
IEEE TVCG 1

Incremental Penetration Depth Estimation Between
Convex Polytopes Using Dual-space Expansion

Young J. Kim, Ming C. Lin and Dinesh Manocha

Abstract—We present a fast algorithm to estimate the penetration depth between convex polytopes in 3D. The algorithm

incrementally seeks a “locally optimal solution” by walking on the surface of the Minkowski sums. The surface of the Minkowski

sums is computed implicitly by constructing a local dual mapping on the Gauss map. We also present three heuristic techniques

that are used to estimate the initial features used by the walking algorithm. We have implemented the algorithm and compared its

performance with earlier approaches. In our experiments, the algorithm is able to estimate the penetration depth in about a

milli-second on an 1 GHz Pentium PC. Moreover, its performance is almost independent of model complexity in environments with

high coherence between successive instances.

Index Terms—Penetration Depth, Minkowski Sums, Gauss Map, Incremental Algorithm, Haptic Rendering.

◆

1 Introduction

Computing a distance measure between geometric ob-
jects is an important problem in robotics, virtual envi-
ronments and interactive computer games. When two ob-
jects are disjoint, the minimum Euclidean distance between
them is one of the commonly used distance measure. How-
ever, when the objects are overlapping, the Euclidean dis-
tance does not give any useful information related to the
extent of intersection or penetration. Therefore, a differ-
ent distance measure is needed to determine the amount
of penetration between two overlapping objects [1].

A number of algorithms have been proposed for comput-
ing the Euclidean (or separation) distance between two ob-
jects. These can be classified into specialized algorithms for
convex polytopes or general algorithms for polygonal mod-
els based on bounding volume hierarchies. However, many
applications like robot motion planning, dynamic simula-
tion or haptic rendering need to know the extent of pene-
tration between overlapping objects. These include robot
motion planning in environments consisting of narrow pas-
sages [2], six-degree-of-freedom haptic rendering involving
object-object interactions [3], [4], contact force computa-
tion for dynamic simulation [5], [6].

The natural extension of Euclidean separation distance
to overlapping objects is the penetration depth (PD) or in-
tersection depth. The PD of two inter-penetrating objects
A and B is defined as the minimum translation distance
that one object undergoes to make the interiors of A and
B disjoint. Formally, let P and Q be two intersecting poly-
topes. Then, the PD of polytopes P and Q, PD(P,Q), is

. This research is supported in part by ARO Contract DAAG55-98-
1-0322, DOE ASCII Grant, NSF Grants NSG-9876914, NSF DMI-
9900157 and NSF IIS-982167, ONR Contracts N00014-01-1-0067 and
N00014-01-1-0496, and Intel

• The authors are with the Department of Computer Science
at University of North Carolina at Chapel Hill, U.S.A. Email:
{youngkim,lin,dm}@cs.unc.edu

defined as:

min{‖ d ‖ | interior(P + d) ∩ Q = ∅} (1)

One of the commonly used metrics for representing and
computing PD’s is in terms of Minkowski sums of two ob-
jects. The Minkowski sums of A ⊕ B are defined as a set
of pairwise sums of vectors from A and B; i.e.,

A⊕B = {p + q| p ∈ A, q ∈ B} (2)

If we define −B of B as reflecting B with respect to the
origin, i.e., −B = {−q|q ∈ B}, then the Minkowski sums
of A⊕−B, or also known as Configuration Space Obstacle
(CSO), are defined as

A⊕−B = {p− q| p ∈ A, q ∈ B} (3)

Without loss of generality, let us assume that polytopes
A and B are defined with respect to the global origin o.
Then, if two polytopes P and Q intersect, then the origin
o is inside of P ⊕ −Q, and PD(P,Q) corresponds to the
minimum distance from o to the surface of the Minkowski
sums of P ⊕ −Q [7]. Also notice that if P and Q do not
intersect, then o is outside of P ⊕−Q, and the Euclidean
distance between P and Q corresponds to the minimum
distance from o to the surface of P ⊕ −Q [8]. Therefore,
the unified computational framework based on Minkowski
sums provides a continuum of the distance measure be-
tween the two objects as they alternate between separation
and interpenetration configurations.

The simplest algorithm for PD computation involves
computing the Minkowski sums and computing the clos-
est point on its surface from the origin. The worst case
complexity of the overall PD algorithm is governed by the
complexity of computing Minkowski sums, which can be
O(n2) for convex polytopes and O(n6) for general (or non-
convex) polyhedral models [9]. Since our PD algorithm
always considers the Minkowski sum A ⊕ −B, through-
out the rest of the paper, the Minkowski sum refers to the
CSO, A⊕−B.

2 IEEE TVCG

The exact computation of Minkowski sum can be very
expensive for interactive applications, like haptic rendering
or real-time simulation. Moreover, no robust implementa-
tions are known for computing the optimum PD between
polyhedral models, especially non-convex polyhedra. As a
result, the recent trend has been on computing a good ap-
proximation (or estimate) for penetration depth. A num-
ber of algorithms have been proposed that differ based on
their approximation of the PD [7], [10] or discretization of
object’s space [11], [12]. However, their implementations
are either too slow for real-time applications or they are
not very accurate.

1.1 Main Results

We present an incremental algorithm to compute PD
for convex polytopes in 3D. Our algorithm uses a number
of techniques to initialize some features on the surface of
the CSO, which are presumably very close to the features
that realize the optimum PD. Then, the algorithm incre-
mentally marches towards a “locally optimal” solution by
walking on the surface of the CSO. We define the locally
optimal PD using the features on the CSO as follows. Let
f be a feature on the CSO that corresponds to the locally
optimal PD. Then, the distance from the origin to f is
always smaller than the distance from the origin to any
neighboring feature of f on the CSO.

CSO

o

P

PD
Q

PD
(a) (b)

Fig. 1. PD and CSO. CSO is defined as P ⊕−Q, and PD corresponds
to the minimum distance from the origin to the surface of CSO.

We implicitly compute the surface of the CSO by con-
structing a local Gauss map and performing a local walk on
the polytopes. Our algorithm performs incremental com-
putations and exploits spatial and temporal coherence be-
tween successive frames. Our approach for locally com-
puting the Gauss map is based on an earlier algorithm for
width computation between convex polytopes.

The resulting algorithm has been implemented and we
have tested its performance on a number of benchmarks. In
practice, the running time is a fraction of a milli-second on
a 1 GHz PC, when there is high motion coherence present
in the environment. Furthermore, in most cases, the locally
optimal PD that our algorithm computes coincides with
the global optimum PD between the underlying polytopes.
It also outperforms a more recent algorithm [10] in terms

of accuracy and consistency of the result, as well as the
runtime performance. For relatively complicated objects,
our algorithm runs approximately six times faster than the
algorithm presented in [10]. A preliminary version of this
paper has appeared in [13].

1.2 Organization

The rest of paper is organized as follows. In Section 2,
we briefly review the previous work related to penetration
depth computation. In Section 3, we describe our incre-
mental algorithm and prove that our algorithm correctly
finds locally optimal PD. In Section 4, we present the ex-
perimental results from our implementation and compare
its performance with earlier algorithms.

2 Previous Work

In this section, we give a brief overview of previous work
on collision detection and distance computation, penetra-
tion depth and width computation.

2.1 Collision and Distance Computations

The problems of collision detection and distance com-
putations are well studied in computational geometry,
robotics, simulated environments and haptics. Check out
[14] for a recent survey. Most of the prior work can be cat-
egorized based on the types of models: convex polytopes
and general polygonal models.

For convex polytopes, various techniques have been de-
veloped based on linear programming [15], incremental
computation of Minkowski sums [7], [8], feature tracking
based on Voronoi regions [16], [17] and multi-resolution
methods [18], [19]. Some of these algorithms are based
on incremental computations and exploit frame-to-frame
coherence [7], [16], [17].

For general polygonal models, bounding volume hierar-
chies (BVH’s) have been widely used for collision detection
and separation distance queries. Different hierarchies dif-
fer based on the underlying bounding volume or traversal
schemes. These include the AABB trees [20], OBB trees
[21], sphere trees [22], k-dops [23], Swept Sphere Volumes
[24], and convex hull-based trees [25].

2.2 Penetration Depth Computation

Several algorithms have been proposed to compute or
estimate the PD. The Minkowski sums of two convex poly-
tope can be computed in O(n2) worst-case time by comput-
ing the overlaying convex planar subdivisions of the Gauss
map [26]. Hence, a straightforward algorithm to compute
the PD running in O(n2) time can be immediately devised
[1].

Dobkin et al. [9] have presented a hierarchical algorithm
that computes the directional PD (i.e. the penetration
direction is given) using Dobkin and Kirkpatrick polyhe-
dral hierarchy. For any direction d, it computes the di-
rectional penetration depth in O(log n log m) time for two
convex polytopes with n and m vertices [9]. Agarwal et
al. [27] have presented a randomized approach to compute

INCREMENTAL PD ESTIMATION BETWEEN CONVEX POLYTOPES 3

the PD values. As of now, it is known to be the fastest
theoretical algorithm to compute the PD and it runs in
O(m

3
4+εn

3
4+ε + m1+ε + n1+ε) expected time for any posi-

tive constant ε. However, we are not aware of any imple-
mentation of this algorithm.

Given the complexity of optimal penetration depth com-
putation, many approximate algorithms have been pro-
posed for quick estimation. Cameron [7] has presented
an extension to the GJK algorithm for separation distance
computation [8] to compute upper and lower bounds on the
PD between convex polytopes. Van Bergen further elab-
orated this idea in his expanding polytope algorithm [10].
The algorithm iteratively improves the result of the PD
computation by expanding a polyhedral approximation of
the Minkowski sums of two polytopes.

The general algorithms for penetration depth estimation
are based on discretization of the object space containing
the objects. Fisher and Lin [12] have presented a PD esti-
mation algorithm based on the distance field computation
and the fast marching level-set method. It is applicable to
all polyhedral objects as well as deformable models, and
it can also check for self-penetration. Hoff et al. [11], [28]
have proposed an approach based on graphics hardware
and multi-pass rendering for different proximity queries
between general rigid and deformable models, including
penetration depth estimation. It uses a combination of
object space and image space algorithms to estimate local
penetration depth.

Other metrics to characterize the intersection between
two objects include the growth distance defined by Gilbert
and Ong [29]. It unifies the distance measure regardless of
whether the objects are disjoint or overlapping and is dif-
ferent from the PD between two inter-penetrating objects.

2.3 Width computation

Given a convex polytope P , its width is defined as the
minimum distance between parallel planes supporting P .
A simplest width computation algorithm by Houle and
Toussaint [30] runs in O(n log n + I) steps, where n is the
number of vertices and I is the number of antipodal pairs
of edges, and in the worst case I = n2. This algorithm
has been implemented by Schwerdt et al. [31] using exact
arithmetic. The resulting implementation is quite robust,
but somewhat slow and takes about 7.9 seconds for about
1000 points.

Chazelle et al. [32] have used Megiddo’s parametric
searching technique to improve the width computation.
The algorithm runs in O(n

8
5+ε) time for any ε > 0. Agar-

wal and Sharir [33] formulated width computation as a ge-
ometric optimization problem for bichromatic pair of lines
for two “vertically-separated” sets of lines. They used a
randomized algorithm to compute a closest pair of bichro-
matic pair of lines, and this result was directly applied to
computing the width. The randomized algorithm runs in
O(n

3
2+ε) expected time for any ε > 0.

3 Incremental Penetration Depth Computa-
tion

In this section, we present our incremental PD compu-
tation algorithm for convex polytopes. We also show how
the algorithm converges to a locally optimum solution.

3.1 Notation

We use bold-faced letters to distinguish a vector from
a scalar value (e.g. the origin, o). We assume that the
model (a convex polytope in our case) is triangulated and
its topological representation is precomputed using such as
the quad-edge data structure [34]. Moreover, we use V, E
and F, respectively, to denote a vertex, an edge and a face
of a polytope. In particular, we use (V,V) to denote the
vertex hub pair which plays a key role in our incremental
algorithm to be explained in Section 3.3. However, we use
italic letters to distinguish a particular instance of a feature
(e.g. a vertex v in a polytope P) from its generic feature
type.

3.2 Width Computation and Penetration Depth

Given a set of points P = {p1, p2, . . . , pn} in 3D, the
width of P , W(P), is defined as the minimum distance be-
tween parallel planes supporting P . The width W(P) of
convex polytopes A and B is closely related to the penetra-
tion depth PD(A,B), since it is easy to show that W(P) =
PD(P , P). Therefore, once a width computation algorithm
is readily available, it can be modified to compute the PD.
In fact, the asymptotically fastest PD computation algo-
rithm by Agarwal et al. [27] is based on the earlier width
computation algorithm proposed by Agarwal and Sharir
[33]. A simple algorithm to compute PD(A,B) based on
width computation is formulated as (also see Fig. 2):

1. Find supporting planes P1 and P2 on A and B, re-
spectively, whose outward face normals are in oppo-
site directions, and call their inter-distance di. For
instance, in Fig. 2, there are six di’s for two intersect-
ing triangles.

2. PD(A,B) = min di, for all i. In Fig. 2-(a), d5 turns
out to be an optimal PD value and based on that
value, one can separate the triangles as shown in Fig.
2-(b).

d

d
d

d
d

(a) (b)

1

2
3

5
4

d6

Fig. 2. Brute-force PD computation. Among six possible supporting
planes, d5 is the optimal PD value.

4 IEEE TVCG

Our incremental PD algorithm is quite similar to Houle
and Toussaint’s width computation algorithm [30]. Their
main idea is based on the following lemma:

LEMMA 3.1 [30] The width of a set of points P in 3D
is the minimum distance between supporting planes, and
the plane having the minimum inter-distance (i.e. width)
is realized only either by antipodal VF pair or by antipodal
EE pair.

Both Houle and Toussaint’s algorithm and our approach
only search VF and EE antipodal pairs, and seek a wit-
ness feature pair respectively, for the width and the PD
value. Hence, the main issue in both algorithms becomes
finding such VF and EE antipodal pairs. Houle and Tous-
saint’s width algorithm accomplishes it by using the stan-
dard dual mapping on the Gauss map (or normal diagram).
The mapping is defined from object space to the surface
of a unit sphere S2 in 3D [35]. In this mapping, a face
and an edge are mapped to a point and a great arc on
the sphere, respectively, and a vertex is mapped to a con-
vex region. Thus, this mapping represents the mapping
of features from the object space to the normal space; see
Fig. 3. Then, the algorithm finds the antipodal pairs by
overlaying the upper hemisphere of the Gauss map on the
lower hemisphere and computing the intersections between
them.

n1
n2

n0
e1

e0

e2

v
f0

f2f1

(a) Features

p1 p2

p0
g1

g2

g0
r

(b) Gauss Map

Fig. 3. Gauss Map of a Polytope. In (a), let us say that e0, e1, e2

are the incident edges of a vertex v, and f0, f1, f2 are the faces
that share the edges e0, e1, e2; the faces are also associated with
its outward face normal n0, n1, n2, respectively. In (b), the Gauss
map for these features maps the faces f0, f1, f2 to points p0, p1, p2

on a unit sphere S2, respectively, the edges e0, e1, e2 to great arcs
g0, g1, g2, and the vertex v to a convex region r.

3.3 Algorithm Overview

In our incremental PD computation algorithm, we do
not compute the entire Gauss map for each polytope or
their entire Minkowski sums. Rather we compute them in a
lazy and incremental manner, based on local optimization.
Starting from some feature on the surface of the Minkowski
sums, the algorithm finds the direction in which it can
decrease the PD value and proceeds towards that direction
by extending the surface of the Minkowski sums.

At each iteration of the algorithm a vertex is chosen
from each polytope to form a pair. We label it as a vertex
hub pair and use it as a hub of the expansion of the local
Minkowski sums. The vertex hub pair is chosen in such
a way that there exists a plane supporting each polytope,
and it is incident on each vertex. It turns out that the
vertex hub pair corresponds to two intersected convex re-
gions on the Gauss map, which later become intersecting
convex polygons on the plane after central projection. The
intersection of convex polygons correspond to the VF or
EE antipodal pairs from which one can reconstruct the lo-
cal surface of the Minkowski sums around the vertex hub
pair. Given these pairs, we choose the one that corresponds
to the shortest distance from the origin of the Minkowski
sums to their surface. If this pair decreases the estimated
PD value, we update the current vertex hub pair to an
appropriate one which is adjacent to the chosen antipodal
pair. We iterate this procedure until we can not decrease
the current PD value and converge to a local minima. The
details of the algorithm are given below.

3.4 Initialization

The algorithm starts with an initial guess on the vertex
hub pair, (V,V), on the polytopes (a region/region pair on
the Gauss map). The initial guess is important for the
performance of our incremental algorithm. A good initial
guess can lead to empirically “almost constant” running
time, whereas a bad one can lead to O(n2) running time
in the worst case, where n is the number of features in
each polytope. There are many plausible strategies to pick
a good initial guess and some of them are application de-
pendent. The goal is to estimate the optimal penetration
direction. Once the estimated direction is computed, we
take the extremal vertex of each polytope along that di-
rection and use it to form the vertex hub pair. We present
three heuristic techniques to estimate the optimal pene-
tration direction. We demonstrate in our extensive exper-
iments in Section 4.2 that these simple techniques work
quite well in practice.

A good estimate to the penetration direction can be ob-
tained by taking the centroid difference between objects,
and computing an extremal vertex pair for the difference
direction. For instance, in Fig. 4-(a), c1 and c2 are the
centroids of each object. The extremal vertex pair along
the directions of c2 − c1 and c1 − c2 is chosen from each
object, and is assigned as an initial vertex hub pair. This
technique is known to work well for initial guess on closest
features for Voronoi Marching based separation distance
computation algorithm [18], and also works well for esti-
mating the penetration direction.

In other cases, the penetrating features can also suggest
a good initial guess. When the objects penetrate, many
of the proximity query algorithms report a witness feature
pair for it [16], [18]. From this feature pair, one might be
able to estimate the direction or compute the actual feature
pair that corresponds to the optimal PD. One possible way
is to consider the plane normal of a penetration feature as
penetration direction. For instance, in Fig. 4-(b), the face

INCREMENTAL PD ESTIMATION BETWEEN CONVEX POLYTOPES 5

f is identified as a penetration witness, and its associated
plane normal n is used for the extremal vertex query.

Many applications exhibit high spatial or temporal co-
herence between successive frames. In such environments
with high motion coherence, the PD computation result
from the previous time frame or the closest features be-
tween non-overlapping objects can provide a good guess
for the next time frame. In Fig. 4-(c), for example, the
previous PD features1 provide a direction for the extremal
vertex query.

Features

n

-n

Difference

c

c
f

(a) Centroid (b) Penetration
Coherence

(c) Motion

2

1
n

-n

Fig. 4. Various Initial Guessing Strategies. (a) shows that the centroid
difference vector c2 − c1 can approximate the penetration direc-
tion. (b) shows that the normal vector n of a penetration feature
f approximates the penetration direction. (c) shows that the PD
computation result (penetration vector n) from the previous time
frame can provide the penetration direction.

3.5 Iterative Optimization

After the algorithm obtains a initial guess for a (V,V)
pair, it iteratively seeks to improve the PD estimate by
jumping from one (V,V) pair to an adjacent (V,V) pair.
This is accomplished by looking around the neighborhood
of the current (V,V) pair and walking to a pair which pro-
vides a greatest improvement in the PD value. In more
detail, let the current vertex hub pair be (v1, v

′
1). The

next vertex hub pair (v2, v
′
2) is computed as follows (also

its pseudo code is described in Algorithm 3.1 and 3.2):
1. Construct a local Gauss map each for v1 and v′1 (step

1 of Algorithm 3.2).
2. Project the Gauss maps onto z = 1 plane, and call

them G and G′ respectively. G and G′ correspond to
convex polygons in 2D (step 1 of Algorithm 3.2).

3. Compute the intersection between G and G′ using a
linear time algorithm such as [36]. The result is a con-
vex polygon and we label each vertex comprising the
intersection ui. These ui’s correspond to the VF or EE
antipodal pairs in object space (step 2 of Algorithm
3.2).

4. In object space, determine which ui corresponds to
the best local improvement in PD (step 3 of Algorithm
3.2).

5. Set an adjacent vertex pair (adjacent to ui) to (v2, v
′
2)

(Algorithm 3.1).
This iteration is repeated until either there is no more im-
provement in the PD value or number of iterations reach

1. By the PD feature, we mean a pair of features on both polytopes
whose supporting planes realize the locally optimal PD value.

some maximum value.
At step 5 of the iteration, the next vertex hub pair is

selected in the following manner. If ui corresponds to VF,
then we must choose one of the two vertices adjacent to F
assuming that the model is triangulated. The same rea-
soning is also applied to when ui corresponds to EE. As
a result, we need one more iteration in order to actually
decide which vertex hub pair we want to select. However,
we cache the results of this extra iteration and use it for
future computations.

3.6 Correctness of the Algorithm

In this section, we will show that the incremental algo-
rithm always terminates and computes a locally optimal
PD. The termination of the algorithm is guaranteed as the
PD value computed by the algorithm is decreasing. More-
over the algorithm computes a local minimum, as the in-
cremental walk is performed on the surface of the CSO. A
snapshot of a typical step during the iteration is illustrated
in Fig. 5.

Find Incremental PD(vertex v1, vertex v′
1)

Input A starting (V,V) pair, v1v′
1.

Output A locally optimal PD value.
{ T1, d1 } = Report Min Pair(v1, v′

1)
Repeat {

switch(Ti){
Case EE (Ti = {ei, e

′
i}):

vi1 is an incident vertex of ei other than vi.
v′i1 is an incident vertex of e′i other than v′i.
{T 1, d1} = Report Min Pair(vi, v′

i1
).

{T 2, d2} = Report Min Pair(vi1 , v′
i).

if (d1 < d2)
{vi+1,v′

i+1} = {vi,v
′
i1
}, Ti+1 = T 1, di+1 = d1

else
{vi+1,v′

i+1} = {vi1 ,v
′
i}, Ti+1 = T 2, di+1 = d2

Case VF (Ti = {vi, f
′
i}):

v′i1 and v′i2 are incident vertices of f ′i other than v′i.
{T 1, d1} = Report Min Pair (vi, v′

i1
).

{T 2, d2} = Report Min Pair (vi, v′
i2

).
if (d1 < d2)
{vi+1,v′

i+1} = {vi,v
′
i1
}, Ti+1 = T 1, di+1 = d1

else
{vi+1,v′

i+1} = {vi,v
′
i2
}, Ti+1 = T 2, di+1 = d2

Case FV:
It is similar to the VF case.

}
} until (di is non-decreasing)
return di.

ALGORITHM 3.1: Find Incremental PD

LEMMA 3.2 The optimal PD of two convex polyhedra is
the minimum distance between supporting planes through
either a VF or EE antipodal pair.

Proof: The proof is very similar to that of Lemma 3.1.

6 IEEE TVCG

1v’
v 1

(a)

1

v’1

v

(b)

1

v’1

v
f

ee1
f2

1
2

(c) (d)

v
f2 v’2

2

(e)

Fig. 5. Iterative Optimization: (a) The current (V,V) pair is v1v′
1 and a shaded region represents edges and faces incident to v1v′

1. (b) shows
local Gauss maps and their overlay for v1v′

1. (c) shows the result of the overlay after central projection onto a plane. Here, f1, e1, f2 and
e2 comprise vertices (candidate PD features) of the overlay. (d) illustrates how to compute the PD for the candidate PD features in object
space. (e) f2 is chosen as the next PD feature, thus v2v′

2 is determined as the next vertex hub pair.

Report Min Pair(vertex vi, vertex v′
i)

Input A vertex hub pair, viv
′
i.

Output A feature pair, T , which has a greatest improve-
ment on the PD value, and the PD value, d.

1. Construct a Gauss map for vi and v′i, and perform
the central projection.

2. Using the convex polygon intersection algorithm,
compute all EE intersections along with VF or FV
inclusion in O(number of incident edges in vi and v′i
) time.

3. For every EE, VF, FV pair, find a pair which gen-
erates a minimum inter-distance between supporting
planes, and call the pair, T .

4. Return the minimum inter-distance d along with T .
ALGORITHM 3.2: Report Min Pair

LEMMA 3.3 Given two convex polytopes, P and Q, and
points p ∈ P and q ∈ Q, p− q ∈ ∂(P ⊕−Q) if and only
if there exist supporting planes for p and q with opposite
directions of the normals. The ∂ denotes the boundary and
⊕ denotes the Minkowski sums.

Proof: See [37] for the proof.

THEOREM 3.1 The given incremental algorithm for
PD estimation computes a locally optimal PD value.

Proof: By Lemma 3.2, the algorithm considers (only) nec-
essary antipodal pairs adjacent to the initial VV (hub) pair
in order to reduce the PD value. By Lemma 3.3, the algo-
rithm walks on the boundary of Minkowski sum P ⊕−Q,
which is a convex polytope. Therefore, the algorithm com-
putes a locally optimal PD value. Q.E.D.

3.7 Analysis of PD Algorithm

In the worst case, our PD algorithm can take O(n2),
where n is the number of faces in polytopes, since the algo-
rithm might need to explore all the faces of the Minkowski

sums. However, in our experiment (as explained in Section
4.2), we have found out that the algorithm is terminated
after less than five iterations. Moreover, the expected op-
eration count of the algorithm is about 186k + 154 per
iteration including the cost of transformation, where k is
the number of faces adjacent to a vertex hub pair and
typically k is a small number in practice. Among them,
166k + 6 operations are part of the polygon intersection
routine, and 20k + 115 are taken by the Gauss map con-
struction. Therefore, the algorithm shows constant time
performance in practice. Regarding the space requirement
of our algorithm, each iteration needs O(k) temporary stor-
ages to construct and maintain the local Gauss maps.

3.8 Local vs Global Minimization

Since our incremental algorithm is a local minimization
process, it can get stuck in a local minimum. This can
happen based on the choice of the initial pair of features.

n
P

n

o

P

o

M o

CSO

P

1

2

3

4

2

1

o

Fig. 6. Escaping from a local minimum: As the origin of the CSO
moves from o1 to o4, the PD algorithm always reports P1 as a
PD feature. However, using the “centroid difference” vector n, the
algorithm starts the search from P , and marches toward P2.

For example, in Fig. 6, as the origin of the CSO moves
from o1 to o4, the PD algorithm uses a PD feature from
previous computation as a starting point of the walk. As a

INCREMENTAL PD ESTIMATION BETWEEN CONVEX POLYTOPES 7

o

(a) (b) (c)

Fig. 7. Local vs Global PD Computation. (a) shows the situation before two polygons in 2D come into contact. (b) shows O(nm) intersections
after the polygons are intersected. However, a localized PD computation (denoted by solid yellow arrows) based on O(nm) intersections may
not provide a global PD which is denoted as a dotted green arrow in this figure. (c) shows the Minkowski sum of the two polygons in (b). The
minimum distance from the origin to the surface of the Minkowski sum corresponds to the global PD.

result, the algorithm reports P1 as a locally optimum PD
feature at each frame. In this case, the initial estimate at
o4, P1, is not a good choice as the true optimal PD feature
is P2. In practice, we can avoid such cases by employing
different heuristics suggested in Section 3.4. In this par-
ticular example, the “centroid difference” heuristic solves
the problem. In the Fig. 6, M is the center of mass of the
CSO, and n is the centroid difference vector when the ori-
gin of the CSO is at o4. Then, if the algorithm is provided
with an additional guess at P , it finds that P is a better
estimate as compared to P1 and starts towards P2.

A more generic way to escape from the local minimum
problem is to employ a global search mechanism. A simple
way is to use a discretization approach. As suggested in
[27], one might sample the search space (e.g. the Gaussian
space in our case), and for each sampled search direction
compute the minimum. Obviously this approach can be
expensive depending on the size of sample space. Another
way of the global search is to approximate the whole CSO
and launch a search on the approximation. Van Bergen
presented one such algorithm [10]. The major drawback
of this approximation scheme is its numerical instability.
The numerical errors add up with each iteration and the
PD computation based on the incorrect approximation can
report inconsistent results. This phenomenon is demon-
strated in Fig. 14-(b) ∼ Fig 16-(b) in Section 4.

3.9 Extension to Non-Convex Polyhedra

In general, it is difficult to directly extend a PD algo-
rithm for convex polytopes to one for non-convex polyhe-
dra, since the computation of the PD between two gen-
eral polyhedral models is a global problem and requires
Minkowski sums for non-convex polyhedra. Therefore, a
local solution computed using some ’divide-and-conquer’
approach may not be correct, as illustrated in Fig. 7.

In some situations, instead of reporting one global PD, it
is sufficient or sometimes necessary to report a set of PD’s
for each overlapping convex portion between non-convex
polyhedra. These applications include randomized path
planning, six-degree-of-freedom (6DOF) haptic rendering
and dynamic simulation. In particular, we have success-
fully demonstrated how to apply this method to 6DOF
haptic rendering application [38], and we explain it in de-

tail in Section 4.4. For these applications, even though the
pairwise PD computations do not satisfy the definition of
global PD as given by Equation 1, there are two benefits
from using a set of localized PD’s.

First of all, the PD amount treated in the application
is relatively small such that the chances are high that the
global PD can coincide with one of the localized PD’s. This
phenomenon is due to the fact that the relative displace-
ment of an object between each motion frame is very small
and the penetration situation is usually followed by its res-
olution to the separation situation. Secondly, a set of PD’s
can compensate for the lack of consideration for rotational
motion in the definition of PD. The rotational motion can
be a problem for both convex and non-convex objects, how-
ever the problem is more severe for a non-convex object,
since it can possibly contain many local minima on its sur-
face. In this case, each PD element included in the PD
set indicates a separate direction and magnitude for each
local penetration situation, thus the combination of these
PD’s suggests plausible rotational motion that objects can
be separated.

3.9.1 Localized PD Computation based on Convex Surface
Decomposition

In order to compute localized PD between overlapping
convex polytopes, we first decompose each polyhedron into
a collection of convex pieces. We use a convex surface de-
composition technique for decomposing polyhedra as fol-
lows. We decompose the surface of each non-convex poly-
hedron into a collection of convex surface patches using a
greedy walk on the surface. Convex pieces are then formed
by taking the convex hull of each surface patch. For exam-
ple, Fig. 8-(a) shows an example of a convex decomposed
torus model. We refer the reader to [25], [39] for detailed
discussion on the surface decomposition technique.

Once we have computed the convex decomposition, we
compute PD for each overlapping convex pieces between
decomposed polyhedra. For instance, in Fig. 8-(b), a non-
convex object P is decomposed into two convex pieces p1

and p2, and another non-convex object Q is decomposed
into q1 and q2. For each intersecting convex pieces, p1 and
q1, and p2 and q2, we compute a set of PD’s, d1 and d2.

8 IEEE TVCG

(a) A decomposed torus

2

Object

Object
p p

q q

d

d

Q

1

1 2

1

2

P

(b) Pairwise estimation

Fig. 8. Extension to Non-Convex Objects

4 Implementation and Performance

In this section, we describe our implementation and
highlight the performance of our PD algorithm on differ-
ent models and environments. Moreover, we compare its
performance with a globally optimal PD computation al-
gorithm and another estimation algorithm presented by
[10].

4.1 Implementation Issues

There are a couple of issues in implementing our PD al-
gorithm presented above. The first one is related to the
collision detection algorithm or library used by our PD
algorithm. The second issue is related to handling degen-
eracies.

4.1.1 Collision Detection Algorithm

A collision detection algorithm is used to check whether
two objects overlap. Our prototype implementation,
DEEP2, is tightly coupled with SWIFT collision detection
library [18], and it takes advantage of the collision query
provided by SWIFT. There are three benefits that we gain
from using SWIFT.

First of all, SWIFT makes use of motion coherence be-
tween successive frames. Secondly, it tracks closest features
between the polytopes and reports a pair of collision wit-
ness features that the PD algorithm can utilize as the start-
ing feature pair for the local optimization. Finally, DEEP
borrows the application programming interface (API) from
SWIFT. Thus, to the user, the PD query does not look any
different than the separation query, except that the dis-
tance result being returned is negative. This unified API
provides the user with a convenient and consistent way of
handling the distance query in an application.

4.1.2 Handling Degeneracies

Geometric algorithms are prone to degeneracies. In the
case for DEEP, there are two major sources of degeneracy
that arise in terms of implementation and application. The
first one relates to co-planar faces in any of the polytopes,

2. DEEP is available for download at
http://gamma.cs.unc.edu/DEEP.

and the other one arises from the central projection used
during the construction of the Gauss map.

Promoting Co-Planar Faces. In our framework,
co-planar faces should be considered as a degenerate input,
because they are mapped to the same point on Gauss map.
This causes an immediate problem in the convex/convex
polygon intersection routine in Algorithm 3.2, because the
intersection algorithm described in O’Rourke et al. [36]
is provided with an edge with zero-length and the algo-
rithm can not handle such a case properly. Fortunately,
this is relatively easy to solve by simply ignoring those
zero-length edges. However, when it comes to finding the
next feature pair in Algorithm 3.1, those faces can not be
simply ignored. It is possible that one of the co-planar
faces may be the current optimal PD witness pair and any
vertex hub pair adjacent to the co-planar face can be the
next candidate. For example, see Fig. 9.

f f
5 1

CSO
origind

d1

d
2

3

f
4

f
3

f
2

Fig. 9. Degeneracy 1: Co-Planar Faces. Let f2, f3, f4 be the features
on a CSO generated by some co-planar faces such that they have the
same PD value, d2. Also assume that f1 is the current PD feature
and d1 is its associated PD value. Thus f5 is the locally optimal
PD feature and d3 is the locally optimal PD value. Then, after one
iteration, the iterative algorithm finds f2 as the next PD feature,
since its associated PD value d2 is less than d1. However, at this
point, if the algorithm does not consider other co-planar features
such as f3 and f4, it stops the iteration since it can not improve the
PD value.

Essentially these co-planar features should not be gener-
ated if we could relax the underlying modeling constraints
(e.g. triangulation). Thus, theoretically, there is nothing
wrong with promoting the co-planar faces to their adja-
cent faces. However, as a result of the promotion the size
of neighborhood search grows with the number of co-planar
faces.

Local Gauss Map Construction. The central pro-
jection during the construction of the Gauss map also re-
sults in degeneracies. The central projection maps the
equator of the Gauss map to infinity and it also splits the
edge crossing the equator. We avoid such cases by con-
structing the Gauss map locally in the following manner.

For a given vertex hub pair (v1, v2), take one vertex re-
gion, say v1. Let us denote the set of normals that con-
tribute to v1, as ni’s. Our goal is to find a hemisphere H
to enclose all the ni’s, and the north pole of H will be the
direction of the central projection. At the same time, we

INCREMENTAL PD ESTIMATION BETWEEN CONVEX POLYTOPES 9

N

n1

n5
n4 n3

n2

(a)

n’6
n’5 n’4

n”1

n’1
n’2

n’3

n”2

(b)

N

n5
n4 N’

^

(c)

Fig. 10. Degeneracy 2: Gauss Map Construction. (a) Given a set of normals, {n1, n2, . . . , n5}, comprising the Gauss map for v1, the goal is to find
N such that N ·ni ≥ 0. (b) The normals comprising the Gauss map for v2, {n′′

1 , n′′
2 , n′

4, n′
5, n′

6}, are obtained by cutting {n′
1, n′

2, . . . , n′
6}

by the hemisphere H of the Gauss map of v1. The shaded region is the intersected region between the new Gauss map of v2 and that of v1.
(c) N is computed by incrementally moving N ′ = nk × nk+1 toward N̂ = avg{n1, n2, . . . , n5}.

also need to minimize the dispersion of ni’s from the north
pole of H. The latter is required to reduce the numeri-
cal errors that will be induced by the central projection.
Otherwise, these errors will significantly affect the con-
vex/convex polygon intersection algorithm in Algorithm
3.2.

For instance, in Fig. 10-(a), {n1, n2, . . . , n5} are the
normals comprising the Gauss map of v1. We want to
compute a hemisphere H with its north pole located at N
that minimally encloses {n1, n2, . . . , n5}. Note that, at
this point, it is still possible that the other vertex region
v2 may not be totally enclosed by H such that v2 still can
have a infinite boundary after the central projection, see
Fig. 10-(b). We avoid this situation by cutting the Gauss
map of v2 by the equator of H. In fact, we slightly perturb
H toward the closest ni of the Gauss map to H, in order
to avoid the boundary at infinity. This does not affect
the result of convex/convex intersection routine, since the
intersection only exists on the hemisphere H.

For example, in Fig. 10-(b), originally the normals that
contain the Gauss map of v2 are {n′1, n′2, . . . , n′6}. After the
cutting operation by the equator of H, the Gauss map now
becomes {n′′1 , n′′2 , n′4, n′5, n′6}. The dark region in Fig. 10-
(b) denotes the intersection area between the Gauss maps
of v1 and v2. Here, the cutting operation does not affect
the result of the intersection. This cutting operation is
performed at run-time.

Back to the problem of finding H, we can formulate this
problem as follows. Given a set of normals {ni}, we want
to find a normal N such that ni ·N ≥ 0 for all i. Since we
also want to minimize the angle between N and ni (in order
to avoid a thin polygon when projected onto a plane), we
reduce the problem to a linear programming (LP) problem.

To rephrase this, given a set of normals {ni},

maximize
∑

N · ni subject to N · ni ≥ 0 for all i.

(4)
In equation 4, we do not necessarily want the maximal
N , as long as N is reasonably close to the maximum and
N · ni ≥ 0. Furthermore, the above LP problem has an
infinite number of solutions. Therefore instead of solving
the LP problem, we use the following iterative method.

Fig. 11. A typical benchmarking setup: A sphere vs an ellipsoid. The
yellow ellipsoid penetrates into the blue sphere. As a result of PD
computation, the yellow ellipsoid is translated to the red ellipsoid
with the amount of the PD value so that the surface of the red
ellipsoid touches that of the blue sphere. Yellow and green solid
lines on the sphere and ellipsoid show the history of walking for a
vertex hub pair.

Notice in Equation 4 that, without the constraints of
N · ni ≥ 0, a simple algebra would suggest that there is
a single solution for N , which is the average of ni’s. Let

10 IEEE TVCG

0 500 1000 1500 2000 2500 3000 3500 4000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Faces

T
im

e
(m

se
c)

DEEP/sphere
DEEP/ellipsoid
DEEP/cylinder
EPA/sphere
EPA/ellipsoid
EPA/cylinder

(a) Fixed PD Amount

0 500 1000 1500 2000 2500 3000 3500 4000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Faces

T
im

e
(m

se
c)

DEEP/low
DEEP/high
EPA/low
EPA/high

(b) Variable PD Amount

Fig. 12. Performance Results of Incremental Algorithm: Figure (a) shows the results of DEEP and EPA for the sphere, ellipsoid and pen model
with a fixed PD amount. Figure (b) shows the results of DEEP and EPA for the sphere model by changing the PD value. In both figures,
upper lines are the results by EPA, and lower lines are by DEEP. We also selected benchmarks with high motion coherence. Note that DEEP
is invariant of the complexity of a model and the PD amount.

us call the average N̂ . We want N as much as close to N̂ .
Since {ni} can be enclosed by a hemisphere H and they
form a convex subdivision, any N ′ = nk×nk+1 satisfies N ′ ·
ni ≥ 0 for all i, where nk, nk+1 ∈ {ni}. First, we consider
such N ′ as an initial north pole of the hemisphere H. This
would make nk and nk+1 located along the equator of H,
which would be projected to infinity. Then, we iteratively
rotate N ′ from the north pole toward N̂ while satisfying
N ·ni ≥ 0 for all i. We iterate this process until N ′ ·ni ≥ 0
is violated, as illustrated in Fig. 10-(c). We precompute
these H’s for each vertex, and later at run-time we use any
H as a vertex hub pair.

4.2 Performance

All the timings presented in this section were obtained
on a Linux PC with 1 GHz Pentium III CPU, 256 MB
memory, and g++ compiler. We used different models
with varying combinatorial complexity, as well as aspect
ratios to test the performance. The model characteristics
used in our benchmarking include:

• The number of faces in the testing models vary from
400 to 4000.

• Three basic primitives, a sphere, an ellipsoid, and a
cylinder, are used to generate random models of differ-
ent aspect ratios. Based on a given primitive, random
points on its surface were sampled and a polytope was
generated by taking their convex hull. A penetrating
object was selected out of the three basic types of ob-
jects, whereas only a sphere was chosen as the other
object. For example, Fig. 11 shows a typical example
of our benchmark setup.

• During each time step of the simulation, a penetrat-
ing object revolves around a penetrated object, while

rotating around its center of mass.

0 500 1000 1500 2000 2500 3000 3500 4000
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Number of Faces

T
im

e
(m

se
c)

High Coherence
Med Coherence
Low Coherence

Fig. 13. Performance of DEEP under Different Levels of Motion Co-
herence: The PD value is fixed to low.

Fig. 12 shows the runtime performance of our incremen-
tal algorithm (DEEP), and also compares it with the result
of the expanding polytope algorithm (EPA) [10]. We se-
lected different benchmarks with high motion coherence.
This figure highlights the empirically observed almost con-
stant time performance of DEEP on these benchmarks, es-
pecially when there is a high motion coherence present be-
tween successive frames in the simulation environment. We
classified the level of motion coherence into high, medium,
and low. In each time step of simulation, an object moves
by the amount of 1/720 (high), 1/144 (medium), 1/72

INCREMENTAL PD ESTIMATION BETWEEN CONVEX POLYTOPES 11

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

XY

Z

DEEP
Optimal

(a) DEEP

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

XY

Z

EPA
Optimal

(b) EPA

Fig. 14. Tracking Results of Penetration Direction Vectors [Cylinder vs Sphere]. Fig. (a) shows the tracking results of penetration direction vectors
from DEEP, and (b) shows that from EPA. In each figure, optimal penetration direction vectors are also annotated for the sake of comparison.
The levels of motion coherence and PD value are fixed to high and low, respectively. Note that DEEP rarely misses the optimal direction, but
EPA displays quite unpredictable behavior.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

XY

Z

DEEP
Optimal

(a) DEEP

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

XY

Z

EPA
Optimal

(b) EPA

Fig. 15. Tracking Results of Penetration Direction Vectors (Continued) [Sphere vs Sphere]

(low) times the size3 of the object. We have also classi-
fied the depth of penetration into high (the PD value is
half the size of the object) and low (1/5 times the size of
the object). As Fig. 12-(b) suggests, the performance is
not affected by the depth of penetration. However, the
running time of GJK-based expanding polytope algorithm
[10] grows linearly with the number of faces. This is be-
cause of global search in the underlying algorithm and it
is also a function of the amount of penetration.

3. In our implementation, it is defined as the radius of the minimum
bounding sphere.

We also evaluated the performance on different scenar-
ios under varying motion coherence, see Fig. 13. As the
motion coherence is reduced, the performance degrades al-
most linearly. In the environment with low motion coher-
ence, the running time is no longer constant.

4.3 Comparisons with an optimal solution

We compared the results of DEEP with an implementa-
tion that computes the globally optimal solution. In this
case, the rotational motion was not considered. The glob-
ally optimal solution is obtained by explicitly computing
the Minkowski sums of two convex polytopes. A simple

12 IEEE TVCG

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

XY

Z

DEEP
Optimal

(a) DEEP

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

XY

Z

EPA
Optimal

(b) EPA

Fig. 16. Tracking Results of Penetration Direction Vectors (Continued) [Ellipsoid vs Sphere]

brute-force algorithm to compute the Minkowski sum is
based on computing the pairwise Minkowski sum for every
vertex pair from each polytope, followed by convex hull of
resulting O(n2) combinations.

For convex polytopes, a penetration depth value simply
depends on a penetration direction vector. Fig. 14 ∼ 16
show tracking results on the penetration direction vectors
during the course of the simulation. As Fig. 14-(a) ∼ 16-
(a) suggest, DEEP rarely misses the optimal penetration
direction in our experiments. Thus, DEEP is able to com-
pute the global optimum solution in most cases. In terms
of comparison to the brute-force implementation, the mean
of the error in the PD value of our algorithm was 3.4711−6

and its standard deviation was 7.345−5.
However, in Fig. 14-(b) ∼ 16-(b), the expanding

polytope algorithm (EPA) shows unpredictable behavior.
There are two reasons for this. First of all, the EPA is
susceptible to numerical errors, because it can generate
many oblong triangles during its polyhedral expansion of
Minkowski sums. Secondly, because the EPA is a global
search algorithm and its termination condition considers
only a PD value, it can stop any time during the expansion
whenever the termination condition is satisfied. There-
fore, even though the optimal penetration direction vector
does not change much between successive frames, the re-
sult computed by EPA can change considerably.

4.4 Application to Haptic Rendering

In this section, we highlight the application of our PD
computation algorithm to six degree-of-freedom (6DOF)
haptic rendering. One such device used for force display
is shown in Fig. 17. One of the common techniques used
to render the responsive haptic forces is based on penalty-
based methods. Here, the “penalty” is determined by the
amount of interpenetration between overlapping objects.

Fig. 17. 6-DOF Haptic Device: The PHANTOM of SensAble Tech-
nologies

Thus, our PD algorithm can be directly applied to the
penalty-based 6DOF haptic rendering [38]. Moreover, our
PD algorithm is particularly well suited for the haptic ren-
dering application, since the application requires high up-
date rates (e.g. 1 KHz), thus exhibits high motion coher-
ence. We can also apply our PD algorithm to the 6DOF
haptic rendering of non-convex models by using the local-
ized PD computation approach explained in Section 3.9.1.

5 Conclusions

We present an incremental PD algorithm to compute a
locally optimal PD. It runs in almost constant time when

INCREMENTAL PD ESTIMATION BETWEEN CONVEX POLYTOPES 13

there is high motion coherency in the environment, and it
finds an optimal solution most of times. The algorithm is
based on the implicit, local construction of the Minkowski
sums and the iterative optimization on the PD value.

There are some pending research issues in the PD com-
putation. One immediate problem is to devise a more
generic algorithm that always handles the possible local
minimum problem. We are considering the use of multires-
olution techniques or randomized algorithms. Computing
the PD between non-convex objects is a very challenging
problem. Therefore, any estimation technique or solving
the PD for a limited class of non-convex objects (e.g. a
convex object vs. a non-convex object) can still be highly
desirable. Recently, an approach using a combination of
object-space and image-space algorithms for general poly-
hedral models has been presented in [40].

References
[1] S. A. Cameron and R. K. Culley, “Determining the minimum

translational distance between two convex polyhedra,” in Proc.
of IEEE Inter. Conf. on Robotics and Automation, 1986, pp.
591–596.

[2] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin, “On
finding narrow passages with probabilistic roadmap planners,”
Proc. of 3rd Workshop on Algorithmic Foundations of Robotics,
1998.

[3] W. McNeely, K. Puterbaugh, and J. Troy, “Six degree-of-
freedom haptic rendering using voxel sampling,” Proc. of ACM
SIGGRAPH, pp. 401–408, 1999.

[4] A. Gregory, A. Mascarenhas, S. Ehmann, M. C. Lin, and
D. Manocha, “6-DOF haptic display of polygonal models,” Proc.
of IEEE Visualization Conference, 2000.

[5] Michael McKenna and David Zeltzer, “Dynamic simulation
of autonomous legged locomotion,” in Computer Graphics
(SIGGRAPH ’90 Proceedings), Forest Baskett, Ed., Aug. 1990,
vol. 24, pp. 29–38.

[6] Matthew Moore and Jane Wilhelms, “Collision detection and
response for computer animation,” in Computer Graphics (SIG-
GRAPH ’88 Proceedings), John Dill, Ed., Aug. 1988, vol. 22, pp.
289–298.

[7] S. Cameron, “Enhancing GJK: Computing minimum and pene-
tration distance between convex polyhedra,” Proceedings of In-
ternational Conference on Robotics and Automation, pp. 3112–
3117, 1997.

[8] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast pro-
cedure for computing the distance between objects in three-
dimensional space,” IEEE J. Robotics and Automation, vol.
vol RA-4, pp. 193–203, 1988.

[9] D. Dobkin, J. Hershberger, D. Kirkpatrick, and Subhash Suri,
“Computing the intersection-depth of polyhedra,” Algorithmica,
vol. 9, pp. 518–533, 1993.

[10] G. van Bergen, “Proximity queries and penetration depth com-
putation on 3D game objects,” Game Developers Conference,
2001.

[11] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha, “Fast and simple
geometric proximity queries using graphics hardware,” Proc. of
ACM Symposium on Interactive 3D Graphics, 2001.

[12] S. Fisher and M. C. Lin, “Deformed distance fields for simulation
of non-penetrating flexible bodies,” Proc. of EG Workshop on
Computer Animation and Simulation, 2001.

[13] Y.J. Kim, M. C. Lin, and D. Manocha, “DEEP: Dual-space Ex-
pansion for Estimating Penetration depth between convex poly-
topes,” in IEEE Conference on Robotics and Automation, 2002.

[14] M. Lin and S. Gottschalk, “Collision detection between ge-
ometric models: A survey,” in Proc. of IMA Conference on
Mathematics of Surfaces, 1998.

[15] R. Seidel, “Linear programming and convex hulls made easy,”
in Proc. 6th Ann. ACM Conf. on Computational Geometry,
Berkeley, California, 1990, pp. 211–215.

[16] M.C. Lin and John F. Canny, “Efficient algorithms for incre-
mental distance computation,” in IEEE Conference on Robotics
and Automation, 1991, pp. 1008–1014.

[17] Brian Mirtich, “V-Clip: Fast and robust polyhedral collision
detection,” ACM Transactions on Graphics, vol. 17, no. 3, pp.
177–208, July 1998.

[18] S. Ehmann and M. C. Lin, “Accelerated proximity queries be-
tween convex polyhedra using multi-level Voronoi marching,”
Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2000.

[19] L. Guibas, D. Hsu, and L. Zhang, “H-Walk: Hierarchical dis-
tance computation for moving convex bodies,” Proc. of ACM
Symposium on Computational Geometry, 1999.

[20] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The
r*-tree: An efficient and robust access method for points and
rectangles,” Proc. SIGMOD Conf. on Management of Data,
pp. 322–331, 1990.

[21] S. Gottschalk, M. Lin, and D. Manocha, “OBB-Tree: A hier-
archical structure for rapid interference detection,” in Proc. of
ACM Siggraph’96, 1996, pp. 171–180.

[22] Philip M. Hubbard, “Collision detection for interactive graphics
applications,” IEEE Trans. Visualization and Computer Graph-
ics, vol. 1, no. 3, pp. 218–230, Sept. 1995.

[23] J. Klosowski, M. Held, Joseph S. B. Mitchell, K. Zikan, and
H. Sowizral, “Efficient collision detection using bounding vol-
ume hierarchies of k-DOPs,” IEEE Trans. Visualizat. Comput.
Graph., vol. 4, no. 1, pp. 21–36, 1998.

[24] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast prox-
imity queries with swept sphere volumes,” Tech. Rep. TR99-018,
Department of Computer Science, University of North Carolina,
1999.

[25] S. Ehmann and M. C. Lin, “Accurate and fast proximity queries
between polyhedra using convex surface decomposition,” Com-
puter Graphics Forum (Proc. of Eurographics’2001), vol. 20, no.
3, 2001.

[26] Leonidas J. Guibas and R. Seidel, “Computing convolutions by
reciprocal search,” in Proc. 2nd Annu. ACM Sympos. Comput.
Geom., 1986, pp. 90–99.

[27] P. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and
M. Sharir, “Penetration depth of two convex polytopes in 3d,”
Nordic J. Computing, vol. 7, pp. 227–240, 2000.

[28] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha, “Fast 3D geo-
metric proximity queries between rigid and deformable models
using graphics hardware acceleration,” Tech. Rep., UNC-CS,
2002.

[29] E.G. Gilbert and C.J. Ong, “New distances for the separation
and penetration of objects,” in Proceedings of International
Conference on Robotics and Automation, 1994, pp. 579–586.

[30] M. E. Houle and G. T. Toussaint, “Computing the width of a
set,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-10,
no. 5, pp. 761–765, 1988.

[31] J. Schwerdt, M. Smid, J. Majhi, and R. Janardan, “Computing
the width of a three-dimensional point set: an experimental
study,” Report 18, Department of Computer Science, University
of Magdeburg, Magdeburg, Germany, 1998.

[32] Bernard Chazelle, H. Edelsbrunner, Leonidas J. Guibas, and
Micha Sharir, “Diameter, width, closest line pair, and para-
metric searching,” in Proc. 8th Annu. ACM Sympos. Comput.
Geom., 1992, pp. 120–129.

[33] Pankaj K. Agarwal and Micha Sharir, “Efficient randomized
algorithms for some geometric optimization problems,” in Proc.
11th Annu. ACM Sympos. Comput. Geom., 1995, pp. 326–335.

[34] Leonidas J. Guibas and J. Stolfi, “Primitives for the manipu-
lation of general subdivisions and the computation of Voronoi
diagrams,” ACM Trans. Graph., vol. 4, no. 2, pp. 74–123, Apr.
1985.

[35] M. de Carmo, Differential Geometry of Curves and Surfaces,
Prentice Hall, Englewood Cliffs, NJ, 1976.

[36] J. O’Rourke, C.-B. Chien, T. Olson, and D. Naddor, “A new
linear algorithm for intersecting convex polygons,” Comput.
Graph. Image Process., vol. 19, pp. 384–391, 1982.

[37] B. Grünbaum, Convex Polytopes, John Wiley & Sons, New
York, NY, 1967.

[38] Y. J. Kim, M. Otaduy, M. C. Lin, and D. Manocha, “Six-degree-
of-freedom haptic display using localized contact computations,”
in Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, March 2002.

[39] Bernard Chazelle, D. Dobkin, N. Shouraboura, and A. Tal,
“Strategies for polyhedral surface decomposition: An experi-
mental study,” Comput. Geom. Theory Appl., vol. 7, pp. 327–
342, 1997.

14 IEEE TVCG

[40] Y. Kim, M. Otaduy, M. Lin, and D. Manocha, “Fast penetration
depth computation for physically-based animation,” in ACM
Symposium on Computer Animation, 2002.

Young J. Kim is a postdoctoral researcher
in the Department of Computer Science at the
University of North Carolina (UNC) at Chapel
Hill. He received his B.S. and M.S. degrees in
Computer Science and Statistics in 1993 and
1996, respectively, from Seoul National Univer-
sity, and his Ph.D. degree in Computer Science
in August 2000 from Purdue University. Since
joining UNC-Chapel Hill, he has been develop-
ing geometric algorithms for interactive com-
puter graphics including haptics and collision

detection. His research interests include computer graphics, com-
putational geometry, CAGD, interactive video games, and scientific
visualization.

Ming C. Lin is an associate professor in the
Department of Computer Science at the Uni-
versity of North Carolina at Chapel Hill. She
received her B.S., M.S., and Ph.D. degrees in
Electrical Engineering and Computer Science in
1988, 1991, and 1993, respectively, from the
University of California at Berkeley. She has
published more than 80 papers in physically-
based modeling, robotics, computational geom-
etry, computer graphics and virtual environ-
ments. She has served in the program commit-

tees of leading conferences in these areas. She received the NSF
Young Faculty Career Award in 1995, Honda Research Initiation
Award in 1997, UNC/IBM Junior Faculty Development Award in
1999, and UNC Hettleman Award for Scholarly Achievements in
2002. She has also received best papers awards at the Eurographics
Conferences.

Dinesh Manocha is currently a professor of
computer science at the University of North
Carolina at Chapel Hill. He received his B.Tech.
degree in computer science and engineering from
the Indian Institute of Technology, Delhi in
1987; and his M.S. and Ph.D. degrees in com-
puter science from the University of California
at Berkeley in 1990 and 1992, respectively. He
has published more than 130 papers in the lead-
ing conferences and journals in computer graph-
ics, geometric modeling, computational geome-

try, robotics and symbolic computation. He was selected an Alfred
P. Sloan Research Fellow, received NSF Career Award in 1995 and
Office of Naval Research Young Investigator Award in 1996, Honda
Research Initiation Award in 1997, and Hettleman Prize for scholarly
achievement at UNC Chapel Hill in 1998. He has also received best
paper awards at the ACM SuperComputing, ACM Multimedia and
Eurographics Conferences.

