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Abstract— We present an incremental algorithm to es-
timate the penetration depth between convex polytopes
in 3D. The algorithm incrementally seeks a “locally opti-
mal solution” by walking on the surface of the Minkowski
sums. The surface of the Minkowski sums is computed
implicitly by constructing a local Gauss map. In practice,
the algorithm works well when there is high motion co-
herence in the environment and is able to compute the
optimal solution in most cases.

Keywords— Penetration Depth, Minkowski Sums, In-
cremental Algorithm

I. INTRODUCTION

Computing a distance measure between geometric ob-
jects is an important problem in robotics, virtual envi-
ronments and interactive computer games. When ob-
jects are disjoint, the minimum Euclidean distance be-
tween them is one of the commonly used distance mea-
sure. However when objects are overlapping, the Eu-
clidean distance does not give any useful information re-
lated to the extent of intersection or penetration. There-
fore a different distance measure is needed to determine
the amount of penetration [1].

A number of algorithms have been proposed for com-
puting the Euclidean (or separation) distance between
two objects. However, many applications like robot mo-
tion planning, dynamic simulation or haptic rendering
need to know the extent of penetration between over-
lapping objects. These include robot motion planning
in environments consisting of narrow passages [2], 6 de-
gree of freedom haptic rendering involving object-object
interactions [3], [4], [5], contact force computation for
dynamic simulation [6], [7].

The natural extension of Euclidean separation dis-
tance to overlapping objects is the penetration depth
(PD) or intersection depth. The PD of two inter-
penetrating objects A and B is defined as the minimum
translation distance to make the interiors of A and B
disjoint. One of the commonly used metrics for repre-
senting and computing PDs is in terms of the Minkowski
sum of two objects. In particular, PD corresponds to the
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minimum distance from the origin of the Minkowski sum
of A® —B to the surface of this sum [8]. As a result,
commonly used algorithms for PD computation involve
computing the Minkowski sum and computing the clos-
est point on its surface from the origin. The worst case
complexity of the overall PD algorithm is governed by
the complexity of computing Minkowski sums, which
can be O(n?) for convex polytopes and O(n®) for gen-
eral (or non-convex) polyhedral models [9)].

The exact computation of Minkowski sums can be
very expensive for interactive applications, like haptic
rendering or real-time simulation. As a result, the recent
trend has been on computing a good approximation (or
estimate) for penetration depth.

A. Main Results

We present an incremental algorithm to compute PD
for convex polytopes in 3D. The algorithm incrementally
marches towards a “locally optimal” solution by walking
on the surface of the Minkowski sum. We define the lo-
cally optimal PD using the features on the Configuration
Space Obstacle (CSO), defined as A & —B, as follows.
Let f be a feature on the CSO which corresponds to the
locally optimal PD. Then, the distance from the origin
to f is always smaller than the distance from the origin
to any neighboring feature to f (on the CSO).

The surface of the CSO is implicitly computed by con-
structing a local Gauss map (or normal diagram) by
performing a local walk on the polytopes. It performs
incremental computations and exploits spatial and tem-
poral coherence between successive frames. Our algo-
rithm for locally computing the Gauss map follows the
similar strategy used by width computation algorithms
between convex polytopes.

The resulting algorithm has been implemented and
we have tested its performance on a number of bench-
marks. In practice, the running time is observed to be
“almost constant” — a fraction of a millisecond on a 1
GHz PC, when there is high motion coherence present
in the environment. Furthermore, it is able to compute
the optimum PD between the underlying polytopes in
most cases, whereas the earlier algorithm for estimating
PD [8] merely provides the upper and lower bounds. It



also outperforms a more recent algorithm [10] in terms
of accuracy and consistency of the result and running
time. For relatively complicated objects, our algorithm
runs approximately siz times faster than [10].

B. Organization

The rest of paper is organized as follows. In Section
II, we briefly review the previous work related to pene-
tration depth computation. In Section III, we describe
our incremental algorithm in great detail. In section IV,
we provide the experimental results of our incremental
algorithm, and compare its performance with other al-
gorithms.

II. PrREVIOUS WORK

In this section, we give a brief overview of previous
work on collision detection and distance computation,
and penetration depth.

A. Collision and Distance Computations

The problems of collision detection and distance com-
putations are well studied in computational geometry,
robotics, simulated environments and haptics. Check
out [11] for a recent survey.

B. Penetration Depth Computation

Several algorithms have been proposed to compute or
estimate the PD. A straight-forward algorithm to com-
pute the PD can be devised by explicitly computing the
Minkowski sums in O(n?) time [1]. Dobkin et al.’s [9]
have presented a hierarchical algorithm that computes
the directional PD (i.e. the penetration direction is
given) in O(lognlogm) time for two convex polytopes
with n and m vertices [9]. Agarwal et al. [12] have
presented a randomized approach to compute the PD
values in O(mitenite 4 m!*e 4 nlte) expected time
for any positive constant e.

Given the complexity of optimal penetration depth
computation, a few approximate algorithms have been
proposed for quick estimation. Cameron [8] has pre-
sented an extension to the GJK algorithm for separation
distance computation [13] to compute upper and lower
bounds on the PD between convex polytopes. Bergen
further elaborated this idea in his expanding polytope
algorithm [10]. The algorithm iteratively improves the
result of the PD computation by expanding a polyhedral
approximation of the Minkowski sums of two polytopes.

Some general algorithms for penetration depth esti-
mation are based on discretization of the object space
containing the objects. Fisher and Lin [14] have pre-
sented a PD estimation algorithm based on the dis-
tance field computation and the fast marching level-set
method. Hoff et al. [15], [16] have proposed an approach
based on graphics hardware and multi-pass rendering

for different proximity queries between general rigid and
deformable models, including penetration depth estima-
tion.

Other metrics to characterize the intersection be-
tween two objects include the growth distance defined
by Gilbert and Ong [17].

III. INCREMENTAL PENETRATION DEPTH
COMPUTATION

In this section, we present our incremental PD compu-
tation algorithm for convex polytopes. We also explain
how the algorithm avoids a local minimum problem.

A. Width Computation and Penetration Depth

Given a set of points P = {p1, p2, ..., pn} in 3D, the
width of P, W(P), is defined as the minimum distance
between parallel planes supporting P. The width W(P)
of convex polytopes A and B is closely related to the
penetration depth PD(A, B), since it is easy to show
that W(P) = PD(P, P). Therefore, once a width com-
putation algorithm is readily available, it can be modi-
fied to compute the PD.

Our incremental PD algorithm is quite similar to
Houle and Toussaint’s width computation algorithm
[18]. Their main idea is based on the following lemma:

LEMMA II1.1 The width of a set of points P in 3D
is the minimum distance between supporting planes,
and the plane having the minimum inter-distance (i.e.
width) is realized only either by antipodal VF pair or by
antipodal EE pair.

Both Houle and Toussaint’s algorithm and ours only
search VF! and EE antipodal pairs, and seek a witness
feature pair respectively, for the width and the PD value.
Hence, the main issue in both algorithms becomes find-
ing such VF and EE antipodal pairs. Houle and Tou-
ssaint’s width algorithm accomplishes it by using the
standard dual mapping on the Gauss map (or normal
diagram). The mapping is defined from object space to
the surface of a unit sphere S? as: a vertex is mapped
to a region, a face to a point, and an edge to a great
arc. Then, the algorithm finds the antipodal pairs by
overlaying the upper hemisphere of the Gauss map on
the lower hemisphere and computing the intersections
between them.

B. Algorithm Overview

In our incremental PD computation algorithm, we do
not compute the entire Gauss map for each polytope
or their entire Minkowski sum. Rather we compute

INote that we use a regular upper-case letter to denote a general
feature (e.g. V, E; F) and use a italic lower-case letter to denote
an instantiated particular feature (e.g. v1,e1, f1).



them in a lazy manner based on local walking and op-
timization. Starting from some feature on the surface
of the Minkowski sum, the algorithm finds the direc-
tion in which it can decrease the PD value and proceeds
towards that direction by extending the surface of the
Minkowski sum.

At each iteration of the algorithm a vertex is chosen
from each polytope to form a pair. We label it as a
vertex hub pair and use it as a hub of the expansion of
the local Minkowski sum. The vertex hub pair is chosen
in such a way that there exists a plane supporting each
polytope, and it is incident on each vertex. It turns
out that the the vertex hub pair corresponds to two
intersected convex regions on a Gauss map, which later
become intersecting convex polygons on the plane after
central projection. The intersection of convex polygons
correspond to the VF or EE antipodal pairs from which
one can reconstruct the local surface of the Minkowski
sum around the vertex hub pair. Given these pairs, we
choose the one that corresponds to the shortest distance
from the origin of the Minkowski sum to their surface.
If this pair decreases the estimated PD value, we update
the current vertex hub pair to an appropriate one which
is adjacent to the chosen antipodal pair. We iterate
this procedure until we can not decrease the current PD
value and converge to a local minima. The details of the
algorithm are given below.

C. Initialization

The algorithm starts with an initial guess on the ver-
tex hub pair? (VV). The initial guess is important for
the performance of our incremental algorithm. A good
initial guess can lead to empirically “almost constant”
running time, whereas a bad one can lead to O(n?) run-
ning time in the worst case, where n is the number of
features in each polytope. There are many plausible
strategies to pick a good initial guess and some of them
are application dependent. The goal is to estimate the
optimal penetration direction. Once the estimated di-
rection is computed, we take the extremal vertex of each
polytope along that direction and use it to form the ver-
tex hub pair.

A good estimate to the penetration direction can be
obtained by taking the centroid difference between ob-
jects, and computing an extremal vertex pair for the
difference direction. For instance, in Figure 1-(a), ¢;
and co are the centroids of each object. The extremal
vertex pair along the directions of ¢o — ¢; and ¢ — ¢
is chosen from each object, and is assigned as an initial
vertex hub pair. This technique is known to work well
for initial guess on closest features for Voronoi Marching
based separation distance computation algorithm [19],

2We distinguish the vertex hub pair by using bold-faced letters
on each polytope (a region/region pair on the Gauss map)
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Fig. 1. Various Initial Guessing Strategies

and also works well for estimating the penetration di-
rection.

In other cases, the penetrating features can also sug-
gest a good initial guess. When the objects penetrate,
many of the proximity query algorithms report a wit-
ness feature pair for it [19], [20]. From this feature pair,
one might be able to estimate the direction or compute
the actual feature pair that corresponds to the optimal
PD. One possible way is to consider the plane normal
of a penetration feature as penetration direction. For
instance, in Figure 1-(b), the face f is identified as a
penetration witness, and its associated plane normal n
is used for the extremal vertex query.

Many applications exhibit high spatial or temporal
coherence between successive frames. In such environ-
ments with high motion coherence, the PD computation
result from the previous time frame can provide a good
guess for the next time frame. In Figure 1-(c), for ex-
ample, the previous PD features® provide a direction for
the extremal vertex query.

D. Iterative Optimization

After the algorithm obtains a initial guess for a VV
pair, it iteratively seeks to improve the PD estimate by
jumping from one V'V pair to an adjacent V'V pair.
This is accomplished by looking around the neighbor-
hood of the current V'V pair and walking to a pair which
provides a greatest improvement in the PD value. In
more detail, let the current vertex hub pair be vyv].
The next vertex hub pair vavj is computed as follows:
1. Construct a local Gauss map each for v and vf,

2. Project the Gauss maps onto z = 1 plane, and call
them G and G’ respectively. G and G’ correspond to
convex polygons in 2D.

3. Compute the intersection between G and G’ using a
linear time algorithm such as [21]. The result is a convex
polygon and call each vertex comprising the intersection
u;. If u; is an original vertex of G or G, it corresponds
to the VF antipodal pair in object space. Otherwise, it
corresponds the EE antipodal pair.

3By the PD feature, we mean a pair of features on both poly-
topes whose supporting planes realize the locally optimal PD
value.
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Fig. 2.

Tterative Optimization: (a) The current V'V pair is v1v} and a shaded region represents edges and faces incident to vivj.

(b) shows local Gauss maps and their overlay for v1v]. (c) shows the result of the overlay after central projection onto a plane. Here,
f1, e1, f2 and ea comprise vertices (candidate PD features) of the overlay. (d) illustrates how to compute the PD for the candidate
PD features in object space. (e) f2 is chosen as the next PD feature, thus v2v} is determined as the next vertex hub pair.

4. In object space, determine which u; corresponds to
the best local improvement in PD, and set an adjacent
vertex pair (adjacent to u;) to vavs.

This iteration is repeated until either there is no more
improvement in the PD value or number of iterations
reach some maximum value. At step 4 of the iteration,
the next vertex hub pair is selected in the following man-
ner. If u; corresponds to VF, then we must choose one of
the two vertices adjacent to F assuming that the model
is triangulated. The same reasoning is also applied to
when u; corresponds to EE. As a result, we need one
more iteration in order to actually decide which vertex
hub pair we want to select. However, we cache the re-
sults of this extra iteration and use it for future compu-
tations. A snapshot of a typical step during the iteration
is illustrated in Figure 2.

E. Local vs Global Minimization

Since our incremental algorithm is a local minimiza-
tion process, it can get stuck in a local minimum. This
can happen based on the choice of the initial pair of
features.

Fig. 3. Escaping from a local minimum: As the origin of the
CSO moves from 01 to o4, the PD algorithm always reports P; as
a PD feature. However, using the “centroid difference” vector n,
the algorithm starts the search from P, and marches toward Ps.

For example, in Figure 3, as the origin of the CSO
moves from o0, to o4, the PD algorithm uses a PD fea-
ture from previous computation as a starting point of
the walk. As a result, the algorithm reports P; as a
locally optimum PD feature at each frame. In this case,
the initial estimate at o4, P;, is not a good choice as
the true optimal PD feature is P,. In practice, we can
avoid such cases by employing different heuristics sug-
gested in section III-C. In this particular example, the
“centroid difference” heuristic solves the problem. In
Figure 3, M is the center of mass of the CSO, and n
is the centroid difference vector when the origin of the
CSO is at 04. Then, if the algorithm is provided with an
additional guess at P, it finds that P is a better estimate
as compared to P; and starts towards Ps.

A more generic way to escape from the local mini-
mum problem is to employ a global search mechanism.
A simple way is to use a discretization approach. As
suggested in [12], one might sample the search space
(e.g. the Gaussian space in our case), and for each sam-
pled search direction compute a minimum. Another way
of the global search is to approximate the whole CSO
and launch a search on the approximation. Bergen [10]
presents such an approach. The major drawback of this
approximation scheme is its numerical instability.

IV. IMPLEMENTATION AND PERFORMANCE

In this section, we describe our implementation and
highlight the performance of DEEP on different mod-
els and environments. Moreover, we compared its per-
formance with a globally optimal PD computation al-
gorithm and another most recent estimation algorithm
presented by [10].

A. Implementation Issues

There are a couple of issues in implementing our PD
algorithm presented above. The first one is related to



the collision detection algorithm or library used by our
PD algorithm. The second issue is related to handling
degeneracies.

A collision detection algorithm is used to check
whether two objects overlap. Our prototype implemen-
tation, DEEP, takes advantage of our in-house collision
library SWIFT [19].

Geometric algorithms are prone to degeneracies. In
the case for DEEP, there are two major degeneracies
that arise in terms of implementation and application.
The first one relates to coplanar faces in any of the
polytopes. Coplanar faces result in two main problems.
They lead to degenerate configurations for the con-
vex/convex polygon intersection routine and the need
to expand the search (walk) to adjacent vertex hubs.

The other degeneracy problem arises from the central
projection used during the construction of the Gauss
map. The central projection maps the equator of the
Gauss map to infinity and it also splits the edge cross-
ing the equator. We avoid this occasion by constructing
the Gauss map locally in the following manner. For a
given vertex hub pair v,v2, take one vertex region, say
v1. Let us denote the set of normals that contribute to
vy, as n;'s. Our goal is to find a normal N such that
n; - N > 0 for all 7, and N will be the direction of the
central projection. This reduces to linear programming.
However, it is still possible that the other vertex region
v9 can have an infinite boundary after the central pro-
jection. We avoid this by cutting the vertex region vy
by the equator of v.

B. Performance

All the timings presented in this section were obtained
on a Linux PC with 1 GHz Pentium III CPU, 256 MB
memory, and g++ compiler. We used different models
with varying combinatorial complexity as well as aspect
ratios to test the performance. The model characteris-
tics used in our benchmarking include:

e The number of faces in the testing models vary from
400 to 4000.

o Three basic primitives, a sphere, an ellipsoid, and a
cylinder, are used to generate random models of differ-
ent aspect ratios. A penetrating object was selected out
of the three basic types of objects, whereas only a sphere
was chosen as the other object.

e During each time step of the simulation, a penetrat-
ing object revolves around a penetrated object, while
rotating around its center of mass.

Figure 4 shows the runtime performance of our incre-
mental algorithm (DEEP), and also compares it with
the result of the expanding polytope algorithm (EPA)
[10]. Roughly, the expected operation count of DEEP
is about was 186n + 154 per iteration including the cost
of transformation, where n is the number of adjacent

faces to a vertex hub pair. Among them, 166n + 6 op-
erations are part of the polygon intersection routine,
and 20n + 115 are taken by the Gauss map construc-
tion. We also selected benchmarks with high motion
coherence. This figure highlights the empirically ob-
served almost constant time performance of DEEP on
these benchmarks, especially when there is a high mo-
tion coherence present between successive frames in the
simulation environment. Moreover, as Figure 4-(b) sug-
gests, the performance is not affected by the depth of
penetration. However, the running time of GJK-based
expanding polytope algorithm [10] grows linearly with
the number of faces. This is because of global search in
the underlying algorithm and it is also a function of the
amount of penetration.

We also evaluated the performance on different sce-
narios under varying motion coherence. As the motion
coherence is reduced, the performance degrades almost
linearly. In the environment with low motion coherence,
the running time is no longer constant.

C. Comparisons with an optimal solution

We compared the results of DEEP with an implemen-
tation that computes the globally optimal solution. In
this case, the rotational motion was not considered. The
globally optimal solution is obtained by explicitly com-
puting the Minkowski sums of two convex polytopes. A
simple brute-force algorithm to compute the Minkowski
sum is based on computing the pairwise Minkowski sum
for every vertex pair from each polytope, followed by
convex hull of resulting O(n?) combinations.

For convex polytopes, a penetration depth value sim-
ply depends on a penetration direction vector. In our
case, DEEP rarely misses the optimal penetration di-
rection. Thus, DEEP was able to compute the global
optimum solution in most cases. In terms of comparison
to the brute-force implementation, the mean of the error
in the PD value was 3.4711~% and its standard deviation
was 7.3457°.

V. CONCLUSIONS

We present an incremental PD algorithm to compute
a locally optimal PD. It runs in almost constant time
when there is high motion coherency in the environment,
and it finds an optimal solution most of times. The
algorithm is based on the implicit, local construction of
the Minkowski sums and the iterative optimization on
the PD value.

There are some pending research issues in the PD
computation. One immediate problem is to devise a
more generic algorithm to handle the local minimum
problem. We are considering the use of multiresolution
techniques or randomized algorithms. Computing the
PD between non-convex objects is a very challenging
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Fig. 4. Performance Results of Incremental Algorithm: Figure (a) shows the results of DEEP and EPA for the sphere, ellipsoid and
pen model with a fixed PD amount. Figure (b) shows the results of DEEP and EPA for the sphere model by changing the PD value.
In both figures, upper lines are the results by EPA, and lower lines are by DEEP. Note that DEEP is invariant of the complexity of a
model and the PD amount.

problem. Therefore, any estimation technique or solv-
ing the PD for a limited class of non-convex objects
(e.g. a convex object vs. a non-convex object) can still
be highly desirable. Recently, an approach using a com-
bination of object-space and image-space algorithms for
general polyhedral models has been presented in [22].
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