
Fast Distance Field Computation Using Graphics Hardware

Avneesh Sud and Dinesh Manocha

Department of Computer Science, Univeristy of North Carolina

Chapel Hill, NC, USA

{sud,dm}@cs.unc.edu

http://gamma.cs.unc.edu/DiFi

UNC Computer Science Technical Report TR03-026

Abstract

We present an algorithm for fast computation of discretized 3D distance fields using graphics hard-

ware. Given a set of primitives and a distance metric, our algorithm computes the distance field for each

slice of a uniform spatial grid by rasterizing the distance functions of the primitives. We compute bounds

on the spatial extent of the Voronoi region of each primitive. These bounds are used to cull and clamp the

distance functions rendered for each slice. Our algorithm is applicable to all geometric models and does

not make any assumptions about connectivity or a manifold representation. We have used our algorithm

to compute distance fields of large models composed of tens of thousands of primitives on high resolution

grids. Moreover, we demonstrate its application to medial axis evaluation and proximity computations.

As compared to earlier approaches, we are able to achieve an order of magnitude improvement in the

running time.

Keywords: Distance fields, Voronoi regions, graphics hardware, proximity computations

1 Introduction

Given a set of objects, a distance field in 3D is defined at each point by the smallest distance from the

point to the objects. Each object may be represented as data on a voxel grid or as an explicit surface

representation. Moreover, the distances between the point and an object can be specified using different

metrics, including Euclidean or max-norm distance. If the primitives are closed or orientable, a sign can

be assigned to the distance field.

Distance fields are frequently used in computer graphics, geometric modeling, robotics and scientific

visualization. Their applications include shape representation [10, 31, 32], model simplification [14],

remeshing [20, 32], morphing [5], CSG operations [1, 2], sculpting [25], swept volume computation

[19], path planning and navigation [17, 18], collision and proximity computations [15, 16], etc. These

applications use a signed or unsigned distance field along a discrete grid.

Different algorithms have been proposed to compute the distance fields in 2D or 3D for geometric

and volumetric models. The computation of a distance field along a uniform grid can be accelerated by

using graphics rasterization hardware [17, 8, 29]. These algorithms compute 2D slices of the 3D distance

field by rendering the three dimensional distance function for each primitive. However, rendering the

distance meshes of all the primitives for each slice may become expensive in terms of transformation

and rasterization cost. As a result, current algorithms for 3D distance field computation may be slow

and not work well for deformable models or dynamic environments.

Main Contributions: We present a fast algorithm (DiFi) to compute a distance field of complex objects

along a 3D grid. We use a combination of novel culling and clamping algorithms that render relatively

few distance meshes for each slice. We also exploit spatial coherence between adjacent slices in 3D and

perform incremental computations to speed up the overall algorithm.

Our novel site culling algorithm uses properties of the Voronoi diagram to cull away primitives that

do not contribute to the distance field of a given slice. We use a two-pass approach and perform culling

using occlusion queries. Furthermore, we present a conservative sampling strategy that accounts for

sampling errors in the occlusion queries. Our clamping algorithm reduces the rasterization cost of each

distance function by rendering it on a portion of each slice.

We have implemented DiFi on a 2.8GHz PC with an NVIDIA GeForce FX 5900 Ultra graphics

processor and used it to compute distance fields of complex objects consisting of tens to hundreds of

2

Figure 1. 3D Distance Field of Hugo Model(17k polygons): Distance to the surface is color coded, increas-

ing from red to green to blue. Time taken to compute the distance field on 73 × 45 × 128 grid using our

algorithm is 4.2 seconds.

thousands of triangles. The running time ranges from a second for small models to tens of seconds for

large models. We have used DiFi to compute the simplified medial axis of complex polyhedral models

and perform proximity computations in a dynamic environment for path planning. As compared to prior

distance field computation algorithms, our approach offers the following advantages:

• Generality: No assumption is made with regards to the input models. The objects may be non-

orientable or non-manifold surfaces, or may be represented using voxel data.

• Efficiency: We show that our approach is significantly faster than previous approaches. The

culling techniques provide us with a 3 − 20 times speedup in distance field computation over

previous approaches that can handle generic models. The speedups are higher for complex models

with a high number of primitives.

• Dynamic Models: Our algorithm involves no preprocessing and can compute distance fields of

dynamic objects with a few thousand polygons at almost interactive rates.

Organization: The rest of the paper is organized in the following manner. We give a brief survey

of distance field computation algorithms in Section 2 and an overview of our approach in Section 3.

Section 4 describes our culling algorithm and Section 5 presents the clamping algorithm. In Section 6,

we highlight two applications of our distance field computation algorithm. We describe its performance

in Section 7 and analyze it in Section 8.

3

2 Related Work

The problem of computing a distance field can be broadly classified by the type of input object repre-

sentation. The object can be specified either as a data on a voxel grid, such as a binary image or as an

explicit surface representation, such as a triangulated model.

2.1 Distance Fields of Geometric Models

Many algorithms are known to compute the distance fields of geometric models represented using polyg-

onal or higher order surfaces. These algorithms use either a uniform grid or an adaptive grid. A key issue

in generating discrete distance samples is the underlying sampling rate used for adaptive subdivision.

Many adaptive refinement strategies use trilinear interpolation or curvature information to generate an

octree spatial decomposition [27, 10, 25, 33].

Distance field computation can be accelerated using graphics hardware. The graphics hardware based

algorithms compute a 2D slice of the distance field at a time. Hoff et al. [17] render a polygonal ap-

proximation of the distance function on the depth-buffer hardware and compute the generalized Voronoi

Diagrams in two and three dimensions. This approach works on any geometric model that can be poly-

gonized and is applicable to any distance function that can be rasterized. An efficient extension of the

2-D algorithm for point sites is proposed in [8]. It uses precomputed depth textures, and a quadtree to

estimate Voronoi region bounds. However, the extension of this approach to higher dimensions or higher

order primitives is not presented. A class of exact distance transform algorithms is based on comput-

ing partial Voronoi diagrams [21]. A scan-conversion method to compute the 3-D Euclidean distance

field in a narrow band around manifold triangle meshes is the Characteristics/Scan-Conversion (CSC)

algorithm [22]. The CSC algorithm uses the connectivity of the mesh to compute polyhedral bounding

volumes for the Voronoi cells. The distance function for each site is evaluated only for the voxels lying

inside this polyhedral bounding volume. An efficient GPU based implementation of the CSC algorithm

is presented in [29]. The number of polygons sent to the graphics pipeline is reduced and the non-linear

distance functions are evaluated using fragment programs.

2.2 Volumetric Models

Given voxel data, many exact and approximate algorithms for distance field computation have been

proposed [24, 2, 12]. A good overview of these algorithms has been given in [6]. The approximate

methods compute the distance field in a local neighborhood of each voxel. Danielsson [7] uses a scanning

4

approach in 2D based on the assumption that the nearest object pixels are similar. The Fast Marching

Method (FMM)[26] propagates a contour to compute the distance transformation from the neighbors.

This provides an approximate finite difference solution to the Eikonal Equation |∇u| = 1/f . A linear

time algorithm for computing exact Euclidean distance transform of a 2-D binary image is presented in

[3]. This is extended to k-D images and other distance metrics [23].

3 Overview and Notation

In this section we introduce the notation used in the paper and give an overview of our approach.

3.1 Distance Fields

A geometric primitive or an object in 3D is called a site. Given a site pi, the scalar distance function

dist(q, pi) denotes the distance from the point q ∈ R
3 to the closest point on pi. The minimum distance

of q to a set of sites P = {p1, p2, . . . , pm} is represented as dist(q,P) = minpi∈P(dist(q, pi)). The

distance field DM(P), for a domain M ⊂ R
3, is the scalar field given by the minimum distance function

dist(q,P) for all points q ∈ M . For ease of notation, let DM = DM(P). Given a subset, X ⊂ P ,

dist(q,X) ≥ dist(q,P)∀q ∈ M .

Distance fields are closely related to Voronoi regions. The Voronoi region for pi is defined as:

V (pi) = {q | dist(q, pi) ≤ dist(q, pj)∀pj ∈ P ,q ∈ M}

Our goal is to compute the distance field within a bounded domain M represented as an axis-aligned

uniform 3D grid. Let the size of each voxel in the 3D grid be δx×δy ×δz. In a bounded domain, Voronoi

regions are bounded. Let the minimum and maximum bounds of the Voronoi region of a site pi along Z

be V (pi).zmin and V (pi).zmax, respectively.

3.2 Computation using Graphics Hardware

A brute-force algorithm to compute DM would evaluate dist(q, pi) for all sites pi ∈ P and store the

minimum at each grid point q ∈ M . If there are m sites, and the grid has n cells, the time complexity

of this algorithm is O(mn). This brute force algorithm can be easily parallelized using depth-buffered

graphics rasterization hardware [17]. The primitive sites in P consist of points, edges and triangles. The

set of voxels with a constant z-value represents a uniform 2D grid and is called a slice. A slice sk is

defined as sk = {(x, y, z)|(x, y, z) ∈ M, z = zk}. In the rest of the paper, we represent the distance

field Dsk
(P) for a slice sk as Dk(P). A sweep is performed along the Z axis and the distance field Dk is

5

computed for each slice. The complexity of this algorithm is linear in m for each slice and the running

time can be slow when m is large.

3.3 Our Approach

We speed up the 3D distance field computation by reducing the number of distance functions that are

rasterized for each slice. We exploit the following properties of Voronoi regions and distance fields to

accelerate the computation:

1. Connectivity: We consider distance metrics that are symmetric, positive definite and satisfy the

triangle inequality. Thus, Voronoi regions defined by that distance metric are connected. This is

true for all Lp norms, including Euclidean distance and max-norm [4]. Note that for higher order

sites, like line segments and polygons, each Voronoi region may consist of non-linear boundaries

and may not be convex. But each Voronoi region is connected.

2. Spatial Coherence: The distance fields of adjacent slices, sk and sk+1, can have high spatial

coherence. The distance values associated with two points in adjacent voxels on a 3D grid will be

very close to each other. We use this coherence to compute bounds on the maximum change in the

distance field between adjacent slices.

3. Monotonicity: Given a slice, the distance function of a site is a monotonic function. It has a

minimum value in the interior of the slice and is maximum on the boundary of the slice.

Our goal is to cull away sites that do not contribute to the final distance field for a particular slice.

Furthermore, the distance field for each site should be computed in the region of the slice where it con-

tributes to the final distance field (see Figure 2). Our algorithm utilizes the above mentioned properties

and computes conservative bounds on the Voronoi regions. We use these bounds in two steps: to cull the

set of sites for each slice (described in Section 4) and clamp the region of computation for each site in

the non-culled set (described in Section 5).

3.4 Site Classification

We introduce a classification of the sites used by our algorithm to cull away sites that do not contribute

to the distance field for a slice. Let us assume that the sweep direction is along the +Z direction. For

a slice sk at z = zk, we partition the set of sites P into three subsets depending on the Voronoi region

bounds of each site along the Z axis (shown in Figure 2):

6

Intersecting, I+

k = {pi | V (pi).zmin ≤ zk ≤ V (pi).zmax}. Only the distance functions of these sites

contributes to the final distance field of slice sk.

Approaching, A+

k = {pi | V (pi).zmin > zk}. The Voronoi region of an approaching site does not

intersect with current slice, but could potentially intersect with a slice sl, where zl > zk.

Receding, R+

k = {pi | V (pi).zmax < zk}. Due to the connectivity property of Voronoi regions, a

receding site can never become intersecting, hence it can be discarded for any slice sl, where

zl > zk.

For efficient computation, the algorithm presented in Section 4 performs two passes along +Z and

−Z directions and considers only the sites swept up-to the current slice. We also partition P based on

the spatial bounds of each site along Z axis. Let pi.zmax denote the maximum Z value of a site pi. Then

the set P is partitioned as (shown in Figure 2):

Swept, S+

k = {pi | pi.zmax ≤ zk}

Unswept, U+

k = {pi | pi.zmax > zk}

The intersecting set I+

k can be further partitioned into an intersecting swept set IS+

k = (I+

k ∩ S+

k) and

an intersecting unswept set IU+

k = (I+

k ∩ U+

k).

I+

k = IS+

k ∪ IU+

k (1)

The set of sites, P , is also partitioned into subsets along the −Z sweep direction. The intersecting,

swept and unswept subsets are represented as I−
k , S−

k , U−
k , and are defined as

I−
k = {pi | V (pi).zmin ≤ zk ≤ V (pi).zmax}

S−
k = {pi | pi.zmax > zk}

U−
k = {pi | pi.zmax ≤ zk}

Consequently,

U+

k = S−
k , I+

k = I−
k = Ik

and Eq. (1) reduces to

Ik = IS+

k ∪ IS−
k (2)

7

Figure 2. Site Classification: Shaded areas represent the connected Voronoi regions for a subset of sites

{p1, . . . , p5}. Sweep direction is along +Z. For slice sk, the site sets are: Intersecting I+

k = {p2, p3, p4},

Approaching A+

k = {p5}, Receding R+

k = {p1} and Swept S+

k = {p1, p2, p3}, Unswept U+

k = {p4, p5}.

Distance functions have to be drawn for set I+

k only. For site p3, the distance function has be drawn only in

the region Q3,k = V (p3) ∩ sk. For the next slice sk+1, p4 is moved to S+

k+1
, p5 is moved to I+

k+1
and p3 is

moved to R+

k+1
.

The key idea for speedup is that for a large number of sites m and any given slice sk, the size of Ik is

typically much smaller than m. By computing a conservative estimate of Ik one can cull away a large

number of sites and considerably speed up the distance field computation.

4 Site Culling

In this section, we present our culling algorithm that reduces the number of distance functions that are

rasterized for each slice. Our goal is to compute the distance field Dk for each slice sk. Since only the

set Ik contributes to Dk, we have Dk = Dk(Ik). Using Eq. (2), Dk can be expressed as:

Dk(Ik) = Dk(IS+

k ∪ IS−
k) = min

(
Dk(IS+

k), Dk(IS−
k)

)

Therefore, the problem is reduced to computing two distance fields Dk(IS+

k) and Dk(IS−
k) for each

slice sk. We present an algorithm to compute Dk(IS+

k) for sk with a sweep direction along +Z. The

same algorithm is used to compute Dk(IS−
k) by using a sweep direction along −Z. In the rest of the

paper, we will present our algorithm for +Z sweep direction and drop the + sign to simplify the notation.

We utilize the spatial coherence between successive slices and compute the intersecting swept set

ISk+1 by performing incremental computations on ISk (see Figure 2). We use the following formula-

tion:

(ISk+1) =
(
ISk ∪ (Sk+1 \ Sk)

)
\ (Rk+1 \ Rk) (3)

8

where \ represents the set-difference operation. The exact computation of IS k and ISk+1 is equivalent

to exact Voronoi computation. Instead, we conservatively compute a set of potentially intersecting swept

sites ÎSk using Equation (3), where ÎSk ⊇ ISk.

Given the sets ÎSk and Rk, the algorithm for computing Dk+1, ÎSk+1 and Rk+1
proceeds as

follows:

1. Initialize ÎSk+1 = ÎSk, Dk+1 = ∞.

2. Update ÎSk+1 = ÎSk+1 ∪ (Sk+1
\ Sk). Add the additional sites swept by slice sk+1 to ÎSk+1 .

3. Compute Dk+1. For each site p̂i ∈ ÎSk+1, compute Dk+1(p̂i) in order of increasing i. Each

Dk(p̂i) is tested for visibility with respect to Dk+1(Xi−1), which is the distance field of set Xi−1 =

{p̂1, p̂2, . . . , ˆpi−1}. If Dk+1(p̂i) is not visible along the direction orthogonal to sk+1, then it does

not contribute to Dk+1.

4. Compute (Rk+1
\ Rk). All sites p̂i for which Dk+1(p̂i) is not visible can be moved from ÎSk+1

to Rk+1
.

5. Update ÎSk+1 = ÎSk+1 \ (Rk+1
\ Rk)

Initially we set k = 0,Rk = ∅, ÎSk = {pi|pi.zmax = 0}. We proceed along the Z-axis and compute the

distance field for each slice as described above. Each site pi is bucketed into a list according to pi.zmax.

This allows the addition of swept sites in Step (2) to be performed in constant time. The distance fields

are rasterized approximately in order of increasing distance to the current slice. This results in better

culling of the receding sites in Steps (3) and (4) of the algorithm. The complexity of this algorithm for

slice sk+1 is a linear function of the size | ÎSk+1 |.
The visibility computations are performed using occlusion queries (e.g. GL NV occlusion query)

available on current graphics systems. As the distance meshes are scan converted, these queries check

for updates to the depth buffer and return the number of pixels that are visible.

4.1 Conservative Sampling

The occlusion queries sample the visibility at fixed locations in each pixel and can result in sampling

errors. In particular, the algorithm presented above classifies a swept site pi as receding if its Voronoi

region V (pi) does not cover any grid cells, i.e. the occlusion query returns zero visible pixels for the

9

Figure 3. Sampling Error: (a) The Voronoi region V (p2) of a swept site p2 does not lie on any cell (rep-

resented by crosses) on slice sk, but lies on a cell for slice sk+1. (b) The XY intersection of the Voronoi

regions with slice sk. The closest cell q to V (p2) is at a distance ε.

distance field Dk(pi) in Step (3). This may introduce errors when V (pi) intersects slice sk but its inter-

section with sk is not sampled by the rasterization hardware. An incorrect classification of pi as receding

can introduce errors in Dl for a subsequent slice sl, l > k. One such case is shown in Figure 3(a), for

i = 2.

We modify the algorithm for distance field computation to account for these sampling errors. The

approach is based on a lemma that states the condition for a Voronoi region to be sampled.

Lemma 1. Let V (pi) be a voronoi region for a slice sk that is undersampled, and the closest cell q is at

a distance ε from V (pi). If we reduce dist(q, pi) by ε without changing dist(q,P − pi), we ensure that

q ∈ V (pi).

Proof. Let q belong to the voronoi region V (pj) of site pj , and the point in V (pi) closest to q be r (see

Figure 3), with i = 2, j = 4, dist(q, r) = ε. We shall first prove the result for the case when V (pi)

shares a boundary with V (pj). Then using the fact r ∈ V (pi) and r ∈ V (pj), and the triangle inequality,

we have

dist(r, pj) = dist(r, pi)

dist(q, pi) ≤ dist(q, r) + dist(r, pi)

dist(r, pj) ≤ dist(r,q) + dist(q, pj)

⇒ dist(q, pi) − ε ≤ dist(r, pj) < dist(q, pj)

Thus, by reducing dist(q, pi) by ε and keeping dist(q, pj) the same, q will lie in Voronoi region V (pi).

10

Figure 4. Conservative Sampling: (a) Distance field Dk(p2) of site p2 is occluded at all pixels on sk. (b)

Translating Dk(p2) by δxy ensures it is visible at at least one pixel.

This directly extends to the case when V (pi) and V (pj) do not share a boundary, by using a sequence of

triangle inequalities across Voronoi boundaries between V (pi) and V (pj).

We apply the result of Lemma 1 in the following manner. In practice, we do not know the point q or ε

but use the fact that ε is bounded by pixel size, ε ≤ δxy =

√
δ2
x+δ2

y

2
. Therefore, we move pi closer to all

the points in slice sk, by subtracting δxy from each value of the distance field Dk(pi). This is equivalent

to translating Dk(pi) along −Z by δxy and is shown in Figure 4.

Given a slice sk+1, we redraw the translated distance field of each site pi marked as receding in Step (4)

of the algorithm given above (i.e. pi ∈ Rk+1
\Rk). The redrawn distance field is tested for visibility with

respect to Dk+1. This redrawing is performed to ensure conservative sampling for site-culling. During

this step, updates to the final distance field in the depth buffer are disabled. Moreover, the translated

field is clamped to 0 for negative values. For line and triangle sites, the size of the Voronoi region is also

limited by the spatial size of the line segment or the triangle. To ensure that the Voronoi region covers at

least one of the four neighboring cells, we increase the size of these sites by δxy in addition to translating

the distance field.

5 Distance Function Clamping

In Section 4, we presented an algorithm to cull away the sites that do not contribute to the distance field

Dk of slice sk. In this section, we present a clamping algorithm to reduce the rasterization cost of the

distance function of each potentially intersecting swept site. Given a slice sk and each site pi ∈ ÎSk, we

compute the distance function dist(q, pi) only for the set of points on sk that lie in the Voronoi region of

pi. In other words, our goal is to evaluate the distance function for the set Qi,k = {q|q ∈ V (pi) ∩ sk}.

11

We first present an approach to compute a conservative estimate Q̂i,k of Qi,k for any arbitrary set of

sites. We further improve the performance of the clamping algorithm for manifold surfaces by using the

CSC-algorithm [22].

5.1 Conservative Clamping

The connectivity of the Voronoi regions implies that Qi,k is a connected set. We exploit the monotonic-

ity property and compute a superset Q̂i,k. Initially, we assume that we are given the maximum value

max(Dk(pi)) of the distance field Dk(pi) of site pi on slice sk. We compute a set of extreme points on sk

where the value of the distance field Dk(pi) is equal to the maximum value. By the monotonicity prop-

erty of distance functions, the set of points whose distance function is less than or equal to max(Dk(pi))

belong to Q̂i,k. An example is shown in Figure 5.

Figure 5. Clamping distance field computation to Voronoi region bounds on a slice. Q2,k = V (pi) ∪ sk.

Q̂2,k ⊇ Q2,k and is computed from max(Dk(p2)).

The problem of distance function clamping reduces to computing max(Dk(pi)) for each site pi in

ÎSk for a slice sk. We use the following lemma to compute an upper bound on max(Dk(pi)).

Lemma 2. Let max(Dk(Sk)) denote the maximum value of the distance fields Dk(Sk) of set Sk on a slice

sk and max(Dk+1(Sk+1
)) be defined similarly. Let the distance between sk+1 and sk be |zk+1−zk| = δz.

Then

max(Dk+1(Sk+1)) ≤ max(Dk(Sk)) + δz (4)

Proof. Given two points qk(x, y, zk) ∈ sk and qk+1(x, y, zk+1) ∈ sk+1 that lie in the Voronoi regions of

some two sites. Then

|dist(qk+1,P) − dist(qk,P)| ≤ δz. (5)

12

Figure 6. Change in distance field for signed distance computation

This follows directly from the triangle inequality, and the definition of the distance function dist(q,P).

Moreover, max(Dk(X)) = maxq∈sk
(dist(q,X)). This implies that

max(Dk+1(X)) ≤ max(Dk(X)) + δz (6)

Moreover, for a slice sk and any two sets of sites X1 and X2, X1 ⊆ X2 ⇒ Dk(X2) ≤ Dk(X1). We know

Sk ⊆ Sk+1
. This combined with Eq. (6), where X = Sk+1

, leads to the result in Eq. (4).

Given the maximum value max(Dk(Sk)) of the distance field for slice sk, we use Eq. (4) to compute

the maximum value max(Dk+1(Sk+1
)) of the distance field for slice sk+1. This also gives a conservative

bound on maximum value of the distance function for each site pi on slice sk+1, max(Dk+1(Sk+1
)) ≥

max(Dk+1(pi)) ∀ pi ∈ Sk+1
. We use it to compute a conservative bound on the set of points Qi,k+1 on

slice sk+1 and use this bound for clamping.

Note that the maximum distance value, max(Dk(Sk)), may be infinity, if one is computing the distance

field in a narrow band at a distance dmax [22], or if one is computing the signed distance field for a closed

manifold. For the first case we define max(Dk(Sk)) to be the maximum finite value of the distance field,

and set the update rule to be max(Dk+1(Sk+1
)) = min(dmax, max(Dk(Sk)) + δz).

For the second case, if qk does not lie in region where the signed distance field is computed, and qk+1

does, then the manifold surface lies between qk and qk+1 and max(dist(qk+1,Sk+1
)) ≤ δz. This is

shown in Figure 6.

5.2 Manifold Surfaces

In many cases, the primitives lie on manifold surfaces and we have the connectivity information In these

cases, we use the CSC algorithm [22] to further refine Q̂i,k+1 for signed Euclidean distance fields. A site

is marked as CSC-valid if it lies on the interior of a convex or concave manifold surface patch. Boundary

13

Figure 7. Medial Axis Transform: Left: Triceratops model (5.6k polygons, Grid Size=128 × 56 × 42,

Computation Time=0.79s) The medial surface is color coded by the distance from the boundary. Right:

Brake rotor model (4.7k polygons, Grid Size=4 × 128 × 128, Computation Time=0.61s). The medial seam

curves are shown in red.

sites, hyperbolic points (which are neither convex or concave) and non-manifold sites are marked as

CSC-invalid. For each CSC-valid site pi, a convex polyhedron bounding V (pi) is computed. This

polyhedron is intersected with sk+1 to compute a convex polygon Gi,k+1. In this case, Gi,k+1 ∩ Q̂i,k+1

results in a tighter approximation of Qi,k+1.

5.3 Complete Algorithm

Given ÎSk , Rk and Dk, the algorithm for computing Dk+1 as presented in Section 4 is refined to

perform clamping as follows:

1. Compute max(Dk) by using multiple occlusion queries as described in [13]. Compute

max(Dk+1) = min(dmax, max(Dk) + δ).

2. Initialize ÎSk+1 = ÎSk, Dk+1 = ∞.

3. Update ÎSk+1 = ÎSk+1 ∪ (Sk+1
\ Sk).

4.1. Compute Q̂i,k+1. For each site pi ∈ ÎSk+1, compute Q̂i,k+1 from max(Dk+1)

4.2. Refine Q̂i,k+1. For each CSC-valid site pi ∈ ÎSk+1, compute the convex polygon Gi,k+1. Refine

Q̂i,k+1 = Q̂i,k+1 ∩ Gi,k+1.

4.3. Compute Dk+1. For each site pi ∈ ÎSk+1, compute DQ̂i,k+1
(pi) and test for visibility as before.

14

4.4. Perform Conservative Sampling Disable distance field updates. For each site pi ∈ ÎSk+1 which

is marked as occluded, expand the site and compute DQ̂i,k+1
(pi) − δxy. Test for visibility against

the computed distance field Dk+1 as before. Enable distance field updates.

5. Compute (Rk+1
\ Rk) from the results of the visibility tests of Step 4.4.

6. Update ÎSk+1 = ÎSk+1 \ (Rk+1
\ Rk).

Given a 3D grid with N + 1 slices and a Z range [zmin, zmax], we make 2 passes. In the first pass,

we increment k from 0 to N . Initially, R+

0 = ∅, ÎS+

0 = {pi|pi.zmax = zmin}. In the second pass, k is

decremented from N down to 0. Initially, R−
N = ∅, ÎS−

N = {pi|pi.zmax = zmax}. The final distance

field for each slice is the lower envelope of both.

6 Applications

We have applied our distance field algorithm to compute the medial axis transform of polyhedral models

and path planning. These applications require global distance field computation along a 3D grid.

Simplified Medial Axis Computation: We compute a simplification of the Blum medial axis, called

the θ-simplified medial axis (θ-SMA) [9]. The θ-SMA provides a good approximation of the stable

subset of the medial axis. The algorithm for computing the θ-SMA of an object X is based on computing

the vector field called the neighbor direction field of the object X and denoted by N(X). N(X) is the

negated gradient of the distance field defined by the boundary of X . Given N(X), a separation criterion

is defined using the separation angle θ. The criterion is used to check whether a line segment connecting

the centers of adjacent voxels of a grid crosses a sheet of the medial axis. When a pair of points passes

the separation criterion, we add the facet between them to the approximation of θ-SMA and compute

a polygonal approximation of the medial axis. In some cases a discrete voxel representation of the θ-

SMA is desirable. A voxel is added to the medial axis if it lies on one side of a facet on the medial

axis, which is determined as above. This selection operation can be efficiently performed on modern

programmable graphics hardware using fragment programs. The gradient field is stored on graphics

card texture memory. This avoids the costly readbacks of the entire distance field to the CPU.

Interactive Path Planning in Dynamic Environments: We have used our distance field computa-

tion algorithm within a constraint-based path planner [11]. The path planning problem is reduced to

simulating a constrained dynamic system, and computes an approximation of the generalized Voronoi

15

diagrams (GVD) of the robot and obstacles in the environment. Each robot is subject to virtual forces

introduced by geometric and mechanical constraints, such as making the robot follow an estimated path

computed using the GVD and linking the rigid objects together to represent an articulated robot. The

distance field is used to compute an approximate GVD and a Voronoi graph. The distance field is also

used to perform proximity tests between the robot and the obstacles and maintain a minimum clearance.

Given a pair of objects, R1 and R2, the distance field of R2 is drawn in a potentially overlapping region.

The surface of R1 is sampled at points inside the overlapping region, and a force is generated at each

sample point qi. The force is in the direction of the gradient of the distance field and proportional to

the distance between qi and the surface of R2. As the obstacles in the environment undergo motion, our

algorithm recomputes the distance field and uses it for path computation. We have used this path planner

for virtual prototyping applications.

7 Implementation and Results

Model Polys Resolution CSC HAVOC HAVOC+CSC DiFi

Rotor 4736 4x128x128 59.22 6.33 3.98 0.61

Rotor 4736 8x254x254 424.89 18.73 12.12 1.16

Triceratops 5660 128x56x42 127.81 2.11 1.10 0.79

Triceratops 5660 254x111x84 990.48 6.33 3.65 1.92

Hugo 17000 73x45x128 X 30.55 19.24 4.22

Hugo 17000 145x90x254 X 108.84 75.85 8.63

Head 21764 78x105x128 201.12 37.89 16.76 4.98

Shell 22598 254x252x252 X 162.97 95.31 7.79

Cassini 93234 186x254x188 X 356.03 298.55 29.86

Dragon 108926 57x90x128 X 171.13 95.69 24.76

Table 1. Distance Field Computation (Polygonal Models): Times (in seconds) to compute the global distance

fields using approaches by Mauch [22] (CSC), Hoff et al. [17](HAVOC), an implementation combining CSC

with HAVOC on graphics hardware (HAVOC+CSC), and our algorithm (DiFi). For the entries marked X,

CSC algorithm fails as the model contains CSC-invalid sites.

16

Model Resolution Points 4SED DiFi

Octahedron Image 256 × 256 × 58 4862 8.62 0.85

Brain 78 × 110 × 60 18944 1.08 1.82

Brain Lat Vent 78 × 110 × 60 4988 1.08 0.64

Sinus1 406 × 363 × 392 34507 132.1 22.1

Sinus2 406 × 363 × 392 104154 132.1 49.7

Table 2. Distance Field Computation (Image Models): Times (in seconds) to compute the gradient field

of image models using the 4SED algorithm [7] and our algorithm (DiFi). Points refers to the number of

boundary voxels.

In this section we describe the implementation of our distance field computation algorithm and high-

light its performance on complex polygonal and image models.

We have implemented our algorithm in Microsoft Visual C++ and use OpenGL as the graphics

API. The distance function for each primitive is approximated as a polygonal mesh based on tech-

niques presented in [17]. The visibility test is performed using the OpenGL occlusion query extension

GL NV occlusion query. We exploit the parallelism of this query by batching together occlusion queries

for an entire set of potentially intersecting sites. The CSC algorithm [22] is used for clamping the region

of distance field computation for CSC-valid sites. We have integrated the CSC algorithm with the dis-

tance field computation algorithm presented in [17]. We clamp the approximate distance mesh of each

CSC-valid site with the bounding convex polyhedra. The bounding

convex polyhedra are computed at run time. Our implementation involves no precomputation and is

directly applicable to deformable models.

We generate the gradient vector field along with the distance field to compute the θ-SMA. The gradient

vector is encoded in the color values of each vertex of the distance mesh. The voxel representation of

the θ-SMA is computed directly on the graphics processor using OpenGL’s ARB fragment program

extension. The medial axis is rendered directly from the GPU as a volume grid.

Given a discrete image data set, we compute the set of boundary voxels, which are all background

voxels adjacent to at least one feature voxel. A point primitive is placed at the center of the boundary

voxels. We use two optimizations to improve the performance on these datasets:

17

Figure 8. Cassini Model: A volume rendering of the distance field of the Cassini with 93K polygons. The

distance to the surface is color coded, increasing from red to green to blue.

1. The distance of the point primitive to a slice belongs to a finite discrete domain. We precompute

the distance mesh for each distance value and store it in the GPU memory.

2. Instead of encoding the gradient vector into the color buffer for each vertex of the distance mesh,

we encode the position of the closest boundary voxel. We make a second pass during which a

fragment program efficiently computes the gradient vector at each voxel.

7.1 Performance

We have applied our algorithm to 3D polygonal as well as image models. These include scanned models

and CAD models. Some of them are non-manifold.

Distance Field Computation: All the timings reported in this paper were generated on a Pentium4

2.8GHz PC with 2GB RAM and an NVIDIA GeForce FX 5900 Ultra graphics card, running Windows

XP. For polygonal models, we have compared the performance of our distance field computation algo-

rithm (DiFi) with the algorithm presented by Hoff et al. [17](called HAVOC), a software implementation

of CSC algorithm [22], and an implementation that combines HAVOC with CSC. The timings are pre-

sented in Table 1. For the image data set, we have compared our algorithm with an implementation of

Danielsson’s 4SED algorithm [7] from the ITK toolkit library. The results are shown in Table 2. The

18

Figure 9. Brain Model (78 × 110 × 60 image, 18944 boundary voxels): Voxel centers are shown as points.

The θ-SMA (θ = 100◦) is shown in blue. Computation Time = 2.01s.

polygonal representation of θ-SMA was smoothed using the algorithm presented by Taubin [30]. In our

benchmarks, DiFi obtains more than two orders of magnitude over a software implementation of the

CSC algorithm and more than one order of magnitude performance improvement over an implementa-

tion combining HAVOC and CSC for manifold objects. For non-manifold models, we obtain 4 − 20

times speedup over HAVOC. For 3D image models, we are able to obtain up to 10 times performance

improvement over the 4SED algorithm [7].

Medial Axis Computation: We have applied the distance field to compute the simplified medial axis of

polyhedral models. The simplified medial axis for two models is shown in Figure 7. Our algorithm takes

less than a second to compute the medial axis of polyhedral models consisting of thousands of polygons.

Path Planning: We have applied the path planning algorithm to an assembly environment (shown in

Figure 12). The environment consists of an articulated robot arm with 6 degrees of freedom placed in

the middle of a complicated piping structure. The robot arm reaches for a part moving on a conveyor

belt and avoids collision with obstacles. Various links on the robot arm come in close proximity with

the piping structures. We are able to dynamically compute the path at interactive rates using our fast

distance field computation algorithm.

19

(a) Medial Axis (b) Boundary and Seam

Curves

Figure 10. Right Hippocampus in the Brain Model (813 boundary voxels), θ = 90◦: Medial Axis and the

Boundary and Seam Curves.

8 Analysis and Limitation

In this section we analyze the performance of our algorithm. We highlight its computational complexity

and the errors in distance computation. We also compare its performance with earlier algorithms.

We approximate each non-linear distance function with a polygonal distance mesh. This introduces a

tessellation error [17]. The tessellation error is bounded by a user defined ε > 0. We set ε =

√
δ2
x+δ2

y+δ2
z

2

so that the error in the distance field is no more than half the diagonal length of a grid cell. As a result,

the main source of discretization error is grid resolution. Current graphics processors support 24-bit

depth buffers, so the error in depth computation and comparisons is relatively small.

The computation of the direction field by encoding gradient vectors in the distance mesh introduces

errors due to linear interpolation of normalized gradient vectors [9]. Given the 32-bit color buffers on

the graphics processors, this error can be significantly reduced. For image data, the grid position p is

encoded without error on an 8-bit color buffer for grid sizes smaller than 256 × 256 × 256. Overall,

our approach for computing the gradient field is robust as compared to performing a finite difference

computation on a discrete grid, which must explicitly identify the shock boundaries [28].

Given a model with m sites and a 3D grid of size n = N ×N ×N , the cost of computing the distance

20

(a) Sinus model surface (b) θ = 15◦ (c) θ = 60◦ (d) θ = 105◦

Figure 11. Different θ-SMA for the Sinus Image Dataset (406× 363× 392 image, 34507 boundary voxels).

The surface representation shown was extracted using marching cubes.

field is proportional to the number of processed cells over which the distance function is evaluated. The

optimal cost for computing the 3D distance field is O(N 3) = O(n). For a slice sk, the optimal number

of processed cells is
∑|I

k
|

i=1 |Qi,k| = N 2. The actual number of processed cells is
∑|Î

k
|

i=1 |Q̂i,k|. We define

the following average number of cells covered by one site:

optimal = 〈|Qi,k|〉 =
∑|I

k
|

i=1
|Qi,k|

|I
k
|

, actual = 〈|Q̂i,k|〉 =
∑|Î

k
|

i=1
|Q̂i,k|

|Î
k
|

The per-slice efficiency of our algorithm can be measured by two ratios: the clamping efficiency, e1k =

〈|Qi,k|〉

〈|Q̂i,k|〉
and culling efficiency, e2k =

|I
k
|

|Î
k
|
. The average efficiency per slice can be defined as 〈e〉 =

1

N

∑N

k=1
e1k × e2k. The total cost of the algorithm is O(n/〈e〉), and is bounded between O(n) and

O(mn). For CSC-invalid sites, the clamping efficiency e1k approaches 1 as the sites are uniformly

distributed on the 3D grid. For CSC-valid sites, the complexity is similar to that of the CSC algorithm,

i.e. O(m + rn). However, our algorithm obtains tighter bounds on the parameter r, r = 1/〈e〉. In

practice, e1k ≈ 1, thus r = 1

〈e2k〉
.

We sample and render some of the distance functions twice in order to overcome the sampling errors

introduced by occlusion queries. Moreover, to detect under-sampling errors, the distance field is offset

by a larger value of cell size δxy, leading to a more conservative estimate of the potentially intersecting

set. This extra computation is performed only when a site is marked as receding due to under-sampling,

and becomes smaller at higher grid resolutions.

21

Figure 12. Planning in an assembly environment: Constraint based planning in a dynamic environment

consisting of 26.9k polygons using distance fields. The robot arm tracks a moving part on a conveyor belt,

while avoiding contact with other obstacles in the environment. Our algorithm computes the distance field

at interactive rates and uses the distance field to compute a collision free path.

8.1 Comparison

We now provide a comparison of our algorithm, DiFi, with two previous algorithms for computing 3D

distance fields using graphics hardware: HAVOC, and the algorithm by Sigg et al. [29].

HAVOC: DiFi is restricted in the distance functions handled compared to HAVOC, since it assumes that

the Voronoi regions are connected. It can however handle a wide range of distance functions, including

all the Lp metrics, while giving more than one order of magnitude speedup. Like HAVOC, it is applicable

to generic models without connectivity information, and has the same error bounds.

Sigg et al.: The algorithm by Sigg et al. [29] is applicable only to manifold surfaces and has the same

asymptotic complexity as the CSC algorithm [22], i.e. O(m+rn). It is particularly efficient for comput-

ing the distance field in narrow bands around manifold surfaces. For small band sizes, the parameter r is

close to unity. However, for computing the global distance field of complex environments with multiple

manifold surfaces and high depth-complexity, r can be O(m). Distances computed by this algorithm are

exact up to GPU floating texture precision. The culling and clamping techniques presented in DiFi are

complementary to those presented in [22, 29]. In fact, the approach presented in [29] can be used for

distance field computation of manifold sites inside DiFi instead of HAVOC. This would give significant

speedups over [29] for computing global distance fields in complex environments. In particular, we have

demonstrated that DiFi provides significant speedups over HAVOC and CSC combined.

22

8.2 Limitations

Our algorithm has certain limitations. Our distance field computation is performed on a uniform grid

and its accuracy is governed by grid resolution. Current graphics processors provide up to 4K × 4K

pixel resolution and this imposes an upper bound on the grid resolution. Even though we use culling and

clamping algorithms, the performance of the algorithm is still bounded by the rasterization cost or the

fill-rate. Moreover, some applications require reading back the distance field to the CPU and readbacks

can be slow on the PCI bus. Our algorithm is best suited for computation on uniform grids and may not

result in any speedups for adaptive distance fields [10].

9 Conclusions and Future Work

We have presented an algorithm for fast computation of 3D discretized distance fields using graphics

hardware. Our algorithm uses a combination of culling and clamping techniques to reduce the number

and size of distance functions that are rendered for each slice. We use occlusion queries to speed up the

computation and have presented a conservative scheme to overcome sampling errors. We have used our

algorithm to compute distance fields of complex 3D models. The distance fields are used for computing

the simplified medial axis and for path planning in a dynamic environment. We achieve one to two

orders of magnitude improvement over prior algorithms and implementations.

There are many avenues for future work. We would like to further improve the performance by utiliz-

ing temporal coherence between successive frames for dynamic or deformable models. We would also

like to use our algorithm for other applications, including dynamic simulation, morphing and proximity

computations.

Acknowledgments

This research is supported in part by ARO Contract DAAD

19-02-1-0390, NSF Awards ACI-9876914, ACR-0118743, ONR Contract N00014-01-1-0067, and Intel

Corporation. The models are courtesy of the Stanford University Computer Graphics Laboratory, the

Georgia Tech Large Models Archive, Alpha 1 Project at University of Utah, Laurence Boisseux at IN-

RIA and Stephen Wall, Gary Cough and Don Jacob at NASA-JPL. We thank Mark Foskey for θ-SMA

code, Luv Kohli for help with cPlan, Mark Harris and Greg Coombe for help with GPU programming

and the UNC GAMMA group for many useful discussions and support. We are also grateful to the

23

reviewers for their feedback.

References
[1] J. Bloomenthal, editor. Introduction to Implicit Surfaces, volume 391. Morgan-Kaufmann, 1997.

[2] D. Breen, S. Mauch, and R. Whitaker. 3d scan conversion of csg models into distance, closest-point and

color volumes. Proc. of Volume Graphics, pages 135–158, 2000.

[3] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time Euclidean distance transform and Voronoi

diagram algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 17:529–533, 1995.

[4] L. P. Chew and R. L. Drysdale, III. Voronoi diagrams based on convex distance functions. In ACM Sympo-

sium on Computational Geometry, pages 235–244, 1985.

[5] D. Cohen-Or, D. Levin, and A. Solomovici. Three-dimensional distance field metamorphosis. ACM Trans-

actions on Graphics, 1997.

[6] O. Cuisenaire. Distance Transformations: Fast Algorithms and Applications to Medical Image Processing.

PhD thesis, Universite Catholique de Louvain, 1999.

[7] P. E. Danielsson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227–248,

1980.

[8] M. Denny. Solving geometric optimization problems using graphics hardware. Computer Graphics Forum,

22(3), 2003.

[9] M. Foskey, M. Lin, and D. Manocha. Efficient computation of a simplified medial axis. Proc. of ACM Solid

Modeling, pages 96–107, 2003.

[10] S. Frisken, R. Perry, A. Rockwood, and R. Jones. Adaptively sampled distance fields: A general representa-

tion of shapes for computer graphics. In Proc. of ACM SIGGRAPH, pages 249–254, 2000.

[11] M. Garber and M. Lin. Constraint-based motion planning using voronoi diagrams. Proc. Fifth International

Workshop on Algorithmic Foundations of Robotics, 2002.

[12] S. Gibson. Using distance maps for smooth representation in sampled volumes. In Proc. of IEEE Volume

Visualization Symposium, pages 23–30, 1998.

[13] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast computation of database operations

using graphics processors. Proc. of ACM SIGMOD, 2004.

[14] T. He, L. Hong, A. Varshney, and S. Wang. Controlled topology simplification. IEEE Transactions on

Visualization and Computer Graphics, 2(2):171–184, 1996.

[15] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d geometric proximity queries using

graphics hardware. Proc. of ACM Symposium on Interactive 3D Graphics, pages 145–148, 2001.

24

[16] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast 3d geometric proximity queries between rigid and

deformable models using graphics hardware acceleration. Technical Report TR02-004, Department of Com-

puter Science, University of North Carolina, 2002.

[17] K. E. Hoff, III, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation of generalized Voronoi

diagrams using graphics hardware. In Computer Graphics Annual Conference Series (SIGGRAPH ’99),

pages 277–286, 1999.

[18] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual voyage: Interactive navigation in the human

colon. Proc. of ACM SIGGRAPH, pages 27–34, 1997.

[19] Y. Kim, G. Varadhan, M. Lin, and D. Manocha. Efficient swept volume approximation of complex polyhe-

dral models. Proc. of ACM Symposium on Solid Modeling and Applications, pages 11–22, 2003.

[20] L. Kobbelt, M. Botsch, U. Schwanecke, and H. P. Seidel. Feature-sensitive surface extraction from volume

data. In Proc. of ACM SIGGRAPH, pages 57–66, 2001.

[21] M. Lin. Efficient Collision Detection for Animation and Robotics. PhD thesis, Department of Electrical

Engineering and Computer Science, University of California, Berkeley, December 1993.

[22] S. Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, Californa Institute

of Technology, 4 2003.

[23] C. Maurer, R. Qi, and V. Raghavan. A linear time algorithm for computing exact euclidean distance trans-

forms of binary images in arbitary dimensions. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 25(2):265–270, February 2003.

[24] J. C. Mullikin. The vector distance transform in two and three dimensions. CVGIP: Graphical Models and

Image Processing, 54(6):526–535, Nov. 1992.

[25] R. Perry and S. Frisken. Kizamu: A system for sculpting digital characters. In Proc. of ACM SIGGRAPH,

pages 47–56, 2001.

[26] J. A. Sethian. Level set methods and fast marching methods. Cambridge, 1999.

[27] R. Shekhar, E. Fayyad, R. Yagel, and F. Cornhill. Octree-based decimation of marching cubes surfaces.

Proc. of IEEE Visualization, pages 335–342, 1996.

[28] K. Siddiqi, K. B.B., and C.-W. Shu. Geometric shock-capturing eno schemes for subpixel interpolation,

computation and curve evolution. Graphical Models and Image Processing, 59(5):278–301, 1997.

[29] C. Sigg, R. Peikert, and M. Gross. Signed distance transform using graphics hardware. In Proceedings of

IEEE Visualization, 2003.

[30] G. Taubin. A signal processing approach to fair surface design. In Proc. of ACM SIGGRAPH, pages 351–

358, 1995.

25

[31] G. Varadhan, S. Krishnan, Y. Kim, and D. Manocha. Feature-sensitive subdivision and isosurface recon-

struction. Proc. of IEEE Visualization, 2003.

[32] G. Varadhan, S. Krishnan, T. V. N. Sriram, and D. Manocha. Topology preserving surface extraction using

adaptive subdivision. In Eurographics Symposium on Geometry Processing, 2004.

[33] J. Vleugels and M. Overmars. Approximating Voronoi diagrams of convex sites in any dimension. Interna-

tional Journal of Computational Geometry and Applications, 8:201–222, 1997.

26

