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Abstract—We present a whole-body motion planning algo- used in validating vehicle or aircraft designs to ensurd tha
rithm for human-like robots. The planning problem is decom-  there will be sufcient clearance in the CAD model for
posed into a sequence of low-dimensional sub-problems. Our a human operator to remove a complex part. In order to

formulation is based on the fact that a human-like model is a f th task d to devel bilities f
tightly coupled system and we use a constrained coordination perform these tasks, we need (o develop capabiliies tor

scheme to solve the sub-problems in an incremental manner. COMplex motion strategies (e.g. sitting, bending), hamyli
We also present a local path re nement algorithm to compute narrow passages, and planning in cluttered environments.
o o o b e arts e ernce | One approach to sove high DOF planring probems i
our algorithm on an articulated human-like mode?and generate fo decompose a problem |nto_ a set of lower dlmen5|onal
ef cient motion strategies in complex CAD models. sub-problems [1], [2], [15]. For instance, a human-likeabb
can be decomposed into the lower body and the upper
. INTRODUCTION body. In order to deal with CAD/CAM applications, we
The problem of modeling and simulating human-likeneed to handle cluttered environments and model many other
motion arises in different applications, including humi@ho motions, which cannot be ef ciently generated by simple
robotics, biomechanics, digital human modeling for viltuadecompositions. In addition to collision-free constrajrthe
prototyping, and character animations. One of the mainsgoaiotion of human-like robots is subject to statically or dyna
in this area is to develop ef cient motion strategies for Wéio ically stable constraints. There is a general perceptiat th
body planning for various tasks including navigation,isgt  actual human motion results from simultaneously perfogmin
walking, running, object manipulation, etc. The entire lwmm multiple objectives in a hierarchical manner, and reseansh
body consists of over 600 muscles and over 200 bones, halhve developed similar models for dynamics control [29]. It
of which are found in the hands and feet. Even the simplegiould also be useful to develop approaches that use hierar-
human-like models represent the skeleton as an articulatebical decompositions for planning human-like motions.
model with 30 40 joints to model the different motions.  Main Results: We present a whole-body motion planning
The underlying complexity makes it hard for a planner tgpproach for human-like robots by coordinating the motions
ef ciently compute the motion due to the dimension of thepf different body parts. Our approach performs a hieramhic

con guration space. In addition to collision-free constita,  decomposition and takes into account that a human body is
the resulting motion also needs to satisfy the posture angtightly coupled system.

dynamics constraints.

Recent research in robotics has focused on motion plan-
ning of humanoids due to the commercial availability of hu-
manoid robot hardware [11], [20]. Many earlier approaches
use a simple bounding volume (e.g. a cylinder) approxi-
mation of the entire human model [19] or the lower body
[1], [26] to compute the collision-free motions, and design
appropriate gaits or locomotion controllers to follow teos
trajectories [14], [16]. Recently there has been a trend
of computing the motion for the whole body [13], [34].
However, most prior motion planning approaches are only
ef cient for open or simple environments and their perfor-
mances may degrade in cluttered environments. We demonstrate the performance of our algorithm on an

Besides humanoids, another driving application of humararticulated human-like model with 40 DOF. We generate var-
like robots is digital modeling of humans or mannequins fofous motion strategies corresponding to bending, standing
design, assembly and maintenance in CAD/CAM and virtualp, and grabbing objects in different complex scenarios. In
prototyping [8], [21]. The digital human models can bepractice, our planner is able to compute a collision-fred an
inserted into a simulation or virtual environment to faete statically stable motion in tens of seconds. Within a two-
the prediction of performance, safety and ergonomic amalysstage framework which rst computes a collision-free path
of the CAD models. For example, human-like models aréhen transforms the path to a dynamically stable trajectory

We describe a new constrained coordination scheme that
uses constrained sampling and incrementally computes
the motion for different parts, satisfying collision-free
constraint.

In order to deal with cluttered or tight scenarios, we
present a local path re nement algorithm that takes into
account the workspace distance information to control
the amount of modi cation on the path.

We modify statically unstable samples by using inverse
kinematics (IK) so that the new samples are statically
stable with respect to the center of mass of the robot.



(Fig. 2), our approach can improve the ef ciency of the rst
stage.

The rest of the paper is organized as follows. We give a
brief survey of related work in Section Il and an overview
of our decomposition approach in Section Ill. Section IV
presents the constrained coordination algorithm as well as
local path re nement. We describe our implementation in
Section V and highlight its performance.
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There is an extensive literature on motion planning, coor- 6 additional ~§¥
dination and dynamic control of human-like robots. In this ~Unactuated DOF
section, we give a brief overview of related work on motion
planning for human-like robots, dimensionality reductaord

path replanning.
Fig. 1. A human-like robot witht0 DOF and one decomposition scheme
A. Motion Planning for Human-Like Robots for this model. Our approach computes the motion for the bpéyts
sequentially by starting from the root of the hierarchy o tfecomposition.
Sampling-based approaches have been successfully ap-

plied to human-like robots to plan various tasks. These
include ef cient planning algorithms for reaching and mani [
ulation that combine motion planning and inverse kinensatic | St e etk

[6], [7] or computing the whole body motion [13]. The
motion strategies for human-like robots such as walking
can also be computed by using walking pattern generators

[14], [16], [18]. To plan collision-free and dynamically I Szggedgg:gr';ﬂly
stable motions, many previous approaches use a decoupled

two-stage framework (Fig. 2) [12], [20], [35]. Task-based
controllers have also been presented to plan and control tﬁigt; f2y WithtirT Eh?hdecl?_uplecl( tWO-Stggée ffam_ewl?fk f;rmplantnir}gt aiomot
. f satistying wi oth collision-free an ynamically s onstraints, our

Wh_0|e'p0dy m‘?“on [11]' [29]' In the domain of CompUter_approach can improve the efciency of the stage I: collisfoze and

animation, motion capture data are often used to synthesiggtically stable motion computation.

natural human motion [32].
B. DlmenSIOIt](.:lhly Redu.ctlon ~ modify the portion of the path to avoid the moving obstacle
~Decomposition techniques can reduce the overall dimegy to accommodate changes in the connectivity [27], [33].

sionality of motion planning problems and have been apsince global modi cation needs to replan for the entire

plied to articulated robots or multi-robot systems [2], J15 connectivity map, it is usually much more expensive [10],
Different coordination schemes for combining the solusion[17].

of lower dimensional sub-problems are presented in [9],

[23], [28]. Simple decomposition schemes based on the

lower-body and upper-body can be used for planing the 1. OVERVIEW

motion of human-like robots [1]. Another effective scheme

for dimensionality reduction is to use reduced kinematic In this section, we introduce our notation and give an
models, such as using a bounding cylinder to approximateverview of our planning algorithm. Planning a path for
the lower body [19], [26]. A multi-level method to adjust thea human-like robot by taking into account all the DOF is
activated DOF according to the environment is presented often dif cult due to the underlying high dimensional selarc
[34]. Finally, PCA-based analysis or various task constmi space. Our approach represents a human-like robot by using

dimensional space [5], [30]. problem into multiple sub-problems of lower dimensions,
o i and compute the motion for the body parts in a sequential
C. Path Modi cation and Replanning order. A key feature of our algorithm is that planning the

The step of path modi cation is often required by manypath of thek!" body part is coordinated with the paths of
motion planning approaches. Retraction-based sampling ape rst k 1 body parts computed earlier. Furthermore, all
proaches can effectively deal with narrow passages atklese paths can be re ned using a local re nement scheme.
cluttered environments [4], [36]. By performing randomin this manner, the paths for the rd¢ 1 body parts can
perturbation or penetration depth computation, a path withossibly be updated during the planning of #f&body part.
colliding con gurations can be repaired. For motion plampi  This form of sequential planning along with path re nement
among dynamic obstacles, local path modi cation algorishmhelps us treat the whole-body as a tightly coupled system.
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A human-like model is a tightly coupled system and
Fig. 3. Whole-Body Motion Planning using Constrained Coordinatio the inter-connection between the body parts needs to be
V\I/e rst c?hn;pnlitoeﬁ(t)f:]ef é)rattr:\efgrﬁgﬁﬂgniﬂggmﬂigﬁ?ﬁgCp(?nrtssﬁa\i/xggn maintained during planning. One possibility is to decongpos
gr??t?emgath NJ(t) but this pat?lw can be Ic?éally re ned. We refer this step asthIS high d'mens_lonal robot into a multi-robot planning
constrained coordination (Fig. 4). problem by treating each part as a separate robot. There
is rich literature on multi-robot motion planning and at a
broad level prior approaches for multi-robot planning can
be classi ed into centralized or decentralized methodse Th
centralized methods compose all the different robots into
one large coupled system. The DOF of the coupled system
corresponds to the sum of DOF of all the robots. Such an
approach could be extremely inef cient for a human-like
Fobot due to the high DOF con guration space. The decen-
Ralized planners compromise on the completeness by using
) . a decoupled approach. The decentralized planner typically
few DOF. Fig. 1 shows a decomposition scheme, wherx roceedsIO in twr())pphases. In the rst phase,pa coIIisiorF:—free

a hum_an model is decpmposed Into parts: a 'OWer‘*?o ath is computed for each robot with respect to the obstacles
(mcludmg_legs and pe.I\.ns), torso, head, Ief_t arm and righ nd the collisions between the robots are handled in the
arrrj[. I? tt:]ns tdecorl?posmon,.tflhetlower bo?y 'S tr(taﬁteddas & cond phase by adjusting their velocities. Since a human-
roo 't'o eh reeih IS F;oss(lje;{ 0 compu ed art\o thert €COMie robot is a tightly coupled system, it would be hard using
position where the root no ) corresponds 1o the torso. purely decoupled methods to maintain the inter-connection
Furthermore, we build a hierarchical representation based cgnstraints between adjacent links of the robot

the inter-connection between the parts. For example, eac . S .
. We propose a hybrid coordination scheme that is based
arm can be further decomposed into upper arm, lower arm . o . o
hand. etc oh prior work on prioritized or incremental cqordmafuon
' ' approaches [9], [28]. Our algorithm proceeds hierarchycal
We use the symbot) to denote the con guration of a using the decomposition of the human model and computes

human-like robot.q is composed of con gurationg for the path of different nodes in the tree in a breadth- rst way.

A. Decomposition of a Human-like Model

The simplest decomposition of a human-like robo
decomposes the whole-body into different body par

to the con guration ofA'. Since we are dealing with artic- takes into the account the path of its parent node and other
ulated models, the con guratiog' for Al is determined by paths computed so far.

all of its actuated joints, including the joint through whic ~ We describe the main idea behind constrained coordination
Al is connected to its parent body part in the decompositioby taking into account two objects, and B. SupposeA has
tree. For the lower body pardg, 6 additional unactuated m DOF andB hasn DOF. By considering the two objects as
DOF can be added to the system to specify the positicen composite systenf,A;Bg, a centralized planner needs to
and orientation of the coordinate frame associated with theearch over an+ n dimensional space. On the other hand,
pelvis For instance, The basic motion planning problem fodecentralized approaches plan each object independently b
a human-like robot is to nd a collision-free path betweensearching them and n dimensional spaces corresponding to
the starting con gurationgs = (q2;q2;:::;q2) to the goal each robot. We improve the decentralized planning by using
con guration ggq =(q8;qé;:::;q8). In practice, the resulting an incremental coordination strategy. A collision-freehpa
motion should also satisfy with statically or dynamicallyMA(t) for A is computed by ignorind3. Next, a collision-
stable constraints. free path for the systefA; Bg is computed by coordinating



A and B. During the coordination, gath constraintfor A
is imposed so that the con guration @&f should lie on the
path MA(t). The coordination of the systef;Bg is the )
n+ 1 dimensional search space, sinkds constrained on AL TS/
a one-dimensional path with the parameteand Al hasn U/ f
DOF. Intuitively, this approach computes a path Bii.e.
MB(t)), based on the original trajectori(*(t)) computed
for A. However, it is possible that the original path computed
for A may not result in a feasible path f8rsuch thaff A;Bg  Fig. % _Given an articulated robot with two links®and A', a path MP(t)
may satisfy all the collision and dynamics constraints al' A° is rst computed. However, when®Amoves along M), it comes

. . . . very close to the obstacle (shown in blue), as the separatistance d is
shown in Fig. 5. In the case of human-like motion, such ery small. This leads to no feasible placement fér as it collides. To
hard constraint can result in either an inef cient planneao resolve such cases, our constrained coordination schenglyore nes the
failure to compute a solution that satis es all the constimi Path M(t) by moving it upwards (shown with green arrow), while planin

L the motion for A. In practice, such a local re nement approach is more

In order to address this issue, we use a local re nemeRk ient as compared to global replanning.
scheme that modi es the computed trajectaif(t), as it
computes a collision-free path fdB. In Section IV, we

present an implicit local path re nement algorithm based o

A0

r5:::;1ths forA%, Al, ..., Al by simultaneously searching the
. . . . -space ofA! and the 1 dimensional time space of the set
constrained sampling and interpolations. of paths(M? 1(t);Mjl 1(t);:::;ij i(t))- and locally re ning
C. Planning Stable Motions each of the path#1? ,(t);M{ 1(t);:::;MjJ 1(t). Later, we
In addition to collision-free and joint limit constraints, SNOW the local path re nement can be performed implicitly
the motion of human-like robots is subject to staticallyVithin @ sample-based planner. nge algorithm traverses the
or dynamically stable constraints. The computed postur&tire hierarchy of body partstA”;::;;A"g, sequentially
should either be statically stable, i.e. the projection fg t N the breadth-rst order of the tree. After stagg the
center of mass of the robot (CoM) lies inside the fooftlgorithm has computed a path for all the parts that satisfy
support polygon, or dynamically stable, i.e. the zero mamenl® constraints.
point (ZMP) lies inside the support polygon [31]. However,
due to the computational complexity necessary to plan ﬂ%
collision-free and dynamic motion together, most previous A key aspect of our constrained coordination algorithm is
approaches tend to use a decoupled two-stage framewaekning the path that was computed at the previous stage.
[12], [20], [35]. For instance, a collision-free path cants  In this section, we present a local replanning algorithnt tha
computed. The path then is transformed into a dynamicallakes into account the decomposition of human-like robots
stable trajectory. Each of these stages is iterated untih boand the path computation algorithm highlighted above. We
types of constraints are satis ed (Fig. 2). Our approach caobserve that within an incremental coordination scheme for
be extended to compute a statically stable motion. If antwo objectsf A%; Alg, the motion ofAC is strictly constrained
sample generated by the constrained coordination algorithon the path computed earlier. This can lead to the dif culty o
is not statically stable, we further modify the sample byplanning a motion for the overall robot, or the failure inrter
using inverse kinematics (IK) so that the CoM at the newf nding a solution. Fig. 5 shows such an example for an
sample lies inside the approximate foot support polygorarticulated robot with two linksA® and AL, WhenA® moves
Within the two-stage framework, our approach can improvalong the pattM(t), its distanced to the obstacle becomes
the ef ciency of the rst stage on computing a collision-&e too small, which results in no feasible placement4dr This
and statically stable path. Such path is further procesged ssue can arise when we are attempting to compute a collision
the second stage. free path in a cluttered environment or in a narrow passage.
Since the robot is decomposed into many body parts, each
body part is constrained by predecessors, as given by the
In this section, we present our constrained coordinatiobreath rst order of the tree. In this case, we re ne the path
approach. It is primarily designed for human-like or tightl for A%, given asMg(t), and compute a new paﬂ?l‘l)(t).
coupled robots that have high DOF. Our approach consistsOur algorithm uses a sample-based planner to compute
of two parts: a modi ed incremental coordination algorithma path during each stage and we design an implicit local
and local path re nement. re nement scheme that can be integrated with any sample-
_ based approach. The two main steps of sample-based plan-
A. Path Computation ning is generating samples in the free space and computing
Our algorithm proceeds in multiple stages, as shown ian interpolating motion between those samples using local
Fig. 3. We use the symbad¥ii(t) to denote the path of part planning. Instead of explicitly modifying the path compulite
A computed after stagge After stagej, the algorithm has in the previous stage, our algorithm performsnstrained
computed the following pathM}(t) for Al, fori= 0;1;:::;j. samplingandconstrained interpolatiorso that the generated
As shown in Fig. 4, during this stage, the algorithm computesamples or local motions are allowed to move away from the

. Implicit Local Path Re nement

IV. CONSTRAINED COORDINATION



Algorithm 1: Constrained Sampling

Input: Body partsA? and Al;
A collision-free pathMO(t);t 2 [0;1] for A°
Output: A random con guration(q®; q) for f A% Alg where
q° subjects to the path constraikt®

begin
ql = Random con guration ol Fig. 6. Our constrained coordination approach does not strictinstain

: 0 the motion of A on the path M(t). Rather, R is allowed to move away
/I Sampling the pattM f h h locally based Th f betion i
¢ = Rand0;1) rom the path locally based on re nement. The extent of pbetion is
f%nf 0 ' determined by a Gaussian distribution function. Within anpée-based
g =M (trar)d) planner, the local path re nement is implicitly performeq lusing our
/I Perturbation constrained sampling and constrained interpolation sokem
r = Shortest vector from any obstacle A8

I = A random scale factor (See Section IV.B)

Dr0= I'r _ _ interpolation algorithm. Differently, when interpolatjnthe
Pg_:c')rl"ersoe’('“ema“cﬁov do, Dr) two con gurations ofA°, the resulting motion ofA° should
q°=qg°+ Da be constrained on the paM(t) computed earlier. Let us

70. 41
endretum (@%a) denotep andt; as the parameters of the two con gurations of
AP on the pathM(t). The interpolation fory is constrained
on the pathM°(t) and passes all the nodes along the path
constraining path up to a threshold. In this way, we achiev.t()eewveemfJ and tl. as shown in Fig. 6. Together W'th the
the path re nement implicitly. In the following, we presem!nterpolat!ng mot|_on forAy, we n_aIIy obtain ? ci)nstralned

interpolating motion for the entire systefrA”; A~g. If the

the algorithm for a composite system with two robots, which . . : L
. . new interpolation for the system is not collision free, we
can be generalized to a system withrobots.

: : . locally perturb these nodes by changing the con gurations
1) Constrained SamplingOur algorithm (Alg. 1) gener- ; . . .
ates a con guration for the systefmA%; Alg subject to the Tr?tre/r_\oollj;tlag tg%tps:g;baéfg Sezcggﬁ]d laet?gggé;—h(laarnens:rmng
path constraint. A con guratiorg® for Al is computed by 'MerPolaling motionis u y P P :

randomly sampling its con guration space. A con guration
of A% is computed by randomly generating a vatugqg on  C. Statically Stable Motion
the pathMO(t), which lies in the coordination spa¢@: 1]. If
the composite con guratiofM(t;and); 1) is collision free Our constrained coordination algorithm can be extended
for the systemf A% Alg, it can be used by a sample-basedo generate a statically stable motion for a robot. In the
planner. Otherwise, we perturb the con guration as part ofoordination algorithm, we modify the last stage for coerdi
the re nement step. nating betweem\, andf Ag; A1;:::; Ay 10. During this stage,
We determine the closest points betwehat the con- we also check whether the con guratian generated from
guration M%(t.ang) and the obstacles. Let us denote the€onstrained sampling is statically stable, i.e. the prijec
closest point onA® using p and letr be the vector from of the center mass (CoM) point of the robotcaties inside
the closest point of the obstacles po The basic idea for the support polygon de ned by the robot's support feet (foot
perturbing the con guratiorM®(t;ang) for A° is to increase for single foot support case). If the con guratian is not
the clearance betweet’ and the obstacles so that we carstatically stable, we perturb it to generate a staticalfyblet
avoid the situations shown in Fig. 6. In order to perforncon guration q° and ensure that the foot placement is not
such a perturbation, we randomly choose a scale factor changed. The perturbation step is reduced to an inverse
The desired displacement for the pojmtin the workspace kinematic problem. The projection of CoM point is treated as
after the perturbation then B = / r. | is chosen larger than one end-effector in the IK problem. The Jacobian of this end-
1, which can guarantee that the pojmtdoes not collide effector can be easily derived according to the kinematfcs o
with obstacles whemA® moves. Furthermore, a Gaussianthe robot and the mass of each body part. In the IK problem
distribution function is used when randomly choosingso  formulation, this end-effector needs to be moved toward the
that the probability of choosing a value near to 0 is highegenter of the support polygon until it is inside the polygon.
Therefore, the constrained sampling algorithm has highén order to maintain the foot contact constraint, we choose
probability of generating samples near the constraint .patthree contact points from each contact foot as additiondd en
Finally, we compute the amount of perturbatibg® for A°  effectors. Their positions are not changed. To solve the IK
by solving the inverse kinematic problefx, = J5Dq°, where ~ problem, we use a damped least squares method [3].

Jg is the Jacobian for the point on A°. The modi ed constrained sampling allows us to generate
2) Constrained Interpolation:We address the issue of statically stable samples for sample-based planners. ¥¢é al
motion interpolation during our path re nement algorithm.need to check whether the interpolating motion between
Given two con gurations of the systefA%; Alg, our goal is samples is statically stable. One simple way is to disgyetel
to interpolate a motion between them that satis es the pattample along the interpolating motion and check each sample
constraint. The interpolation between the two con guraio individually. If any sample is not statically stable, we can
of the body partAl can be computed by a linear or otherperturb it by using our IK-based CoM perturbation technique
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Fig. 7. The crouching robot picks the object from the ground and jiiut the table (a-e). When performing this task, the robatdseto avoid the
collision with the environment and maintain its balancer@lgorithm can ef ciently compute a valid motion for the mtbwithin 10:1s. The entire motion
is shown in (f). We highlight the center of mass (CoM) of tHeotaat each con guration. The projection of CoM onto the grdushows that the robot
maintains the statically stable constraint along the motiee have computed.

method for computing IK [3]. Our current implementation
is not optimized and it is possible to further improve the
running time.

Figs. 7,8,9,10 show four complex scenarios that are used
to analyze the performance of our algorithm. The resulting
algorithm computes motion strategies corresponding talben
ing, standing up, and grabbing objects in complex scenarios
Fig. 8. The robot moves toward one chair and sits down. To avoid thé¢n Fig, 7, the robot is crouching_ In order to pick the object
collision with the overhead [ight, the robot needs to berdlft This scenario from the ground and put it on the table, the robot needs to
has narrow passages and tight spaces, and therefore, tmmeidakes more . .
time. rst stand up and then bend its torso. Our algorithm can

ef ciently compute a collision-free motion to achieve this
task within 101s on a Pentium IV PC. The second scenario
V. IMPLEMENTATION AND RESULTS shows the motion of the human-like robot in a dining room

In this section, we describe our implementation and thésee Fig. 8). In this case, the robot walks from its initial
performance of our algorithm in many complex scenariogosition towards the dining table and eventually sits down.
We use a human-like robot with 40 DOF as shown in Figln Fig. 9, a whole-body motion for the robot is computed by
1. The robot model is mobile and able to bend the torso aur planner. The robot is able to pass through a tight space
head and sit. Six of the 40 DOF are unactuated and used a narrow passage between the two bookshelves. When
to specify the position and orientation of the virtual basethe robot passes through the narrow passage, it needs to
The robot is modeled by Ztriangles and it is decomposed coordinate its arm motion as well as its lower body motion to
into ve body partsf A% Al::::; A*g in our benchmarks. The avoid collisions with the obstacles. The total computatlon
number of DOF for each body part is speci ed in Fig. 1. time to compute a collision-free path for this benchmark is

The underlying planner uses a sample-based path compi8:3s.
tation algorithm - bidirectional RRT [22]. We also augment In Fig. 10, we show a scenario arising in CAD application.
the sampling and motion interpolation components to peffhe human-like robot's right hand is grabbing a tool. The
form local path re nement. When planning the motion forhuman-like robot needs to move his body inside the car
the rst k parts of the robots, we ignore the rest of the bodyo x some parts using the tool. The CAD model of the
parts by temporarily deactivating those parts from motioncar has 24K triangles and the algorithm needs to check
Moreover, we use PQP library for collision detection andor collisions with the car seat, roof and other parts. Our
closest distance queries with the obstacles and also amaglgorithm can ef ciently compute a collision-free motioarf
various parts of the robot. We use a damped least squarthés benchmark in 23s.




Fig. 9. The robot passes through a narrow passage between two belgksh

Bookshelves Dinning Room Car Crouching
Stage Time (s) | Nodes | Time (s) | Nodes| Time (s) | Nodes| Time (s) | Nodes
AV 4.719 269 24.328 559 0.407 51 0.100 102
AV, Al 2.180 115 5.719 134 0.563 100 1.063 104
A AL A2 2.165 126 6.000 132 1.719 237 1.234 105
AD, AL AZAS 5.201 89 6.796 74 16.891 1,436 4.266 183
A AL A% A3 AR 3.504 80 14.641 168 5.453 257 3.375 109
[ Overall Planning | 18.328(s) | | 56.809(s)| | 25.078(s) | [ 10.117(s)| |
TABLE |

Performance of our approach on various benchmarks. We shewirning and the nodes in the resulting RRT at each stage rofanstrained
coordination. We also highlight the total timing for eachnibemark. Our approach computes a collision-free path fa fluman-like robot with up to
tens of seconds on various scenarios.

\ | Bookshelves| Dinning Room | Car [ Crouching |

Decomposition as Fig. 1 (s) 18.3 56.8 25.0 10.1
Decomposition of lower and upper bodies (s) 84.3 63.8 69.6 19.7
Centralized approach (s) 191.6 73.0 113.3 73.4

TABLE Il

Comparison of the performance between our approaches basetifferent decomposition schemes and the centralizedapp.

In table I, we show the timing and nodes corresponding VI. CONCLUSIONS ANDFUTURE WORK

to each stage of the constrained coordination algorithm. In In this paper, we have presented an algorithm to compute

these.examples, the locomotion such as wal'klng, S_'tt'ng ar\Wiwole—body motion for human-like robots. Our approach can
standing up are current_ly generated using kinematic PRteRandie high-DOF robots and uses decomposition strategies
generators (e.g. a walking cycle generator). to reduce the problem to a sequence of low-dimensional
problems. We use a constrained coordination approach that
We compared the performance of our approach base@lves each sub-problem incrementally, and performs local
on the decomposition in Fig. 1, our approach based o nement to satisfy collision-free and statically stalien-
the lower-body and upper body decomposition, and thetraints on CoM. We have demonstrated the performance on a
centralized planner applied to the entire robot. Table tvéh  40-DOF robot in complex scenarios and generated collision-
that our approach can achieve up to 10 times speedup in thige motion paths corresponding to walking, sitting, bendi
performance over the centralized approach. Our approach g complex scenes with tight spaces and narrow passages.
ten achieves more speedups in more cluttered environmentsThere are many avenues for future work. It is interesting to
extend our approach for the situations when the kinematic
Limitations. Our approach has some limitations. The undemodel of the robot forms single or multiple closed loops.
lying planner is not complete and its performance can varyor such situations, inverse kinematic methods can be used
with the scenario and the start or goal con gurations. Théo obtain closed loops. We would also like to compute
performance depends considerably on the quality of specidynamically stable motions. Finally, we are interested in
paths computed for the previous stages. In the subsequenxperimenting on more complex scenarios [24] with more
stages, we only use local re nement techniques to perfordOF and dif cult narrow passages that arise in virtual
local modi cations to the path. Secondly, due to randomizegrototyping and applying our approach to digital human
sampling, the motion computed by our planner can bmodeling and ergonomic analysis.
unnatural, especially when the robot is in open environmenfAcknowledgements. This research was supported in
Recently, by combining the motion computed by our planngpart by ARO Contract W911NF-04-1-0088, NSF awards
with motion capture data, we can synthesize more natur@636208, 0917040 and 0904990, DARPA/RDECOM Con-
motion [25]. tract WR91CRB-08-C-0137, and Intel.



Fig. 10. The robot's right hand is grabbing a tool. The robot needs tveits upper-body inside a car to x some parts with the t@lr algorithm

can

(1]

(2]

(3]

(4]

5

(6]

(7]

8]

(9]
[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

[18]

ef ciently compute a collision-free motion for the rahio 25:1s.
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