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ABSTRACT

We present an adaptive data-driven algorithm for interactive crowd
simulation. Our approach combines realistic trajectory behaviors
extracted from videos with synthetic multi-agent algorithms to gen-
erate plausible simulations. We use statistical techniques to com-
pute the movement patterns and motion dynamics from noisy 2D
trajectories extracted from crowd videos. These learned pedestrian
dynamic characteristics are used to generate collision-free trajecto-
ries of virtual pedestrians in slightly different environments or situ-
ations. The overall approach is robust and can generate perceptually
realistic crowd movements at interactive rates in dynamic environ-
ments. We also present results from preliminary user studies that
evaluate the trajectory behaviors generated by our algorithm.

1 INTRODUCTION

Crowd simulation has received considerable attention in virtual re-
ality (VR), games, computer-aided design, and robotics. Some of
the driving applications include training of law enforcement offi-
cials or military personnel [40], virtual reality therapy for crowd
phobias [38], investigation of pathological processes in mental dis-
orders [7], pedestrian flow analysis of architectural models and ur-
ban layouts, etc. In these applications, one of the goals is to gener-
ate realistic crowd movements or emerging behaviors in the back-
ground, while the user is immersed in the scene and performing
certain tasks.

Prior studies and evaluation in psychology and virtual environ-
ments have concluded that many aspects of pedestrian movement,
including positions and orientations, are important for realistic hu-
man perception of crowds [9, 30]. Moreover, the accuracy of colli-
sion avoidance is important for generating plausible human motion
for navigation [5]. Some user studies [42] suggested that the re-
alism of character behavior in a virtual environment increases the
sense of presence.

Crowd simulation techniques have been widely studied in the lit-
erature. Some of the commonly used techniques are based on syn-
thetic multi-agent simulation algorithms [34, 29, 13, 41, 16, 11, 27,
28], continuum techniques [39, 25], cognitive or personality mod-
els [45, 8, 12], etc. In most of these approaches, the behaviors of
human-like agents are governed by pre-defined rules or criteria. As
a result, it can be hard to simulate the dynamic nature, variety, and
subtle aspects of real-world crowd motions without considerable
tuning of the parameters.

Many researchers have advocated use of data-driven or example-
based crowd simulation algorithms to generate realistic crowd
behaviors [19, 44, 22]. Their emergence grows out of the in-
creasing availability of real-world examples of individual humans
and crowds movements, driven in part by improvements in high-
resolution cameras and motion-capture systems that can be used to
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Figure 1: Interactive Crowd Simulation: Our adaptive data-
driven algorithm can generate realistic crowd trajectory behaviors
of a large number of agents at interactive rates. The pedestrian dy-
namics and movement characteristics are captured from real-world
trajectory data. Our approach can adapt the simulation to a dynamic
environment.

generate large databases on real world crowd data [24, 15]. More-
over, advances in computer vision and tracking algorithms have
made it possible to extract pedestrian trajectories at interactive rates
and use them for data-driven crowd simulation [46, 1]. However,
current methods are limited to generating 2D trajectories and cannot
handle any changes in the environment or simulate different trajec-
tory behaviors from those observed in the videos. Other techniques
include offline methods for scalable multi-character motion synthe-
sis [44, 37], which can model close interactions between pedestri-
ans for non-interactive applications. Most behavior learning algo-
rithms require a large number of training videos to learn the pat-
terns offline and typically extract a fixed set of parameters that are
used as a global characterization of pedestrian behavior or trajecto-
ries [47, 14]; thus, they may not be suited to capturing the dynamic
nature or time-varying behaviors of pedestrians that is required for
virtual environments.
Main Results: In this paper, we present a new crowd simulation
approach that combines the realism of data-driven methods with
the adaptation and interactivity of synthetic multi-agent techniques.
We capture the motion characteristics of pedestrians by learning
the movement patterns and motion dynamics from extracted 2D
trajectories. These characteristics are represented as time-varying
pedestrian dynamics and used to generate crowd movements in vir-
tual environments that are similar to those observed in real-world
videos. As the individual humans in the original video change their
speed or movement, each virtual pedestrian in the simulation can
dynamically adapt its trajectory to interact with other pedestrians
and obstacles in the scene.

As compared to prior crowd simulation techniques, our approach
offers many advantages. First, we use statistical algorithms to es-
timate the dynamics characteristics from noisy or sparse trajectory
data. As a result, our approach can be easily integrated with current
real-time pedestrian tracking algorithms and used with any crowd
videos. Given the large collection of crowd videos available on the
internet (e.g. YouTube), our approach makes it easier to instantly
generate dynamic movement patterns for different situations. Sec-
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Figure 2: Interactive data-driven simulation pipeline: Our method takes extracted trajectories of real-world pedestrians as input. We first
learn pedestrian dynamics from the input trajecotires, using state estimation followed by movement flow learning and entry point learning.
The learned pedestrian dynamics can be combined with event-based multi-agent simulation algorithms and local navigation algorithms to
create new crowd trajectories. All these computations can be performed in tens of milliseconds.

ond, our approach is interactive and we can easily update crowd
movements as the environment changes. Third, the pedestrian dy-
namics characteristics can be combined with synthetic agent-based
models that can change each individuals behavior in response to an
external event, e.g. an external stressor resulting in a panic situa-
tion. Finally, these characteristics can be used to add an arbitrary
number of virtual pedestrians to a given environment that have a
similar movement pattern as the original video, and maintain the
speed/density relationship.

The overall approach is automatic, involves no user editing, and
can be used for interactive crowd simulations in dynamic environ-
ments. We have implemented our approach and tested it on several
indoor and outdoor scenarios with varying pedestrian movement
patterns, using trajectory data from a variety of crowd videos. The
original videos of these scenes have tens of real-world pedestrians,
and we are able to generate adaptive data-driven simulations with
tens or hundreds of pedestrians in slightly different environments or
situations. We also evaluated the benefits of our approach for vir-
tual environments by performing two user-studies. Our preliminary
results indicate that use of data-driven pedestrian dynamics results
in realistic crowd trajectory behaviors.

The rest of the paper is organized as follows. We introduce
the terminology and present our interactive pedestrian dynamics–
learning algorithm in Section 2. In Section 3, we use these char-
acteristics for data-driven crowd simulation. We describe our im-
plementation and highlight its performance in various scenarios in
Section 4. We discuss perceptual evaluation in Section 5. Finally,
we analyze its performance and compare it with prior approaches
in Section 6.

2 DATA-DRIVEN PEDESTRIAN DYNAMICS (DDPD)
In this section, we present our interactive algorithm that learns time-
varying pedestrian dynamics from real-world pedestrian 2D trajec-
tories. We assume that these trajectories are generated using stan-
dard tracking algorithms. These are used as the underlying pedes-
trian characteristics for data-driven simulation. We direct the reader
to the technical report [17] for mathematical and low-level details.

2.1 Pedestrian State
We first define specific terminology used in the paper. We use the
term pedestrian to refer to independent individuals or agents in the
crowd. We use the notion of state to specify the trajectory and be-
havior characteristics of each pedestrian. The components used to
define a state govern the fidelity and realism of the resulting crowd
simulation. Because the input to our algorithm consist of 2D po-
sition trajectories, our state vector consists of the information that

describes the pedestrian’s movements on a 2D plane. We use the
vector x = [p vc vpref ]T,x ∈ R6 to refer to a pedestrian’s state,
where p is the pedestrian’s position, vc is its current velocity, and
vpref is the preferred velocity on a 2D plane. The preferred veloc-
ity is the optimal velocity that a pedestrian would take to achieve
its intermediate goal if there were no other pedestrians or obsta-
cles in the scene. In practice, vpref tends to be different from vc

for a given pedestrian. We use the symbol S to denote the current
state of the environment, which corresponds to the state of all other
pedestrians and the current position of the obstacles in the scene.
The state of the crowd, which consists of individual pedestrians, is
a union of the set of each pedestrian’s state X =

⋃
i xi, where sub-

script i denotes the ith pedestrian. Our state formulation does not
include any full body or gesture information. Moreover, we do not
explicitly model or capture pairwise interactions between pedestri-
ans. However, the difference between vpref and vc provides par-
tial information about the local interactions between a pedestrian
and the rest of the environment.

2.2 Pedestrian Dynamics
Pedestrian dynamics consist of those factors that govern pedestri-
ans’ trajectory behaviors, i.e., the factors that change the state of
the pedestrians. We model pedestrian dynamics using three compo-
nents: starting position or entry point; movement flow; and the local
collision-free navigation rule. Formally, we represent the charac-
teristics of these dynamics for each pedestrian with a vector-valued
function, f(), with an initial value determined by the function,E():

xt+1 = f(t,xt) = [P (xt) I(xt) G(t,xt)]T; x0 = E(t0). (1)

For each pedestrian in the crowd, the functionG : R×R6×S→ R2

maps time t, current state of the pedestrian x ∈ X, and current
state of the simulation environment S ∈ S to a preferred velocity
vpref . Function I : R6 × S → R2 computes the interactions with
other pedestrians and obstacles in the environment and is used to
compute the collision-free current velocity vc for local navigation.
The function P : R2 → R2 computes the position, given vc; E :
R→ R2 computes the initial position for time t0, which is the time
at which a particular pedestrian enters the environment. The three
components of the pedestrian dynamics – entry point, movement
flow, and local collision-free navigation – can be mapped to the
functions E(), G() and I(), respectively. We learn E() and G()
from the 2D trajectory data. The local collision-free navigation rule
I() can be chosen by the data-driven algorithm.

We refer to our interactive method as learning data-driven pedes-
trian dynamics (DDPD). Fig. 2 gives an overview of our approach,



Algorithm 1: Adaptive Data-driven Crowd Simulation

Input: Observed position of each real agent zti, i ∈ R,
Simulated state of each virtual agent xti, i ∈ V ,
Pedestrian local navigation model I , Composed
situational trajectory adaption function J of n number
of separate situational trajectory adaption function
modules J = J1 ◦ J2 ◦ · · · ◦ Jn−1 ◦ Jn, J(x) = x if
n = 0, current time step t, last frame of the real-world
data tend, size of the time window w for DDPD

Output: State of virtual crowds X
if t ≤ tend then

// State Estimation
// 1. DDPD computation
foreach i ∈ R do

Compute xti from zti;

// Update DDPD
if t%w == 0 then

foreach i ∈ R do
// compute pedestrian dynamics

feature bi and add to the
closest behavior cluster Bk

Compute bi from xti and xt−wi ;
Bk = {bi : argmink dist(bi, µk) ;

// Update Clusters
while not converged do

Bk = {bi : dist(bi, µk) ≤ dist(bi, µl)∀l, 1 ≤
l ≤ K} ;
µk = 1

|Bk|
∑

bi∈Bk
bj ;

// 2. DDPD + Synthetic Algorithm
foreach i ∈ V do

// Pedestrian Dynamics
Compute bi from xti and xt−wi ;
// Query PrefVelocity From DDPD
c = argmink dist(bi, µk);
xti.v

pref = µc.v
pref ;

// Situational Trajectory Behavior
Adaption

xti.v
pref=J(xti);

// Local Collision Avoidance
XV = xti|i ∈ V ;
Xt+1
V = I(XV );

including computation of DDPD and using them for crowd simula-
tion. The input to our method consists of the trajectories extracted
from a sensor. The trajectories are time-series observations of the
positions of each pedestrian in a 2D plane. The output DDPD con-
sists of entry point distributions and movement flows learned from
the trajectory data. Notably, our approach is interactive and oper-
ates based on current and recent states; in other words, it does not
require future knowledge of an entire data sequence and does not
have to re-perform offline training steps whenever new real-world
pedestrian trajectory data is acquired or generated. As a result, our
approach can effectively capture local and/or individual variations
and the characteristics of time-varying trajectory behaviors. We
use DDPD for data-driven crowd simulation in Section 3, which
corresponds to the event-based multi-agent simulation part in the
overview diagram (Figure 2).

2.3 State Estimation
The trajectories extracted from a real-world video tend to be noisy
and may have incomplete tracks [10]; thus, we use Bayesian-
inference technique to compensate for any errors and to compute
the state of each pedestrian.

At each time step, the observation of a pedestrian computed by a
tracking algorithm is the position of each pedestrian on a 2D plane,
denoted as zt ∈ R2. The observation function h() provides zt of
each pedestrian’s true state x̂t with sensor error r ∈ R2, which is
assumed to follow a zero-mean Gaussian distribution with covari-
ance Σr:

zt = h(x̂t) + r, r ∼ N (0,Σr). (2)

h() can be replaced with any tracking algorithms or synthetic algo-
rithms that provides the trajectory of each pedestrian.

The state-transition model f() is an approximation of true real-
world crowd dynamics with prediction error q ∈ R6, which is rep-
resented as a zero-mean Gaussian distribution with covariance Σq:

xt+1 = f(xt) + q, q ∼ N (0,Σq). (3)

We can use any local navigation algorithm or motion model for
function f(), such as social forces, Boids, or velocity obstacles.
The motion model computes the local collision-free paths for the
pedestrians in the scene.

We use an Ensemble Kalman Filter (EnKF) and Expectation
Maximization (EM) with the observation model h() and the state
transition model f() to estimate the most likely state x of each
pedestrian. During the prediction step, EnKF predicts the next state
based on the transition model and Σq . When a new observation is
available, Σq is updated based on the difference between the obser-
vation and the prediction, which is used to compute the state of the
pedestrian. In addition, we run the EM step to compute the covari-
ance matrix Σq to maximize the likelihood of the state estimation.
For more details about EM-based state computation, please see the
technical report [17].

2.4 Dynamic Movement Flow Learning
We compute the movement features, which are used as descrip-
tors for local pedestrian movement. These movement features are
grouped together and form a cluster of a movement flow.

Movement Feature
The movement features describe the characteristics of the trajec-

tory behavior at a certain position at time frame t. The character-
istics include the movement of the agent during the past w frames,
which we call time window, and the intended direction of the move-
ment (preferred velocity) at this position.

The movement feature vector is represented as a six-dimensional
vector b = [p vavg vpref ]T , where p, vavg , and vpref are each
two-dimensional vectors representing the current position, average
velocity during past w frames, and estimated preferred velocity
computed as part of state estimation, respectively. vavg can be
computed from (pt − pt−w)/w ∗ dt, where dt is the time step.

The duration of the time window, w, can be set based on the
characteristics of a scene. Small time windows are good at captur-
ing details in dynamically changing scenes with many rapid veloc-
ity changes, which are caused by some pedestrians moving quickly.
Larger time windows, which tend to smooth out abrupt changes
in motion, are more suitable for scenes that have little change in
pedestrians’ movement. For our results, we used 0.5 to 1 second of
frames to set the value of w.

Movement Flow Clustering
At every w steps, we compute new behavior features for each

agent in the scene. We group similar features and findK most com-
mon behavior patterns, which we call movement flow clusters. We
use recently observed behavior features to learn the time-varying
movement flow.



We use the k-means data clustering algorithm to classify these
features into K movement flow clusters. A set of movement-flow
clusters B = {B1, B2, ..., BK} is computed as follows:

argmin
B

K∑
k=1

∑
bi∈Bk

dist(bi, µk), (4)

where bi is a movement feature vector, µk is a centroid of each
flow cluster, and dist(bi, µk) is a distance measure between the
arguments. In our case, the distance between two feature vectors is
computed as

dist(bi, bj) = c1 ‖pi − pj‖
+ c2

∥∥(pi − vavgi w dt)− (pj − vavgj w dt)
∥∥

+ c3

∥∥∥(pi + vprefi w dt)− (pj − vprefj w dt)
∥∥∥ , (5)

which corresponds to the weighted sum of the distance among three
points: current positions, previous positions and estimated future
positions (which are extrapolated using vpref , c1, c2, and c3 as
the weight values). Comparing the distance between the positions
rather than mixing the points and the vectors eliminates the need to
normalize or standardize the data.

The pseudo-code of the overall pedestrian movement flow learn-
ing algorithm is given in the Algorithm 1.

2.5 Entry-Points Learning
Entry points are a component of pedestrian dynamics we want to
learn to estimate when real pedestrians enter the scene. These start-
ing positions and timings for each agent are very important and
govern their overall trajectory. For example, unidimensional Pois-
son distribution was used to instantiate vehicles according to den-
sity distribution for traffic simulations [36].

We assume that the distribution of entry points, e, that the func-
tion E() samples from, is a mixture of J components and that
each of the components is a multivariate Gaussian distribution of
a two-dimensional random variable, p, with a set of parameters
Θ = (α1, · · · , αJ , θ1, · · · , θJ):

e(p|Θ) =

J∑
j=1

αjej(p|µj , θj), (6)

ej(p; θj) =
1

2π|Σj |1/2
exp(−1

2
(p− µj)TΣ−1

j (p− µj)). (7)

Each component ej is a Gaussian distribution given by the parame-
ters θj = (µj ,Σj), where µj is mean of the component j and Σj is
a 2×2 covariance matrix. αj is a mixture weight, which is the prob-
ability of a point p that belongs to the component j. αj ∈ [0, 1] for
all i and sum of αj’s are constrained to 1 (1 =

∑J
j=1 αj). From

an initial guess of the parameters θj , we perform EM to learn these
parameters θj = (µj ,Σj) from the given entry points collected
from the real pedestrian trajectories. More details are provided in
the supplemental material.

The entry point distribution is updated whenever we have a new
observation of a pedestrian entering near the boundary of the scene
(i.e., the starting positions of a trajectory). We use only the recent
Ne observations of entry positions from trajectories and discard
old observations. A large value for Ne can capture the global dis-
tribution of entry points, whereas a smaller value for Ne can bet-
ter capture the dynamic changes of the distribution. Although we
update the model frequently, we can exploit the locality in distri-
butions because the new distribution is evolving from the previous
distribution. We use the previous parameters and choose cluster j,
which satisfies argminj ||p− µj ||, as our initial guess for the new
distributions.

(a) Original Video (b) Without DDPD (c) With DDPD

Figure 3: Manko scenario: We highlight the benefits of entry
point and movement flow learning. (a) A frame from a Manko
video, which shows different flows corresponding to lane forma-
tion (shown with white arrows); (b) and (c) We compute collision-
free trajectories of virtual pedestrians. For (b), we use random entry
points for virtual pedestrians and goal positions on the opposite side
of the street. White circles highlight the virtual pedestrians who are
following the same movement flow as neighboring real pedestrians.
For (c), we use DDPD (entry point distribution and movement flow
learning) to generate virtual pedestrians’ movement. The virtual
agent’s follow the lane formation, as observed in the original video.

3 ADAPTIVE DATA-DRIVEN CROWD SIMULATION

In this section, we use DDPD to generate data-driven crowd simu-
lations. In particular, DDPD are used to compute the starting posi-
tion and the steering or preferred velocity of each pedestrian in the
scene, which correspond to E() and G(), respectively. During the
simulation, the local collision avoidance rule, I(), is employed to
perform collision-free navigation and compute the actual velocity
of each pedestrian. Any of the local navigation agent-based models
that compute the interaction between a pedestrian and the rest of
the environment, i.e., other pedestrians and obstacles, can be used.
Some widely used choices include social forces [13, 29], vision-
based choices [27], hybrid method choices [25], velocity-obstacle-
based choices [41, 16], and rule-based choices [34]. This decoupled
usage of different components of DDPD enables us to use the orig-
inal movement patterns in different or varying environments com-
pared with those that were captured in the original video.

3.1 Pedestrian Dynamics Retrieval
Given a scene description, new virtual agents can be added to the
scene at any time during the simulation. The initial position of each
newly added virtual agent is sampled from the entry point distri-
butions, which are modeled as a mixture of Gaussian distributions
(see Equation 6). First, we select one of the Gaussian distributions,
ej , based on weight, αj , and sample a point from the chosen dis-
tribution (Equation 7). Because we compute DDPD adaptively to
the new observations, the parameters of the mixture model e that is
used for entry point distribution also vary over time.

After a virtual agent is added to the scenario, we must compute
its trajectory beginning from the entry point location. We use the
notion of preferred velocity that is employed to specify the inter-
mediate goal position for a given pedestrian in agent-based models
(see Section 3.1). We use DDPD to compute the preferred velocity
of each agent. At runtime, we compute this velocity by querying to
which movement cluster that pedestrian belong to (set B in Equa-
tion 4). More specifically, we query the closest cluster using the
behavior feature bi of an agent i at time t, computed from its state
estimation xt and xt−w:

argmin
k

dist(bi, µk), (8)

where k is the label of the closest behavior cluster of the agent and
µk is the centroid feature of the cluster k. We use the preferred
velocity of the centroid feature to update the preferred velocity of



(a) (b) (c) (d)
Figure 4: Marathon Scenario: We compare the performance of different algorithms used to generate the trajectories of 500 pedestrians in the
Marathon scenario: (a) The original video frame with 18 extracted trajectories (white); (b) A multi-agent simulation using five intermediate
goal positions along the track; (c) We run the same simulation with optimized parameters using an offline optimization method; and (d) Instead
of the intermediate goals and/or optimized parameters, we use only DDPD. Notably, DDPD captures the pedestrian flow in the original video.

the agent. Because DDPD captures time-varying characteristics,
the generated virtual pedestrian trajectories exhibit similar spatio-
temporal characteristics in terms of the resulting trajectories.

3.2 Adapting to Different Environments and Situations
DDPD can be combined with other agent-based models that can
change the trajectory or behavior of an agent depending on the envi-
ronment or the situation. We refer to these as situational trajectory
adaption modules; these modules are used to generate variations in
the crowd simulation. We define the situational trajectory adaption
function A as a composition of Na separate situational trajectory
adaption function modules:

A = A1 ◦A2 ◦ · · · ◦ANa−1 ◦ANa , (9)

where A(x) = x (identity function), if Na = 0. The situational
trajectory adaption modules Ai act as a filtering method on the pre-
ferred velocity of a pedestrian based on its state and on the state
of the environment. The output of a situational trajectory adaption
Ai is an updated, adapted preferred velocity of the agent. As a re-
sult, our approach can be combined with any agent-based model
(Ai) that incorporates the change in behavior or the trajectory by
updating the preferred velocity. In our current system, we have in-
tegrated DDPD with a Density-dependent Filtering (DDF) module
and General Adaptation Syndrome (GAS) behavior modules.

3.2.1 Density-dependent Filters
Density-dependent filters (DDF) are used to ensure that the trajec-
tories of pedestrians in a dense crowd satisfy the speed/density re-
lationships that are typically expressed using the Fundamental Di-
agram [3]. The density is often defined in terms of the number of
pedestrians per square meter. In many data-driven simulations, we
populate the scene with a large number of virtual pedestrians. It
is important that their movement or density/velocity flow resem-
bles that of real-world crowds, which is captured by the Funda-
mental Diagram. The DDF computes a new steering angle and the
preferred speed of a pedestrian based on the crowd density in its
neighborhood.

We can easily combine DDPD with DDF for dense crowd sim-
ulation. A pedestrian with radius r chooses θ to minimize the dis-
tance to its intermediate goal g during the time period τ

arg min
θ
‖ g − (p + vFDθ )τ‖, (10)

where vFDθ represents the Fundamental Diagram adherent veloc-
ity [3], which can be computed as:

vFDθ =
vθ

spref
(ρθ/2r), (11)

where vθ is the input preferred velocity, spref is natural walking
speed of the pedestrian, and ρθ is the density around the pedestrian.

Finally, vFDθi is the new preferred velocity of that pedestrian that
is used as an input to the local navigation module.

3.2.2 Situational Trajectory Adaptation
We use a variation of a stressor-based behavior model proposed
in [18] to generate heterogeneous behaviors and dynamic behav-
ior changes in response to an environment or a situation. In the
original work, the behavior changes are modeled by updating vari-
ous simulation parameters (e.g., personal radius, speed, number of
neighbors, etc.) of an agent who is affected by one or more stres-
sors of many kinds, such as time pressure, area stressors, positional
stressors, interpersonal stressors, etc. [18]. We approximate this
model to use with various multi-agent methods in general.

We assume that a pedestrian is experiencing a perceived stress
with a value of ψ. The perceived intensity of the stressor, ψ, can be
different for each pedestrian, depending on the type of the stressor
and/or the distance between the pedestrian and the stressor. Our
goal is to compute a stress response for an agent, denoted as S, that
follows the General Adaptation Syndrome (GAS) theory. We use
an approximated GAS model that is formulated as follows:

dS

dt
=

 α if ψ > S
{−α ≤ dψ

dt
≤ α} if ψ = S

−α if ψ < S
(12)

where S is capped at a maximum rate α and at a maximum amount
β. We also assume that pedestrians tend to move away from the
stressor. Let us denote the vector with the direction away from the
stressor as vst. The new adjusted preferred velocity vadj is repre-
sented as a weighted sum of vst and the agent’s preferred velocity
vpref , with preferred speed spref scaled and based on the magni-
tude of S:

vadj = S(1 + spref )((1− S

β
)‖vpref‖+

S

β
‖vst‖). (13)

Finally, vadj is the new preferred velocity of the pedestrian who is
affected by the stressor.

3.3 User Interactions
In addition to interactions with the agents, by adding stressors or
increasing densities during the simulation, our method can be ex-
tended to allow users to directly control any pedestrian in the scene
or be part of the crowd. In particular, we modify the collision avoid-
ance behavior of the virtual agents towards the user. Our algorithm
is based on the asymmetric behavior modeling that is based on so-
cial forces and reciprocal velocity obstacles [6]. Between the virtual
agents, the local navigation algorithm assumes symmetric behav-
ior, which implies that all the pedestrians have equal responsibility
of avoiding a collision. However, we impose 100% of collision-
avoidance responsibility to the user or the user-controlled character
in the simulation, when it has an impending collision with other
pedestrians or obstacles. More details are given in [17].



4 RESULTS

In this section, we describe our implementation and highlight its
performance on different scenarios. Our system runs at interac-
tive rates on a desktop machine with a 3.4 GHz Intel i7 processor
and 8GB RAM. For state estimation, we use velocity-based rea-
soning as the state transition model, f(). For collision-avoidance
computation, we use a publicly available library [41], and we use
different real pedestrian tracking datasets corresponding to indoor
and outdoor environments as the input for the DDPD computation
algorithm. These datasets are generated using manual tracking, on-
line multiple-person tracker, KLT tracker, synthetic data and 3D
range sensor tracking [23, 47, 4]. Our approach makes no assump-
tions in connection with the underlying tracking algorithm that is
used to generate these datasets. Table 1 presents more details on
these datasets along with the number of tracked pedestrians and the
number of virtual pedestrians in the data-driven simulation. Our
algorithms compute collision-free trajectories for the virtual pedes-
trians. We modeled the objects in these scenes using Maya and ren-
dered the results using GOLAEM, a commercially available crowd
rendering platform. For real-time renderings for the user study, we
used Unreal game engine.

4.1 Scenarios
We used different indoor and outdoor scenarios to highlight the per-
formance of our crowd simulation algorithm.

Street: This scenario illustrates the basic notion of our data-
driven algorithm. We use smooth, manually annotated trajectories
of 147 pedestrians [21]. In the resulting simulation, we compute
the trajectories of pedestrians whose entry points and movement
patterns are similar to those of the tracked pedestrians. In this
case, DDPD captures both time-varying entry-point distributions
and movement patterns and show that the virtual pedestrians have
the same characteristics (See Video) .

Manko: We highlight the similar behaviors of the virtual pedes-
trians compared with those of tracked pedestrians. Furthermore,
we generate crowd trajectories and behaviors using different op-
tions: (a) crowd simulation with a similar scene-setup, but the vir-
tual pedestrian trajectories are generated without DDPD, and we
instead use random positions for the entry points; (b) computing
the entry points and movement flow for virtual pedestrians using
DDPD. The benefits of our learning algorithm are shown in the
video (see Figures 3) as the virtual pedestrian follow the lanes in the
original video. In contrast, virtual agents simulated using method
(a) often result in collisions when going against the flow.

Marathon: We show a structured scenario in which pedestrian
movement is somewhat uniform. In the marathon scenario, the run-
ners follow an arc-shaped route (see Figure 4). Although the mo-
tion pattern looks simple, it is hard to model this scenario using
one fixed set of entry points and goal positions, which is com-
monly used in agent-based models. Our DDPD algorithm elimi-
nates manually adding and adjusting entry/goal points and automat-
ically computes the preferred velocity over different time periods.
We use only 18 trajectories from the original video and employ
them to compute DDPD. These characteristics are used to compute
the trajectories of 500 virtual pedestrians as part of the marathon.
We further compare our approach with other agent-based simula-
tion algorithms that use many set of intermediate goals and offline
parameter learning instead of DDPD (Figures 4 (b) and (c)). The
different simulation results are shown in the video.

Black Friday Shopping Mall: In this scenario, we show that
our DDPD approach can be combined with other agent-based meth-
ods that simulate various aspects of human behavior, as described in
Section 4.1.1. We take a shopping mall scene generated from given
trajectories and vary the pedestrian density. We combine DDPD
with DDFs [3] and highlight the results in the video (See Figure 5).
We also highlight the benefits of interactive computation of DDPD.

(a) (b) (c)
Figure 5: Black Friday Shopping Mall scenario: (a) We use six
simple trajectories generated in an empty space. (b) and (c) We cre-
ate a new layout by adding obstacles interactively, and also increase
the number of pedestrians in the scenario. (b) has 271 pedestrians,
(c) has the twice higher number of pedestrians generated at the same
rate.

In particular, we add new obstacles during the simulation, and the
data-driven crowd simulation algorithm can vary the trajectories to
avoid collisions with the obstacles.

Explosion: We combine our method with GAS model dynamic
behavior changes and situational trajectory adaptation. This sce-
nario highlights how the trajectories and behaviors of the pedestri-
ans change in response to an explosion. In this scenario, the pedes-
trians initially follow the DDPD computed from the extracted tra-
jectories. We represent an explosion as an external event and model
that using a stressor. We use the stressor-based behavior model [18]
to compute the new preferred velocity for each pedestrian in the
scene. We model a stressor from an explosion as a positional stres-
sor and change the behavior of the virtual pedestrians based on the
amount of stress that the explosion generates (See Figure 6).

(a) (b)
Figure 6: Crossing Explosion Scenario: (a) Initially, virtual
pedestrians follow the DDPD computed from the extracted trajec-
tories. (b) The user places an explosion during the simulation. The
pedestrians who perceive the explosion begin running away from it
in different directions.

Train Station: We demonstrate the performance of DDPD on
noisy, tracked data. For this scenario, we use tracklets generated
by a KLT tracking algorithm. Instead of tracking each individual
agent, the KLT tracker computes particles that belong to one or
more tracked pedestrians in the video. The length of the trajecto-
ries range from a few to tens of frames. The tracklets are noisy, and
we compute the DDPD from these tracklets, using them to generate
the trajectories of virtual pedestrians (see Figure 7 and the supple-
mentary video). Our approach can produce the same movement
flow as the original video. Moreover, we also highlight gradual
density changes in the same environment and/or when we change
the layout.

ATC Mall: This scenario demonstrates the performance of our
algorithm with different sensor data. In this case, we use the 50
trajectories extracted in a shopping mall scenario using 3D range
sensors, which comprises a sparse dataset with noisy trajectories.
We compute the DDPD to generate the trajectories of 207 virtual
pedestrians that exhibit similar time-varying movement patterns
(see Video).



(a) (b) (c) (d)

Figure 7: Train Station scenario: (a) Original Video. We use the tracklet data computed by the KLT algorithm as an input to our algorithm.
We compute the pedestrian dynamics from the noise trajectories. (b) A frame from our data-driven crowd simulation algorithm in the same
layout. (c) Crowd simulation in a modified layout as compared to the original video. (d) We increase the number of pedestrians in the scene.
They have similar movement patterns as the original video and are combined with density-dependent filters for plausible simulation.

Scenario Sensor # Tracked # Virtual # Static # Input Avg. time Avg. time
Peds. Peds. Obst. Frames DDPDL Traj. Comp.

Manko Online Tracking 42 70 0 373 0.075 5.63e-05
Marathon Online Tracking 18 500 33 450 0.04 1.56E-03
Explosion Online Tracking 19 110 0 238 0.03 2.56E-04
Street Manual Tracking 147 167 0 9014 0.012 3.27E-06
Train Station KLT (Tracklets) 200 200-943 37-47 999 0.05 4.93E-04
ATC Mall 3D Range Sensors 50 207 38 7199 0.023 2.97E-03
BlackFriday Synthetic Data 6 271-1000 20-28 109 8.58E-03 2.75E-05

Table 1: Performance on a single core for different scenarios. We highlight the number of real and virtual pedestrians, the number of static
obstacles, the number of frames of extracted trajectories and the time (in seconds) spent in different stages of our algorithm. Our learning and
trajectory computation algorithms can be used for interactive crowd simulations.

5 USER STUDIES AND EVALUATION

In this section, we evaluate the perceptual improvements achieved
by our algorithm by performing user studies in two different VR
setups based on 2D monitors and 3D HMDs. In particular, we asked
the users to compare the trajectory behaviors generated by different
interactive crowd simulation algorithms with those observed in real-
world videos. The two algorithms are:

• RVO-based synthetic multi-agent simulation [41] that is
widely used in games and virtual environments. We also used
an enhanced version that uses offline parameter learning to
improve the trajectory behaviors [43, 2].

• Adaptive data-driven algorithm that combines RVO with
DDPD (see Section 4).

Objectives: Our main goal was to measure how close are the
trajectory behaviors generated using our pedestrian dynamics learn-
ing algorithm to those observed in real-world videos. This includes
evaluating the potential benefits of our pedestrian dynamics learn-
ing algorithm in two commonly used VR setups. Secondly, we want
to measure the benefits of adaptive data-driven simulation algorithm
over a synthetic crowd-simulation algorithm.

Hypothesis: The crowd trajectory behaviors generated by our
adaptive data-driven algorithm would have a higher perceptual sim-
ilarity to those observed in the original video, as compared to the
ones generated using prior synthetic crowd simulation algorithm.

5.1 Experiment Scenarios
In order to evaluate different crowd simulation algorithms, we con-
sidered three different scenarios.

Scenario 1: We compare the simulation results generated us-
ing synthetic algorithm with and without DDPD, including entry
point distributions and movement flow learning. We use an outdoor
walking scene with pedestrian cross flows. There are around 40

pedestrians in the original video and around 60− 70 virtual pedes-
trians in the synthetically generated and rendered crowd simulation
videos. (i) We use random entry points for virtual pedestrians and
simulate their movements towards the other side of the street. (ii)
We use entry point distributions to generate initial positions of the
pedestrians, along with learned movement flows to compute pedes-
trian trajectories.

Scenario 2: In this scenario, we compare an offline parameter
learning method and our DDPD algorithm that uses time-varying
pedestrian dynamics. The scenarios corresponds to an outdoor run-
ning scene with 500 pedestrians in both the original video and the
ones generated using crowd simulation algorithms. (i) We use the
local navigation algorithm with optimized motion parameters and
intermediate sub-goals; (ii) We use the learned movement flows
from DDPD to simulate pedestrians. (i) and (ii) use the same entry
point distributions learned from the extracted trajectories and same
number of virtual pedestrians.

Scenario 3: In this scenario, we mainly focus on the movement
flow learning component of our DDPD algorithm. We compare
with the synthetic multi-agent algorithm with partial DDPD infor-
mation based on entry point learning. We used an outdoor scene
with sudden changes in the velocity of pedestrian. There were 50
pedestrians in the original video and around 100 virtual pedestri-
ans in the videos generated using different crowd simulation al-
gorithms. (i) We compute the movement flows corresponding to
randomly chosen goal positions. (ii) We use the learned movement
flows from the videos to simulate virtual pedestrian.

5.2 User Studies with 2D Monitors
For each scenario, we asked the users to compare the trajectories
in the original crowd video with two synthetically generated crowd
simulations. All the videos were about 15 − 20 seconds long. Ev-
ery user is asked to compare the movement patterns in the original
video with those in the synthetically generated crowd simulations,
by playing them simultaneously. We asked the users to first watch
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Figure 8: Comparison of similarity scores for 2D screen (higher
is more similar) We compared the trajectory behaviors generated
using the RVO-based synthetic algorithm with different configura-
tions (blue) and our algorithm (synthetic algorithm + DDPD, shown
in orange). These results indicate that the use of our pedestrian dy-
namics learning algorithm to compute entry points and movement
flows considerably improves the perceptual similarity of our simu-
lation to the pedestrian movements in the original video.

the original video and then rate each synthetic video on a scale of
1 − 5 in terms of comparing the similarity of movement patterns
between the original video and a synthetic video. A score of 1 indi-
cated most dissimilar and a score of 5 indicated most similar move-
ment pattern. Since this was a perceptual study related to movement
patterns and trajectory behaviors, we intentionally did not explicitly
define or asked the user to classify the crowd behavior. Further-
more, we asked the users not to rate the video based on the ren-
dering quality, foot-sliding, orientation issues, etc. We also encour-
aged the users to watch the original video and the synthetic video
as many times as he/she wants and finally provide some (optional)
feedback. There were 39 participants (51.61% female, 64.52% in
the age group of 20− 30) for this study on a 2D computer monitor.
The study had no time constraints and the participants were free to
take breaks in-between the benchmarks as long as the web-session
did not expire.

We measured the mean, variance of their scores, and com-
puted the p-values using a two-tailed t-test (See Figure 8). The
p-values for scenario1, scenario2, and scenario3 comparisons were
2.53e−05, 5.06e−21, and 1.71e−16, respectively. We observed that
the crowd simulations generated by our DDPD learning algorithm
scored much higher than the other two approaches for all scenarios,
at a statistically significant rate (p-value< 0.05). This also demon-
strates that both components of DDPD, entry point learning and
movement flow learning are important to generate realistic crowd
trajectories.

5.3 User Studies with 3D HMDs
We used the Oculus Rift Development Kit 2 HMD, with 1080p res-
olution and positional tracking to render the crowd scenes generated
using different algorithms.

Every user was randomly presented with these scenarios and
synthetically generated crowd visualizations on an HMD for each
scenario. The participants were able to freely navigate through the
environment, but there was no interactions (e.g. collision avoid-
ance) between the virtual pedestrians in the scene and the partic-
ipants. In other words, they were passively observing the virtual
crowds. Most of the users were asked to observe the agent trajec-
tory behaviors from a distance. Each viewing experience was about
15−20 seconds long. Similar to the 2D setup, the participants were
asked to rate the quality of trajectories and movement patterns on a
similarity score. The questionnaire used were the same as the 2D
screen user study. There were 21 participants (57% female, 85.7%
in the age group of 20 − 30) for the study on an HMD. The par-
ticipants for 3D HMD-based user study do not overlap with the 2D
screen study. As a result, there was no learning effect for our user
study.

We measured the mean, variance of their scores, and compute p-
values using a two-tailed t-test (See Figure 9). The p-values for sce-
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Figure 9: Comparison of similarity scores for HMD (higher is
more similar) We compare crowd simulation result generated using
RVO-based synthetic algorithm with different configurations (blue)
and our method (synthetic algorithm + DDPD, orange bars in the
graphs). Similar to the 2D screen user study, our method got higher
scores.
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Figure 10: Runtime performance of our user study scenarios.
Blue dots indicate the actual measurement and the orange line
shows the linear approximation of the performance as the number
of pedestrian increases.

nario1, scenario2, and scenario3 comparisons were 0.06, 1.0e−3,
and 1.0e−5, respectively. We observed that the renderings of crowd
simulations generated using our DDPD learning algorithm scored
much higher than the other two approaches for scenario 2 and sce-
nario 3, at a statistically significant rate (p-value< 0.05). However,
in Scenario 1, the p-value was 0.06 and therefore we were unable to
derive statistically meaningful conclusions. We also observed that
the variances of scores for the HMD-based user study were higher
than those of 2D screen setup.

We conjecture a possible explanation for these results based on
the user studies performed in [9]. The viewing angle (first-person,
eye level view, see Figure 1) gives less information about the en-
vironments and overall crowd behaviors than a top-down view. In
general, the participants also preferred a bird-eye view as opposed
to an eye-level view.

6 ANALYSIS AND COMPARISONS

In this section, we analyze the performance of our approach and
compare it with previous methods. The DDPD were able to capture
the movement patterns and motion dynamics from the extracted
trajectories. We have demonstrated the benefit of our pedestrian
dynamics learning algorithm on several challenging benchmarks,
including many structured and unstructured benchmarks. Further-
more, we demonstrate its benefits on different scenarios: robust
to noisy and varying sensor data (ATC Mall and Train Station
scenarios), interactive computations (Black Friday Shopping Mall
scenario), handling structured environments (Marathon scenario),
adapting to a situation (Explosion scenario), high-density simula-
tion (Train Station scenario).



6.1 Comparisons
Many prior agent-based techniques in the literature are known to
compute collision-free trajectories of virtual pedestrians. The sim-
plest methods use random points to compute entry points and goal
destinations and compute collision-free paths for virtual pedestri-
ans using any collision avoidance algorithm (e.g., social forces or
reciprocal velocity obstacles). However, the resulting trajectories
may not exhibit the same movement patterns or trajectories as real
pedestrians, as observed in some benchmarks (see Figure 4(c)).

Parameter Learning: Recently, many offline optimization tech-
niques have been proposed to learn the optimal motion parame-
ters for parameterized multi-agent simulation algorithms using real-
world trajectories [32, 43, 2]. These techniques improve the tra-
jectory behaviors of virtual pedestrians with respect to resembling
the tracked pedestrians. However, we still need good techniques to
estimate the entry point, movement flow and/or the goal position
for each agent (see Figure 4(d)). In many cases, entry points and
destinations are specified or selected from manually pre-annotated
regions in the scene [31, 47]. These parameter learning methods
can be used to improve the interaction model I() of our pedestrian
dynamics model.

Offline Behavior Learning : Most prior work in computer vi-
sion and robot-human interactions uses offline learning methods
from the training data to compute a fixed set of parameters that
correspond to a global characterization [47, 14]. Many prior tech-
niques based on manual tracking or manually annotated behavior
labels [23] have also used for data-driven simulations, but they can
be time consuming and limited to offline applications. On the other
hand, our approach is interactive and automatic and uses one video
source for trajectory data. Moreover, offline methods may not work
well when there are large variations in individual behaviors or tra-
jectories. Unlike prior offline methods, our approach does not learn
fixed sets of destination points or sub-goals and can capture time-
varying movement characteristics (see Figure 4(e)). Many offline
methods based on multi-character motion synthesis [20, 44] can
generate more realistic crowd simulations with multiple interacting
characters. By contrast, our approach only uses extracted 2D tra-
jectories and only generates the trajectories of virtual pedestrians.
Our approach cannot perform simulations of full body motions or
gestures.

Interactive applications: Compared to prior interactive data-
driven methods [1], our approach captures the motion dynamics of
the tracked pedestrians. This makes it possible to generate denser
crowd simulations as well as use them for varying environments and
situations. Furthermore, our approach is automatic and involves no
user editing. There has been a pure simulation method to gener-
ate large and dense crowd trajectories at near interactive rates [25].
However, this method is a pure simulation method and it uses a
macroscopic formulation. Our method, on the other hand, uses a
multi-agent formulation and uses the pedestrian trajectory charac-
teristics extracted from real videos.

Virtual Crowds with Real Videos: Many techniques have been
proposed to insert virtual crowds as an overlay on a real-world
video. This method uses an efficient algorithm for coupling camera-
tracked humans with virtual agents [35]. Grid-based density field
have been used to overlay several simulated virtual agents in real-
world video [33]. Pellegrini et al. [31] simulate virtual agents au-
tomatically by adjusting the virtual agents’ behavior to follow pre-
learned behaviors. In contrast with these methods, our approach
computes the trajectories for the real-world and virtual pedestrians.
As a result, our approach is more flexible and can generate many
complex scenarios highlighted in Table 1.

7 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We present an interactive approach to learning the characteristics of
pedestrian dynamics from trajectories extracted from real videos.

These characteristics are used to compute collision-free trajectories
of virtual pedestrians whose movement patterns resemble those of
pedestrians in the original video. Our approach is automatic and in-
teractive and captures the dynamically changing movement behav-
iors of real pedestrians. We demonstrate its applications for many
data-driven crowd simulations, where we can easily add hundreds
of virtual pedestrians, generate dense crowds, and change the envi-
ronment or the situation.
Limitations: The performance of our learning algorithm is gov-
erned by the accuracy of the input trajectories. Current algorithms
for automatic pedestrian tracking can only handle low-to-medium
density crowds. Our learning algorithm is only useful for capturing
the characteristics of local pedestrian dynamics for each pedestrian,
whereas offline learning methods can compute many global char-
acteristics. We consider only a few movement characteristics to
compute the trajectories of virtual pedestrians and do not take into
account other aspects of pedestrian behaviors or state, full body
actions or the interactions among pedestrians. Furthermore, our
approach may not work well if the layout of the obstacles in the
virtual environment is quite different from that captured in the orig-
inal video, e.g., some objects have been removed and that can result
in different pedestrian behaviors. Since our approach only com-
putes the trajectories, we also need to combine with techniques that
can generate plausible animation and rendering. For example, we
used GOLAEM and Unreal Engine for offline and real-time render-
ing, respectively. While the offline rendering software can result
in higher quality rendering, we observe some artifacts especially
for dynamic scenes. More specifically, we observe some discrepan-
cies when the pedestrians change directions rapidly, such as in the
explosion scenario, and the resulting pedestrians appear to be col-
liding even though the trajectories are collision-free. This is pos-
sible due to the underlying interpolation scheme and smoothness
constraints that are based on a fixed number of pre-recorded walk
cycles. Note that the adaptive data-driven algorithms described in
Section 4 are conservative. In such cases, the agents can just touch
the other agents that appears as collisions.
Future Work: There are many avenues for future work. In addition
to overcoming the limitations of our work, our interactive DDPD
can also be combined with other data-driven crowd simulation al-
gorithms and offline behavior learning methods. We would like to
combine the pedestrian dynamics characteristics with other tech-
niques that can model complex crowd behaviors or multi-character
motion synthesis techniques [20, 44].

In this paper, we focused on the use of our algorithm to generate
realistic crowd trajectories and behaviors for 2D screens as well as
3D immersive environments (e.g. HMD). As a result, we performed
user studies with both setups to get some preliminary evaluation re-
sults. We would like to use our approach for more VR-applications
and perform more evaluations.
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SIGGRAPH 2006, pages 1160–1168. ACM, 2006.

[40] B. Ulicny and D. Thalmann. Crowd simulation for interactive virtual
environments and VR training systems. Springer, 2001.

[41] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha. Reciprocal n-
body collision avoidance. In Robotics Research: 14th ISRR (STAR),
volume 70, pages 3–19, 2011.

[42] V. Vinayagamoorthy, A. Brogni, M. Gillies, M. Slater, and A. Steed.
An investigation of presence response across variations in visual re-
alism. In The 7th Annual International Presence Workshop, pages
148–155, 2004.

[43] D. Wolinski, S. J. Guy, A.-H. Olivier, M. C. Lin, D. Manocha, and
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