uniform
grid can be accelerated using parallel rasterization capabili-
ties of graphics hardware [Hoff et al. 1999; Denny 2003; Sud
et al. 2004]. However, the resulting algorithms are not fast
enough for interactive applications.

Main Results: We present a fast algorithm to compute dis-
cretized generalized Voronoi diagrams under distance met-
rics that are symmetric, positive definite and satisfy the
triangle inequality. The domain of computation is divided
into intervals along each dimension, called ranges. We eval-
uate the distance function for each site and Voronoi dia-
gram is computed as the lower envelope of distance func-
tions. We compute a bounded-error approximation of the
distance function using graphics hardware. We use proper-
ties of Voronoi diagram to cull away sites that do not con-
tribute the to Voronoi diagram in a range. Furthermore, we
use compute conservative bounds on the Voronoi regions in
2D and 3D. Some of the novel aspects of our work include:

� A multipass algorithm to compute Voronoi region
bounds in 2D and 3D. The underlying approach also
extends to higher dimensions.

� A range-based culling technique to reduce the region of
distance field computation.

� An efficient implementation on modern programmable
graphics hardware, accurate upto IEEE 32-bit floating
point precision.

We perform culling tests efficiently using visibility queries
commonly found on modern graphics hardware. We use a
conservative sampling strategy to account for undersampling
errors that can arise within culling tests. We have imple-
mented our algorithm on a 3.2GHz PC with an NVIDIA
GeForce 7800 graphics processor and used it to compute the
discrete Voronoi diagram of complex models consisting of
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thousands of sites. The running time ranges from 60ms for
small models (1k sites) to a second for large models (20k)
sites, on a grid of size 1200× 1200. In 3D, the running time
for a model with 6K polygons is less than 1 second on a grid
of size 256× 110× 85.

Organization: The rest of the paper is organized in the fol-
lowing manner. We give a brief survey of Voronoi diagram
computation algorithms in Section 2. We give an overview
of our approach in Section 3. Section 4 describes our range-
based culling algorithm and Section 5 presents an efficient
implementation our algorithm on graphics hardware. We
highlight its performance in Section 6 and analyze our algo-
rithm in Section 7.

2 Previous Work

In this section we give a brief overview of previous work
on computing Voronoi diagram, distance fields and medial
axis. The algorithms for Voronoi diagram computation can
be categorized based on different model representations.

Image datasets. Given discrete binary image data, many
exact and approximate algorithms for distance field and
discrete Voronoi diagram computation have been proposed
[Mullikin 1992; Breen et al. 2000; Gibson 1998]. A good
overview of these algorithms has been given in [Cuisenaire
1999]. The approximate methods compute the distance field
in a local neighborhood of each voxel. Danielsson [1980]
uses a scanning approach in 2D based on the assumption
that the nearest object pixels are similar. The Fast March-
ing Method (FMM) [Sethian 1999] propagates a contour to
compute the distance transformation from the neighbors.
This provides an approximate finite difference solution to
the Eikonal Equation |∇u| = 1/f . A linear time algorithm
for computing exact Euclidean distance transform of a 2-D
binary image is presented in [Breu et al. 1995]. This is ex-
tended to k-D images and other distance metrics [Maurer
et al. 2003].

Geometric Models. There is extensive work in computing
the exact Voronoi diagram of a set of points as the dual of
the Delaunay triangulation of the points. A good survey of
these algorithms is given in [Aurenhammer 1991]. For line
segments in 2D, a sweep algorithm has been presented [For-
tune 1987]. Hanniel et al [2005] present a method for extract-
ing the Voronoi regions of free-form rational planar closed
curves based on tracing of the bisector curves.

For geometric models represented using polygonal or higher
order surfaces in 3D, many algorithms compute an approxi-
mation to the Voronoi diagram by computing distance fields
on a uniform grid or an adaptive grid. A key issue in generat-
ing discrete distance samples is the underlying sampling rate
used for adaptive subdivision. Many adaptive refinement
strategies use a Voronoi region based labeling of the sample
points to generate an octree spatial decomposition [Vleugels
and Overmars 1998; Teichmann and Teller 1997; Etzion and
Rappoport 2002]. For closed polyhedral and free-form mod-
els, algorithms are based on 3D tracing of the Voronoi edge
curves [Milenkovic 1993; Sherbrooke et al. 1996; Reddy and
Turkiyyah 1995; Muthuganapathy and Balan 2005]. These
algorithms solve systems of algebraic equations to compute
the Voronoi vertices and the Voronoi edge curves. Culver
et al. [1999] used exact arithmetic to compute the Voronoi

skeleton accurately. That algorithm has been used on mod-
els composed of hundreds or a few thousand triangles in 3D.
All these algorithms have been applied to polyhedral models
composed of only a few hundred triangles. The run time of
these algorithms is more than O(n2), where n is the number
of faces, or they are susceptible to accuracy and robustness
problems.

Computation of a discrete Voronoi diagram on a uniform
grid can be performed efficiently using parallel algorithms
implemented on graphics hardware. Hoff et al. [1999] ren-
der a polygonal approximation of the distance function on
depth-buffered graphics hardware and compute the general-
ized Voronoi Diagrams in two and three dimensions. This
approach works on any geometric model that can be polygo-
nized and is applicable to any distance function that can be
rasterized. An efficient extension of the 2-D algorithm for
point sites is proposed in [Denny 2003]. It uses precomputed
depth textures, and a quadtree to estimate Voronoi region
bounds. However, the extension of this approach to higher
dimensions or higher order primitives is not presented. Sud
et al [2004] present an approach for efficiently computing 3-D
Voronoi diagrams of polygonal primitives by culling primi-
tives which do not contribute to the final Voronoi diagram.
This culling is performed along a single spatial dimension
only.

The medial axis of a solid is closely related to its Voronoi re-
gion. Several approaches have been proposed to compute the
medial axis of geometric models. These include algorithms
that approximate the medial axis as a subset of the Voronoi
complex of boundary point samples [Amenta et al. 2001; Dey
and Zhao 2002]. Some algorithms for computing the medial
axis of objects with higher order sites use Voronoi edge trac-
ing techniques. Attali, Boissonat, and Edelsbrunner [Attali
et al. 2004] have surveyed different techniques that generate
a stable medial structure. Foskey et al. [2003] used graphics
hardware to generate an image-space representation of the
gradient of the distance field to the boundary, which can be
analyzed to find the medial axis.

3 Overview

In this section we introduce the notation used in the rest
of the paper, provide an background on the use of graphics
hardware for computing Voronoi diagrams and present an
overview of our approach.

3.1 Definitions

Let q = (q1, q2, . . . , qn) denote a point in n dimensions. For
points in 3-dimensions, we use the standard Cartesian co-
ordinates, q = (qx, qy, qz). A geometric primitive or an
object is called a site. Given a site pi, the scalar dis-
tance function d(q, pi) denotes the distance from the point
q ∈ R

n to the closest point on pi. Given a set of sites
P = {p1, p2, . . . , pm}, the Voronoi region for pi is defined
as:

V(pi) = {q | d(q, pi) ≤ d(q, pj)∀pj ∈ P,q ∈M},

where M ⊂ R
n. The minimum distance of q to a set of sites

is represented as d(q,P) = minpi∈P(d(q, pi)). Each point
inside the Voronoi region V(pi) is closer to the site pi than
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to any other site. The Voronoi diagram is a partition of M
into Voronoi regions:

VDM (P) =
⋃

pi∈P

(V(pi) ∩M).

Voronoi regions are closely related to distance fields. The
distance field DM (P), for a domain M , is the scalar field
given by the minimum distance function d(q,P) at all points
q ∈ M . For ease of notation, let DM = DM (P). The
Voronoi diagram can be represented as the projection of the
distance field to the domain M . The pivot point of a site is
any point lying on the site, and is represented π(pi).

Our goal is to compute a discrete Voronoi diagram within
a bounded domain M represented as a uniform grid in n-
dimensions. Each cell in the grid is sampled at a point,
and the closest site is computed at this point. The discrete
Voronoi region of site is the (finite) set of cells closer to that
site than any other. We require that the domain M is a
superset of the bounding box of all sites. This assumption is
used to guarantee correctness of the culling algorithm. For
convenience we shall refer to the domain M as the half-open
unit interval in n-dimensions (0, 1]n, i.e a unit square in 2D
and the unit cube in 3D. We shall refer to an n-dimensional
hypercube as an n-D range (a rectangular tile in 2D, a cube
in 3D). The n-D range (a0, b0]×(a1, b1]× . . .×(an, bn] is rep-
resented as T(a0,b0](a1,b1]...(an,bn]. We define each range to be
a half-open set such that the intersection between two ranges
is empty, and any point in M belongs to exactly one range.
For ease of notation, let VDM (P) = VD(P). Let X c, ∂X
and Int(X ) denote the complement, boundary and interior of
a set X , respectively. For any domain N ⊆M, N c = M \N .

3.2 Computation using Graphics Hardware

A brute-force algorithm to compute VD(P) would evalu-
ate d(q, pi) for all sites pi ∈ P and store the minimum at
each grid point q ∈ M . If there are m sites, and the grid
has n cells, the time complexity of this algorithm is O(mn).
This brute force algorithm can be easily parallelized using
depth-buffered graphics rasterization hardware [Hoff et al.
1999]. Graphics hardware is well suited for performing par-
allel computations on a 2D grid. Computation of the lower
envelope is posed as a visibility problem along a view direc-
tion that is orthogonal to the 2D grid. In 2D, the resolution
of the grid is governed by the image-space resolution of the
graphics processors (e.g. 1000 × 1000). The primitive sites
in P consist of points, edges and triangles.

For 3D grids, the discrete Voronoi diagram is computed as
a sequence of 2D computations. The set of voxels with a
constant z-value represents a uniform 2D grid and is called
a slice. A slice sk is defined as sk = {(x, y, z)|(x, y, z) ∈
M, z = zk}. A sweep is performed along the Z axis and the
Voronoi diagram is computed for each slice. The complexity
of this algorithm is linear in m for each slice and the running
time can be slow when m is large. The set of sites for which
the distance function is computed on a slice can be reduced
using culling techniques along the sweep direction [Sud et al.
2004]. However, the distance function for a site is evaluated
for all the voxels on a slice, which can be expensive.

3.3 Properties of Voronoi Diagrams

We speed up the Voronoi diagram computation by reduc-
ing the number of distance functions that are evaluated for
each cell. In this section, we list the properties of Voronoi
regions and distance fields that are used by our algorithm to
accelerate the computation.

Connectivity: We consider distance metrics that are sym-
metric, positive definite and satisfy the triangle inequality.
Thus, Voronoi regions defined by that distance metric are
connected within the domain M . This is true for all Lp

norms, including Euclidean distance and max-norm, if all
the sites lie inside the domain M [Chew and Drysdale, III
1985]. Note that for higher order sites, like line segments
and polygons, each Voronoi region may consist of non-linear
boundaries and may not be convex. But each Voronoi region
is connected.

Spatial Coherence: The distance values associated with
two points in adjacent cells are typically very close to each
other. We use the triangle inequality to compute bounds
on the maximum change in the distance values between two
ranges in the domain.

Our culling algorithm performs two sweeps in each dimen-
sion to obtain conservative bounds, along each dimension,
of the Voronoi region of a site. The conservative bounds
are used to reduce the set of points in the domain at which
the distance function of a given site needs to be evaluated.
We use the connectivity property and range-based sweeps to
compute bounds of a Voronoi region (see figure 3).

3.4 Set Definitions

We introduce a classification of sites used by our algorithm
to cull away sites that do not contribute to the distance field
of a given range (see figure 1). Using the pivot point of the
sites, the swept set for a range T is defined as

S (T) = {pi | π(pi) ∈ T, pi ∈ P}.

Using bounds on the Voronoi regions of a site pi, the inter-
secting set of a range T is defined as

I (T) = {pi | V(pi) ∩ T 6= ∅, pi ∈ P}.

Thus for each point inside a range T, we have to compute
the distance values to all sites in the intersecting set I (T).
The intersecting swept set for two ranges T1, T2 is defined as

IS (T1, T2) = I (T1) ∩ S (T2)

The intersecting swept set represents the set of sites, which
are swept by the second range and their Voronoi regions
intersect the first range. Note that the definition is not sym-
metric. The receding set for a range T is the set of sites with
Voronoi regions contained entirely inside T, and is defined
as

R (T) = {pi | V(pi) ⊂ Int(T), pi ∈ P}.

For two ranges Ti and Tj , if Ti ⊆ Tj then R (Ti) ⊆ R (Tj).
By computing a receding set for a given range T, we can cull
away the sites belonging to the receding set while comput-
ing the Voronoi diagram of its complement T c. Our range
based culling algorithm partitions M into a set of ranges, and
computes the Voronoi diagram constrained to each range by
computing a superset of the intersecting set for each range.
The computation of a subset of the receding set is used to
compute conservative estimate for each intersecting set.
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Figure 1: Set Definitions: (a) Voronoi diagram of 10 points and 3 lines and two ranges T1 and T2. (b) Swept set S (T2) (c)
Intersecting Set I (T1) (d) Intersecting Swept set IS (T1, T2) = I (T1) ∩ S (T2) (e) Receding set R (T2 \ T1) = S (T2) \ I (T1)

4 Range Based Culling

In this section we present our algorithm for region-based
culling and use it to accelerate Voronoi computations. We
first present the idea in 2D and later extend it to higher
dimensions.

4.1 2D Culling

In 2D, M = (0, 1]× (0, 1] and we have point, line and polyg-
onal sites. The domain is partitioned into a set of rectangu-
lar ranges, called tiles. Our culling algorithm performs two
sweeps along each dimension and incrementally culls away a
subset of sites that do not belong to the intersecting swept
set of the current tile. Next, we define the tiles, decom-
pose of the Voronoi diagram computation into four sweeps
as each tile decomposes the domain into 4 quadrants. Finally
we present the update rule for incrementally computing the
intersecting swept set in one sweep.

Figure 2: Ranges in 2D: The range Tij is shown using a
filled red rectangle. The range Ti+j+ is shown using thick
blue borders.

Given a set of l + k + 2 real numbers
x0, x1, . . . , xl, y0, y1, . . . , yk s.t. x0 = y0 = 0, xl =
yk = 1, xi ∈ (0, 1], yj ∈ (0, 1], xi ≥ xi−1, yj ≥ yj−1, 1 ≤
i ≤ l, 1 ≤ j ≤ k. These l + k + 2 points partition M
into l × k ranges with Tij = T(xi−1,xi](yj−1,yj ]. Define the

ranges Ti+j+ = (0, xi] × (0, yj ], Ti−j+ = (xi, 1) × (0, yj ],
Ti+j− = (0, xi] × (yj , 1), and Ti−j− = (xi, 1) × (yj , 1) (see
figure 2). We use the following lemma to compute the
Voronoi diagram within the range Tij using the intersecting
swept sets.

Lemma 1. Given l × k disjoint ranges which partition
(0, 1]2,

VDTij
(P) = VDTij

(IS
(
Tij , Ti+j+

)
∪ IS

(
Tij , Ti−j+

)
∪

IS
(
Tij , Ti+j−

)
∪ IS

(
Tij , Ti−j−

)
)

Proof. By definition, VDTij
(P) = VDTij

(I (Tij)). Also,

I (Tij) =I (Tij) ∩ P

=I (Tij) ∩ (S
(
Ti+j+

)
∪ S

(
Ti−j+

)
∪

S
(
Ti+j−

)
∪ S

(
Ti−j−

)
)

=IS
(
Tij , Ti+j+

)
∪ IS

(
Tij , Ti−j+

)
∪

IS
(
Tij , Ti+j−

)
∪ IS

(
Tij , Ti−j−

)

Thus,

VDTij
(P) = VDTij

(IS
(
Tij , Ti+j+

)
∪ IS

(
Tij , Ti−j+

)
∪

IS
(
Tij , Ti+j−

)
∪ IS

(
Tij , Ti−j−

)
)

As a result of Lemma 1, we compute the Voronoi diagram
VD(Tij) by computing four intersecting swept sets. We per-
form two passes along each axis, sweeping from 0 to 1 and
then sweeping from 1 to 0, and compute the intersecting
swept sets. Our approach for computing the intersecting
swept sets for three other ranges (i−j+, i+j−, i−j−) is sim-
ilar to the approach for computing the intersecting swept
set IS

(
Tij , Ti+j+

)
. However, the computation of exact in-

tersecting swept set is equivalent to computing the exact
Voronoi diagram. Instead, we present a simple theorem to
efficiently compute a superset of the intersecting swept set.
This conservative computation does not affect correctness of
the algorithm, but influences the level of culling achieved for
each range.
Theorem 1. A superset of the intersecting swept set
IS

(
Tij , Ti+j+

)
is given by the relation

IS
(
Tij , Ti+j+

)

⊆ IS
(
T(i−1)j , T(i−1)+j+

)
∪ IS

(
Ti(j−1), Ti+(j−1)+

)
∪

S (Tij) (1)

Proof. Let X denote the l.h.s of eq (1) and Y denote the r.h.s
of eq (1). Let pa ∈ X ⇒ V(pa)∩ Tij 6= ∅ and π(pa) ∈ Ti+j+ .
We have two cases.

1. π(pa) ∈ Tij ⇒ pa ∈ S (Tij)⇒ pa ∈ Y.
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Figure 3: PIS Computation in 2D: This image highlights the Voronoi computation in a 2D range (xi−1, xi] × (yj−1, yj ]
based on the sweep along the +X and +Y axes. Fig. 3(a) shows the 2D Voronoi diagram of a set of points and lines and
the 2D range. In Fig. 3(b), we highlight the PIS for the range (xi−1, xi] × (yj−1, yj ] computed by sweeping along the +X
direction. Note that the PIS is conservatively computed as the union of PIS for the range (xi−2, xi−1]× (yj−1, yj ] and the set
of sites that intersect the range (xi−1, xi] × (yj−1, yj ]. Similarly, in Fig. 3(c), we show the computation of PIS for the range
(xi−1, xi]× (yj−1, yj ] computed using a sweep along the +Y axis. The PIS for the sweep along both +X and +Y directions is
shown in Fig. 3(d). The receding set is highlighted in Fig. 3(e). Based on the connectivity property of Voronoi diagrams, the
sites in the receding set are ignored in the Voronoi diagram computation for any range beyond (0, xi] in the +X direction and
beyond (0, yj ] in the +Y direction.

2. π(pa) ∈ Ti+j+ \ Tij ⇒ V(pa) ∩ (Ti+j+ \ Tij) 6= ∅.
Since V(a) is connected, V(pa) ∩ (Ti+j+ \ ∂Tij) 6= ∅.
This implies either V(pa) ∩ (xi−1 × (yj−1, yj ] 6= ∅
or V(pa) ∩ (xi−1 × (yj−1, yj ] 6= ∅. Hence pa ∈
IS

(
T(i−1)j , T(i−1)+j+

)
∪ IS

(
Ti(j−1), Ti+(j−1)+

)
⇒

pa ∈ Y.

Similarly, we can conservatively compute IS
(
Tij , Ti−j+

)
,

IS
(
Tij , Ti+j−

)
, and IS

(
Tij , Ti−j−

)
. Theorem 1 indicates

that the voronoi diagram VDTij
(P) can be computed incre-

mentally within each range (i+j+, i+j−, i−j+, i−j−). For
example, in the range i+j+, both IS

(
T(i−1)j , T(i−1)+j+

)
and

IS
(
Ti(j−1), Ti+(j−1)+

)
have already been computed before

the sweep reaches Tij and these sets are then used for incre-
mentally computing IS

(
Tij , Ti+j+

)
. The swept set S (Tij)

is easily computed by binning the sites into ranges using the
pivot points. Fig. 3 highlights the incremental computation
of the VDTij

(P) using sweep along +X and +Y directions.

Corollary 1. Let a site pa ∈ R
(
T(i−1)+(j−1)+

)
. Then pa /∈

IS
(
Tij , Ti+j+

)
.

Proof. pa ∈ R
(
T(i−1)+(j−1)+

)

⇒ V(pa) ⊂ Int(T(i−1)+(j−1)+)⇒ π(pa) ∈ T(i−1)+(j−1)+

⇒ pa /∈ S (Tij). Also V(pa) ∩ ∂T(i−1)+(j−1)+ = ∅ and

by connectivity of Voronoi regions, V(pa) ∩ I
(
T(i−1)j

)
=

∅,V(pa) ∩ I
(
Ti(j−1)

)
= ∅. Using the result of theorem 1,

pa /∈ IS
(
Tij , Ti+j+

)
.

A direct consequence of Corollary 1 is that one can
check if a site belongs to the receding set of range
Ti+j+ and cull it for Voronoi diagram computation in
T c

i+j+
. Furthermore, in the three other passes, let

pa ∈ R (Tk−l+) ,R (Tm+n−) ,R
(
Tp−q−

)
. Then V(pa) ⊂

(min(xk, xp), max(xi, xm)] × (min(yn, yq), max(yj , yl)], giv-
ing us spatial bounds on V(pa).

4.2 Culling in 3D and Higher Dimensions

Our approach for range-based culling extends directly to
higher dimensions. In n-D, let M = (0, 1]n. As in sec-
tion 4.1, let there be ki ranges along each dimension, giving
a total of

∏n

i=1 ki ranges. Let range Ti1i2...in = (xi1−1, xi1 ]×
(xi2−1, xi2 ] × . . . × (xin−1, xin ], where 1 ≤ ij ≤ kj ∀ 1 ≤
j ≤ n, and xik

is the ith coordinate in kth dimension. Also,
T

i
+

1
i
+

2
...i

+
n

= (0, xi1 ]×(0, xi2 ]×. . .×(0, xin ], and the symmet-

ric ranges along other sweep directions are defined similarly.
In particular, range Ti1i2...in partitions M into 2n swept
ranges. Thus the intersecting set I (Ti1i2...in) is partitioned
into 2n intersecting swept sets. We present a theorem that
is used to compute a superset of the intersecting swept set:
Theorem 2. A superset of the intersecting swept set

IS
(
Ti1i2...in , T

i
+

1
i
+

2
...i

+
n

)
is given by the relation

IS
(
Ti1i2...in , T

i
+

1
i
+

2
...i

+
n

)

⊆ IS
(
T(i1−1)i2...in

, T
(i1−1)+i

+

2
...i

+
n

)
∪

IS
(
Ti1(i2−1)...in

, T
i
+

1
(i2−1)+...i

+
n

)
∪

. . .

IS
(
Ti1i2...(in−1), Ti

+

1
i
+

2
...(in−1)+

)
∪

S (Ti1i2...in) (2)

The proof is similar to that of Theorem 1 and uses the con-
nectivity property to ensure that any Voronoi region inter-
secting the range Ti1i2...in must intersect one of its adjacent
ranges, or the site must lie inside the range Ti1i2...in . The
following corollary gives a similar relation between the re-
ceding set R

(
T(i1−1)+(i2−1)+...(in−1)+

)
and the intersecting

swept set IS
(
Ti1i2...in , T

i
+

1
i
+

2
...i

+
n

)
.

Corollary 2. Let a site pa ∈ R
(
T(i1−1)+(i2−1)+...(in−1)+

)
.

Then pa /∈ IS
(
Ti1i2...in , T

i
+

1
i
+

2
...i

+
n

)
.

As in 2D, Corollary 2 provides conservative bounds on the
spatial bounds of the Voronoi region of a site.
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5 GPU Based Algorithm

In this section, we present our algorithm which uses the
graphics hardware to efficiently compute the discrete gen-
eralized Voronoi diagram. Computation of the exact inter-
secting swept set IS (T1, T2) is equivalent to exact Voronoi
computation. Instead we compute a set of potentially in-

tersecting swept (PIS) sites, ÎS (T1, T1′) which is a superset
of the intersecting swept set IS (T1, T1′). We use Corol-
lary 1 to check if a site belongs to the receding set and
use it to cull receding sites from the potentially intersect-
ing swept set. To check for the membership in the receding

set, we maintain conservative bounds V̂(pa) on the Voronoi

region V(pa) of each site pa, where V̂(pa) ⊇ V(pa). The
bounds are maintained at the resolution of a range T, i.e.

T ⊆ V̂(pa) if V(pa)∩T 6= ∅. The key operation is to test if a
Voronoi region V(pa) intersects a given range T. A Voronoi
region V(pa) intersects a given range T if and only if the
distance field of the site pa DT(pa) contributes to the fi-
nal distance field DT(P). This computation is performed
by testing the distance field DT(pa) for visibility. The vis-
ibility computations are performed using occlusion queries
(e.g. GL NV occlusion query) available on current graphics
systems. As the distance values are written to the depth
buffer, these queries check for updates to the depth buffer
and return the number of pixels that are visible.

We first describe the algorithm for computing 2D discrete
Voronoi diagrams and then extend it to 3D discrete Voronoi
diagrams.

5.1 2D Culling

In 2D, the domain is divided into k × l rectangular ranges,
each range called a tile. All tiles with the same X limits
form a row. The Voronoi diagram for the domain is com-
puted by performing two sweeps across all rows. Within a
row, we perform two sweeps across all tiles and compute the
Voronoi diagram for the tile. The algorithm for computing
the Voronoi diagram for the domain is given in Algorithm 1.

The function ComputeTile(Tij ,ÎS (T1, T1′) ÎS (T2, T2′))
computes the Voronoi diagram in the range Tij using our
incremental culling algorithm, where T1, T2 are adjacent to
Tij , and T1′ , T2′ are the corresponding swept sets. It returns

the updated potential intersecting swept set ÎS (Tij , Ti′j′)
for Tij . The details are given in Algorithm 2.

Based on Corollary 1, we need to check if the Voronoi re-

gion V̂(pa) is a subset of the interior of the range Tij ,

or equivalently if V̂(pa) does not intersect the boundary
of Tij . The intersection test is performed with the en-

tire range Tij using visibility queries. To test if V̂(pa)
intersects the boundary of Tij , we compute the inter-
section with the adjacent ranges T(i+1)j , T(i−1)j , Ti(j−1),
Ti(j+1). The function UpdateBounds(pa,Tij) in Algorithm 2

updates the Voronoi region bound V̂(pa) by adding Tij .
Thus UpdateBounds(pa,Tij) adds the adjacent ranges to the
Voronoi region bounds V(pa).

Input: Domain M , site set P, num tiles k, l
Output: Voronoi Diagram VDM (P)

foreach site pa ∈ P do
Find tile Tij s.t. π(pa) ∈ Tij

Initialize V̂(pa)← Tij

end
for j=1 to l do

for i=1 to k do(
VDTij

(P), ÎS
(
Tij , Ti+j+

))
←

ComputeTile(Tij , ÎS
(
T(i−1)j , T(i−1)+j+

)
,

ÎS
(
Ti(j−1), Ti+(j−1)+

)
)

VDM (P)← VDM (P) ∪VDTij
(P)

end
for i = k downto 1 do(

VDTij
(P), ÎS

(
Tij , Ti−j+

))
←

ComputeTile(Tij , ÎS
(
T(i+1)j , T(i+1)−j+

)
,

ÎS
(
Ti(j−1), Ti−(j−1)+

)
)

VDM (P)← VDM (P) ∪VDTij
(P)

end
end
for j=l downto 1 do

for i=1 to k do(
VDTij

(P), ÎS
(
Tij , Ti+j−

))
←

ComputeTile(Tij , ÎS
(
T(i−1)j , T(i−1)+j−

)
,

ÎS
(
Ti(j+1), Ti+(j+1)−

)
)

VDM (P)← VDM (P) ∪VDTij
(P)

end
for i = k downto 1 do(

VDTij
(P), ÎS

(
Tij , Ti−j−

))
←

ComputeTile(Tij , ÎS
(
T(i+1)j , T(i+1)−j−

)
,

ÎS
(
Ti(j+1), Ti−(j+1)−

)
)

VDM (P)← VDM (P) ∪VDTij
(P)

end
end

Algorithm 1: Compute2D(M , P, k, l)

Input: Tile Tij , PIS ÎS (T1, T1′), PIS ÎS (T2, T2′)
where T1, T2 are adj to Tij

Output: Voronoi Diagram VDTij
(P), PIS

ÎS (Tij , Ti′j′)

Update ÎS (Tij , Ti′j′)← ÎS (T1, T1′)∪ ÎS (T2, T2′)∪
S (Tij)

foreach site pa ∈ ÎS (Tij , Ti′j′) do

if V̂(pa) ∩ Tij = ∅ then

ÎS (Tij , Ti′j′)← ÎS (Tij , Ti′j′) \ {pa}
Compute distance field DTij

(pa)

Update VDTij
(ÎS (Tij , Ti′j′))

Check DTij
(pa) for visibility

if DTij
(pa) is visible then

UpdateBounds(pa,Tij)

end

Algorithm 2: ComputeTile(Tij ,ÎS (T1, T1′))
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Figure 4: PIS Computation in 2D: This image highlights the PIS sets and the Voronoi regions computed for the tile Tij

shown in black during each of the four sweeps in 2D (a) The final potential intersecting set I (Tij) (b) PIS ÎS
(
Tij , Ti+j+

)
(c)

PIS ÎS
(
Tij , Ti−j+

)
(d) PIS ÎS

(
Tij , Ti+j−

)
(e) PIS ÎS

(
Tij , Ti−j−

)

5.2 3D Culling

In 3D, the domain is divided into k × l ×m cubical ranges.
The set of ranges with the same Z coordinate forms a 2D
domain called a slice. A slice is further divided into k × l
rectangular tiles. We compute the 3D Voronoi diagram by
computing m slices. Computation of a 2D slice is done as
shown in Algorithm 1.

5.3 Conservative Sampling

The occlusion queries sample the visibility at fixed locations
in each pixel and can result in sampling errors. In particular,
the algorithm presented above may incorrectly classify a site
pa as receding if its Voronoi region V(pa) does not cover
any grid cells, i.e. the occlusion query returns zero visible
pixels for the distance field DTij

(pa). This may introduce
errors when V(pa) intersects the range Tij but its intersection
with Tij is not sampled by the rasterization hardware. An
incorrect classification of pa as receding can lead to errors in
the Voronoi diagram of subsequent ranges.

We account for these sampling errors using a conservative
sampling approach presented in [Sud et al. 2004]. This in-
volves expanding the Voronoi region of each site by the size
of a grid cell and again testing for visibility. Updates to the
depth and color buffers are disabled during this computa-
tion.

6 Implementation and Results

In this section we describe the implementation of our dis-
crete generalized Voronoi diagram computation algorithm
and highlight its performance on different benchmarks.

We have implemented our algorithm using Microsoft Vi-
sual C++ and OpenGL graphics API. The distance func-
tions for each primitive are computed at each grid cell
on programmable graphics hardware using the OpenGL’s
ARB fragment program extension. The visibility test is
performed using the OpenGL occlusion query extension
GL NV occlusion query. We efficiently utilize the paral-
lelism on a GPU by batching together the occlusion queries
for an entire set of potentially intersecting sites. Our imple-
mentation involves no pre-computation and is directly ap-
plicable to deformable models.
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Figure 5: Timing Comparison: Growth of time to com-
pute the 2D discrete Voronoi diagram with number of random
sites, using HAVOC(Hoff et al. 99) and CuRV (our algo-
rithm). We have used a high grid resolution of 1200× 1200
for the computation of discrete Voronoi diagram and used a
tile size equal to 75× 75.

In 2D, our sweep based algorithm computes the Voronoi di-
agram for all tiles in row i before computing the Voronoi
diagram for tiles in row (i+1). We store the Voronoi region
bounds as intervals along X and Y axes. In particular, we
need to store the interval along X for the current and previ-
ous rows only, giving tighter bounds compared to an AABB.
In 3D, we store the Voronoi region bounds along X and Y
for the current and previous slices.

6.1 Performance

We have applied our algorithm to several 2D models of points
and lines. The sites are distributed randomly across the
domain. We have tested the performance of our algorithm
on a Pentium4 3.2GHz PC with 2GB RAM and an NVIDIA
GeForce 7800 GTX graphics card, running Windows XP.
We have compared the performance of our Voronoi diagram
computation algorithm (called CuRV) with the algorithm
presented by Hoff et al. [1999] (called HAVOC). We have
used efficient techniques to compute 3D distance fields on
graphics hardware using linear factorization [Sud et al. 2005].

We have measured the performance of our algorithm with
varying number of sites. Fig. 5 highlights the performance
on upto 20K sites. We observe that the Voronoi computation
time scales linearly with the number of sites. Furthermore,
the computation time scales better than HAVOC. We have
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applied our algorithm to compute 3D distance field and dis-
crete generalized Voronoi diagram of polyhedral models (see
figure 7). The computation cost of the Voronoi diagram
is directly proportional to the fill rate. The fill rate is the
number of sample points (pixels) where the distance func-
tion computation is evaluated. Fig. 6 shows the fill rate
requirements of CuRV and HAVOC.
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Figure 6: Fill Rate: Number of pixels where distance
function is computed, using HAVOC(Hoff et al. 99) and
CuRV (our algorithm). We have used a grid resolution of
1024×1024, and a tile size of 32×32 to compute the Voronoi
diagram. Our results indicate upto two orders of magnitude
reduction in fill over HAVOC.

Our experimental results indicate up to 5 times performance
improvement over HAVOC and approximately two orders of
magnitude reduction in the overall fill rate.

Figure 7: 3D Distance Field: Computation of 3D distance
field and discrete Voronoi diagram of Triceratops model
(5660 polygons). Distance increases from red to green. Grid
size = 255× 111× 84, Computation time = 520ms.

7 Discussion

In this section we analyze the computational complexity,
space requirements and the accuracy of our algorithm. We
also compare our algorithm with some existing discrete
Voronoi diagram computation algorithms.

7.1 Analysis

Let the 2D domain M contain k × l tiles, each covering m
grid cells (pixels). We introduce the notion of average PIS
size which gives the average number of sites for which the
distance field is computed per tile, and is defined as

〈ÎS〉 =
1

kl

k∑

i=1

l∑

j=1

(|ÎS
(
Tij , Ti+j+

)
|+ |ÎS

(
Tij , Ti−j+

)
|+

|ÎS
(
Tij , Ti+j−

)
|+ |ÎS

(
Tij , Ti−j−

)
|)

In higher dimensions, 〈ÎS〉is similarly defined. Then the

cost of updating the PIS in algorithm 2 is O(〈ÎS〉 log〈ÎS〉).
The cost of computing the distance field for each site
is proportional to the number of grid cells (pixels) in-
side the tile, O(m). Thus the total cost of one call

to algorithm 2 is O(〈ÎS〉 log(〈ÎS〉) + 〈ÎS〉m), and the

cost of algorithm 1 is O
(
22kl(〈ÎS〉 log〈ÎS〉+ m〈ÎS〉)

)
.

Similarly in n dimensions, the computational cost

is O
(
2n

∏n

i=1 ki(〈ÎS〉 log〈ÎS〉+ m〈ÎS〉)
)
. Note that

∏n

i=1 ki ×m gives the total number of grid cells in domain
M .

In terms of storage cost, we have to store the PIS for each

tile. Thus the storage cost increases by O(kl〈ÎS〉) in 2D and

O(
∏n

i=1 ki〈ÎS〉) in n dimensions.

7.2 Comparison

We now compare our algorithm with some previous ap-
proaches to compute discrete generalized Voronoi diagrams.
HAVOC ([Hoff et al. 1999]) computes discrete generalized
Voronoi diagrams in 2 and 3 dimensions, under any dis-
tance function. However the computational complexity of
HAVOC is O(MN), where M is number of sites in P and
N is number of grid cells in M . This approach does not
scale well with large number of sites and in higher dimen-
sions. Furthermore, the discrete Voronoi diagram computed
by HAVOC can have significant errors in computed Voronoi
regions and can deviate from the exact Voronoi region by
more than a single cell (see Fig. 8). This error is caused
due to the tessellation error in the distance functions used
by HAVOC. In comparison, CuRV provides bounds on the
region of distance computation for each site, and the ap-
proach is extensible to n dimensions, and scales well to large
number of sites. Also, the computed distance field is ac-
curate to 32-bit floating point precision, hence the discrete
Voronoi region deviates from the exact boundary by at most
one cell (see figure 8). However, in order to compute the
Voronoi diagram efficiently, CuRV utilizes the connectivity
property of Voronoi diagrams. Therefore, it is applicable for
only distance functions which are metrics.

Denny et al.[2003] present an efficient approach for comput-
ing 2D discrete Voronoi diagrams for points under Euclidean
distance. This approach increases the amount of tessellation
to bound errors in the Voronoi region boundaries to 1 cell
size. However, the approach is not directly extensible to
3D and higher order sites, and is sensitive to the order of
computation of the distance functions. In comparison, our
algorithm is simple and applicable to both higher order sites
and dimensions.
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Figure 8: Voronoi Diagram Accuracy: Error in Voronoi
region computation in (a) HAVOC [Hoff et al 99] and (b)
CuRV (our algorithm). There are two point sites close to the
diagonal. The exact boundary is indicated using a dotted blue
line. With HAVOC the error can be several pixels, whereas
it is at most 1 pixel with CuRV

8 Conclusions and Future Work

We have presented an algorithm for fast computation of dis-
crete generalized Voronoi diagrams. Our algorithm uses a
culling technique to reduce the number of distance compu-
tations performed inside a range. We also compute conserva-
tive Voronoi region bounds in 2D and 3D and the approach
extends to higher dimensions. We have described an efficient
implementation of our algorithm on modern programmable
graphics hardware and used to compute the discrete Voronoi
diagram of geometric primitives. We achieve two to four
times improvement over prior algorithms and implementa-
tions.

There are many avenues for future work. We would like to
further exploit spatial coherence in 3D for further culling.
We would also like to incorporate hierarchical techniques
and also extend the approach to dynamic inputs. Finally,
we would also like to use our algorithm for other applica-
tions, including dynamic simulation, motion planning and
proximity computations.
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