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Abstract: Traffic has become a major problem in metropolitan areas across the world. It is critical to understand the complex
interplay of a road network and its traffic states so that researchers and planners can improve the city planning and traffic
logistics. The authors propose a novel framework to estimate urban traffic states using GPS traces. Their approach begins with
an initial estimation of network travel times by solving a convex optimisation programme based on Wardrop equilibria. Then,
they iteratively refine the estimated network travel times and vehicle traversed paths. Lastly, using the refined results as input,
they perform a nested optimisation process to derive traffic states in areas without data coverage to obtain full traffic
estimations. The evaluation and comparison of their approach over two state-of-the-art methods show up to 96% relative
improvements. In order to study urban traffic, the authors have further conducted field tests in Beijing and San Francisco using
real-world GIS data, which involve 128,701 nodes, 148,899 road segments, and over 26 million GPS traces.

1 Introduction
Traffic has become a serious topic in metropolitan areas across the
world. The extra cost due to traffic congestion and accidents is
assessed over 1 trillion dollars worldwide. As the situation
continues to deteriorate due to rapid urbanisation and growth in
vehicle production [1], an intelligent system that can understand
the complex interplay of a road network and its traffic states has
been demanded in many contexts, including analysing urban
infrastructure [2], understanding human mobility [3], and designing
better routing strategies [4]. In addition, being able to accurately
estimate traffic states is necessary for navigation and planning of
autonomous vehicles [5], which have been tested on public roads in
many countries and hold the promise to revolutionise
transportation industry.

In the present, mobile sensor data set is one of the most
effective sources for estimating citywide traffic states attributing to
its ubiquity [6]. However, there are several limitations of GPS data
preventing the immediate usage. One such feature is low-sampling
rate, i.e. there exists a large time gap (e.g. >60 s) between two
consecutive GPS reports. Another feature is spatial–temporal
sparsity, i.e. data are scarce in certain areas and time periods.
These features give rise to several challenges in referencing traffic
states via GPS data. To begin with, GPS points need to be mapped
onto a road network and traversed paths need to be inferred. This is
difficult given that in a complex urban environment, multiple paths
could connect two GPS points. Next, after a traversed path is
determined, the aggregate travel times (i.e. GPS timestamp
differences) need to be decomposed and distributed to individual
road segments. Lastly, in order to achieve a full estimation, the
missing traffic measurements in certain areas and time periods
require interpolation.

The aforementioned issues are addressed using map-matching,
travel-time inference, and missing-value completion, respectively.
These processes, however, are commonly executed in tandem and
result in possible cascading errors in the estimation. To be specific,
many map-matching approaches have adopted the shortest-distance
criterion [7–9] to infer the traversed path. However, this
assumption can lead to a considerable bias in a congested network
where the shortest-distance path may differ from the shortest
travel-time path [10–12] and the latter is more likely to be selected
by GPS devices and experienced drivers. As a result, in a
sequential pipeline, such a bias will affect the following

procedures. In addition, while there exists abundant research on
missing-value completion, the interpolation of spatial missing
values in data-lacking areas can be improved. Existing approaches
commonly take a static data mining perspective. However, the
dynamic aspects of traffic such as flow characteristics can be
incorporated to enhance estimation accuracy.

We propose a novel framework for estimating traffic states at
city scale using sparse GPS data. In a discretised time interval, we
first obtain a coarse inference of travel times on road segments
with GPS data coverage by solving a convex optimisation program
inspired by Wardrop equilibria [13]. Next, we refine the inferred
traffic states and vehicle paths via iteratively performing map-
matching and travel-time inference. In order to handle spatial
sparsity, we embed the refined traffic states into a nested
optimisation procedure [14], which ensures certain traffic flow
characteristics. Finally, by considering all time intervals, we
address temporal sparsity via a compressed sensing-based
algorithm [12]. The schematic diagram of our framework is shown
in Fig. 1 and our contributions are listed as follows:

• a convex optimisation formulation that models similarity of
traffic patterns among adjacent roads and provides a coarse
inference of network travel times;

• an iterative refinement process that alternates between map-
matching and travel-time inference to mitigate errors in both
procedures and simultaneously infer vehicle paths and network
travel times;

• a novel perspective that incorporates estimated traffic flows via
GPS data into nested optimisation to obtain metropolitan-scale
traffic estimations.

We evaluate our framework using a real road network that
consists of 5407 nodes and 1612 road segments, 34 heuristic
network travel times corresponding to various congestion levels
and times of a day, and over 10 million synthetic GPS traces. The
effectiveness of our approach has been compared to state-of-the-art
methods, namely Hunter [11] and Rahmani et al. [15], resulting in
up to 96% relative improvements. In order to study real-world
traffic, we have conducted field tests in Beijing and San Francisco
using actual GIS data sets, which include 128,701 nodes, 148,899
road segments, and over 26 million GPS traces. 

The poster version of this paper appeared in [16]: this is the full
version. The rest of the paper is organised as follows. We survey
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related work in Section 2. We discuss background information in
Section 3 and our approach in detail in Section 4. We provide
evaluation and comparison of our approach to existing methods in
Section 5. We present the results of field tests in Section 6. Finally,
we conclude in Section 7 with the discussion of future work.

2 Related work
The estimation of traffic states has received increasing attention
over the past decades. In order to improve the estimation accuracy,
researchers have adopted a variety of data types and simulation
models [17, 18]. While these methods have achieved significant
results, their usage is mostly restricted to highway segments where
stationary sensors are available. In order to estimate urban traffic
conditions, existing studies have resorted to GPS data.
Nevertheless, because of the inherent noise and spatial–temporal
sparsity, multiple steps, namely map-matching, travel-time
inference, and missing-value completion, are required and
commonly assembled into a sequential pipeline to derive an
estimation [6, 19–21].

As the first procedure, map-matching handles noisy GPS points
by mapping them back to a road network and inferring the most
likely traversed path of a vehicle. Many techniques have adopted
the shortest-distance criterion by treating the shortest-distance path
between two consecutive GPS points as the traversed path [7–9,
22]. This assumption, however, leads to possible errors in a busy
road network where the shortest-distance path and the shortest
travel-time path may differ [10–12]. The reason being, in a
congested network, GPS devices and drivers may prefer the
shortest-travel time path instead. This observation also serves as
the foundation for Wardrop equilibria [13]. Acknowledging a
vehicle can drive on a slower route, a better approach would be
comparing GPS timestamps with the network travel times.
However, being the first step in a sequential pipeline, map-
matching is usually performed on an empty road network where
travel times are unknown, which results in potential mapping
errors.

After map-matching, a collection of map-matched vehicle paths
and their corresponding GPS timestamps is generated. Owing to a
low-sampling rate, in a complex urban environment, a map-
matched path can span multiple road segments and the difference
in its GPS timestamps needs to be allocated to individual road
segments. This procedure is known as travel-time inference. To list
few examples of this subject, Wang et al. [21] use a tensor-based
decomposition approach to infer travel times of a road network.
Hellinga et al. [23] have proposed an analytical solution based on
observations of real-world traffic. Rahmani et al. [15] take a non-
parametric approach, while Herring et al. [24] and Hofleitner et al.
[42] both adopt probabilistic techniques. Given many proposed
algorithms are effective, they are usually complex in order to
compensate errors produced in the prior step (i.e. map-matching).

As the third procedure, missing-value completion has also been
studied to various extents. For example, tensor-based approaches
[21, 25] were developed to explore shared characteristics of road

segments in close proximity. In [12, 26], researchers have
interpolated missing values via compressed sensing-based
algorithms. Despite recent advances, a systematical framework that
incorporates traffic flow characteristics and is able to provide
estimations at city scale and over an entire traffic period is
demanded [27].

There are many other studies related to our work. Traffic states
are formed by individual vehicles and affected by road
infrastructures such as intersections. Therefore, by having the
information of individual vehicles/drivers [28, 29] and their
responses to various road designs [30, 31], better estimations can
be achieved. Additionally, the traffic estimation in road networks
resembles the corresponding efforts in communication networks,
especially considering the inference of origin–destination (O–D)
flows and traffic matrix that describe network behaviours and
status [32–35].

There are three key differences between our work and previous
studies. First, for addressing low-sampling-rate data, we use an
iterative refinement rather than a sequential computation to reduce
the errors generated during map-matching and travel-time
inference. Second, for addressing the spatial sparsity, we treat
probe vehicles as mobile traffic sensors. By incorporating the
sensing results into a large number of probe vehicles into the traffic
assignment program (explained in Section 3), we can compute
travel times and flows of all road segments in a network, including
those are not covered by GPS data. Third, our approach relies
heavily on transportation engineering studies, which allows the
traffic modelling one step closer to real-world traffic.

3 Preliminaries
We represent a road network as a directed graph G = (ℰ, V),
where ℰ represents road segments and V the end points of the road
segments. Based on census trip information, a city can be separated
into geographical units known as traffic analysis zones (TAZs) (see
Fig. 2 Middle for an example). In transportation planning, the
centres of TAZs are treated as locations where the traffic flow
departs and arrives. The former are termed origins O ⊆ V and the
latter are termed destinations D ⊆ V. Traffic flow is typically
observed between every origin–destination pairs (O–D pairs). We
denote the average flow from r ∈ O to s ∈ D over a certain time
interval (e.g. 1 h) as urs. Usually, there exist multiple paths
connecting an origin and a destination in an urban environment. By
denoting all paths from r to s as Jrs and the flow on a single path
k ∈ Jrs as urs

k , urs can then be computed as follows:

urs = ∑
k ∈ Jrs

urs
k , urs

k ≥ 0, ∀r ∈ O, s ∈ D . (1)

Differing from the definition of a path flow, the flow of a road
segment f e ∈ ℰ is the aggregation of all path flows traversing e:

Fig. 1  Overview of our system: convex optimisation coupled with Wardrop equilibria is used to derive initial results; refined results are obtained through
joint map-matching and travel-time inference; the nested optimisation is applied to individual discretised time intervals for estimating a citywide traffic
condition; missing-value completion is performed over all time intervals to obtain final results
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f e = ∑
r

∑
s

∑
k ∈ Jrs

δe
kurs

k , ∀r ∈ O, s ∈ D, (2)

where δe
k ∈ {0, 1} indicates whether k contains e. By arranging all

O–D pairs in u = […, ui, …]T and their assignment proportions on
e as Pe = […, pei, …], we have f e = Peu. More compactly, by
denoting all road-segment flows as f = […, f e, …]e ∈ ℰ

T  and their
assignment proportions for each e as P = […, Pe, …]e ∈ ℰ

T , we
obtain the general form of road-segment flows in a network as
f = Pu, where P is termed assignment matrix.

In principle, providing u, we can compute travel times and
flows of all road segments by solving the traffic assignment
problem. One commonly used criterion is user equilibrium [13],
under which the traffic assignment problem takes the following
form:

minimise z( f ) = ∑
e ∈ ℰ

∫
0

f e

te(ω)dω,

subject to urs = ∑
k ∈ Jrs

urs
k , ∀r ∈ O, s ∈ D,

f e = ∑
r

∑
s

∑
k ∈ Jrs

δe
kurs

k , ∀e ∈ ℰ,

urs ≥ 0 ∀r ∈ O, s ∈ D,

(3)

where te = te( f e) is the travel time of the road segment e.
Traditionally, O–D pairs (i.e. u) are obtained via a large-scale

survey which is conducted infrequently due to prohibitive cost.
Recent approaches are taking flow measurements provided by
monitoring sensors (e.g. loop detectors and video cameras) into
computation [36]. To illustrate the idea formally, we denote the
target O–D pairs from survey data as ū, the set of road segments
with installed traffic sensors as A, and the flow measurements on
these road segments as f̄ = […, f̄ a, …]a ∈ A

T . Then, we can compute
the estimated O–D pairs u^ through estimated road-segment flows
f^ by solving the following formula [37]:

minimise
û

ℱ1(u^, ū) + ℱ2( f^, f̄ ),

subject to f^ = ℳ(u^),
u^ ≥ 0,

(4)

where ℱ1 and ℱ2 represent distance functions, and ℳ is termed
assignment map. If ℳ takes the form of (3), then (4) becomes a
nested optimisation scheme [14], in which the upper level tries to
minimise the differences between existing data and estimates,
while the lower level ensures that the estimates conform a certain
criterion. The key element of (4) is f̄ , as it represents up-to-date
traffic measurements and affects the estimation accuracy of u^ and
f^ to a large extent. According to [38], regardless of the quality of
ū, better estimations are achieved as the number of monitored road-
segments (i.e. | f̄ |) approaches the number of O–D pairs (i.e. |ū|).

This is difficult to satisfy using stationary traffic sensors such as
loop detectors and video cameras, since they are installed mostly
on major roads and highways – which constitute only a small
portion of a city. As a result, their measurements are insufficient
for estimating citywide traffic states [36, 39].

4 Traffic condition estimation
Our goal is to estimate traffic conditions of a city-scale network. To
compensate the inadequacy of stationary sensors, we use data from
the ubiquitous mobile sensor (i.e. GPS device). Consequently, the
number of road segments (i.e. | f̄ |) that are being ‘measured’ is
greatly increased. In order to further improve the accuracy of f̄ , we
need to address two challenges posed by GPS data, namely low-
sampling rate and spatial–temporal sparsity. The first causes the
inference of travel times on individual road segments difficult and
the second causes missing data in certain areas and time intervals.

We propose three procedures to alleviate the above-mentioned
issues: coarse inference, iterative refinement, and nested
optimisation. The first two procedures are used to generate
accurate inference of traffic conditions in areas with GPS data
coverage (i.e. handle low-sampling rate). The third procedure is
used to provide estimations of traffic conditions in areas without
GPS data coverage (i.e. handle spatial sparsity). The temporal
sparsity is addressed using the interpolation technique developed in
[12].

Traffic is commonly assumed to be quasi-static [11] and has a
weekly period [27]. Based on these observations, we divide 1 week
into hourly time intervals and treat the traffic within each interval
as static. The three procedures are applied separately in each time
interval. Thus, in Sections 4.1–4.3, we explain these procedures
without referring to the time interval. In Section 4.4, we discuss the
computational complexity and overhead of our approach.

4.1 Coarse inference

The travel time of a road segment is intrinsically stochastic as a
result of many factors: fluctuations in traffic demand, varying
weather conditions, and heterogeneous driver behaviours. It is
natural to model a travel time as a random variable that subjects to
a probability distribution Ze ∈ ℰ. Our objective of Sections 4.1 and
4.2 is then to derive an accurate estimation of Z, the joint
distribution of travel times of all road segments in a network that
have GPS data coverage. Since the procedure described in Section
4.2 is an iterative scheme, having a good initial point becomes
essential and this is the goal of coarse inference.

To be concrete, we obtain the coarse inference of E(Z) by
solving a convex optimisation program. Inspired by Wardrop
equilibria [13], we treat the time difference Δt between two GPS
points si and si + 1 as the minimum travel time of all paths that
connect si and si + 1. Thus, ∀k if tk = tk(k) ≤ Δt, we raise {te}e ∈ k

until collectively tk ≥ Δt. Denoting E(Z) as t = [t1, t2, …, t|ℰ|]T and
corresponding indicator variables as x = [ξ1, ξ2, …, ξ|ℰ|]T, where
ξe = 1, ∀e ∈ k and ξe = 0, ∀e ∉ k, this constraint is represented as
xTt ≥ Δt. The collection of these constraints, J, then takes the

Fig. 2  Left: Sample GPS points from the Cabspotting data set [44]. Middle: Road maps of downtown San Francisco overlaid with TAZs. Right: Heuristic
network travel times (converted to VOC) established via the timestamp model
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form ℬTt ≥ ℋ, where ℬ|J | × |ℰ| consists of {ξj} j = 1, …, |J| and ℋ|J | × 1

consists of {Δt j} j = 1, …, |J|.
In order to establish a feasible region, we set the upper bound of

a travel time te as the free-flow travel time, te, min (taking 120% of
the speed limit), and the lower bound as the jam-density travel
time, te, max (taking speed 0.5 m/s). To model the correlation of
traffic patterns among nearby roads, we further propose a
regularisation term, D, as a graph-guided-fused-lasso penalty [40,
41] by enumerating all pairs of road segments at each v ∈ V. The
final optimisation program is as follows:

minimise
t, z

∥ z ∥1 ,

subject to z = Dt,
ℬTt ≥ ℋ,
tmin ≤ t ≤ tmax .

(5)

In the above formulation, the objective function is convex as well
as continues. The constraints consist of linear functions and are
bounded in a convex feasible region. Therefore, (5) represents a
convex optimisation program and the minimal value exists in the
feasible region.

4.2 Iterative refinement

Using the previous results as input, we refine E(Z) using a nested
iterative process. The outer loop alternates between map-matching
and travel-time inference, while the inner loop (within in travel-
time inference) performs an expectation–maximisation (EM)
algorithm. The rationale of this design is that as we obtain better
estimations of travel times, we also obtain better map-matching
results, and vice versa.

By leveraging gradually updated travel times of a network, we
adopt the shortest-travel time criterion for map-matching. First, for
a GPS point s, a set of candidate mapping positions Q (e.g.
|Q | = 5) including end points and positions on road segments is
formed based on their Euclidean distances to s. Next, for any pair
of candidate positions of consecutive GPS points qi ∈ Qi and
qi + 1 ∈ Qi + 1, the shortest travel-time path connecting qi and qi + 1 is
recorded. Among all such paths, the one with the least difference to
Δt = Δt(si, si + 1) is treated as the traversed path and denoted as k̄.

After map-matching all GPS points, we obtain a collection of
aggregate measurements, N = { k̄r, Δtr }r = 1, …, |N|, which consist
of map-matched paths and their corresponding travel times. In
order to estimate Z parameterised by θ given N, we set up the
learning problem of θ = {θe}e ∈ ℰ to be maximum likelihood
estimation:

max
q

ℒ(θ |N) = ∑
r

log π Δtr | k̄r; θ , (6)

where π represents the distribution for modelling a travel time and
is assumed univariate and pairwise independent to travel times of
other road segments [42]. With these assumptions, we can factorise
(6) as follows (the precedent term ∑r log is omitted for simplicity):

π Δtr | k̄r; θ = ∫ π Δtr |Z, k̄r π Z; θ dZ

= ∫ π Δtr |Z, k̄r ∏
e:ξe = 1

π Ze; θe dZe .
(7)

Equation (7) can be solved via the EM algorithm. In the E-step, for
a pair k̄r, Δtr , Δtr is decomposed and distributed to road segments
to suffice xTt∗ = Δtr, where t∗ is a possible decomposition of Δtr
(i.e. ∑ t∗ = Δtr). In addition, the likelihood values, w∗, are
computed based on the estimated θ so far. We call a pair (t∗, w∗) a
random allocation. The realisation of t∗ is essentially a fulfilment
of conditional expectation calculation and can be generated

infinitely. In the M-step, all random allocations are gathered and
regrouped by individual road segments. For a road segment e with
regrouped samples {(te, i, we, i)}i = 1…I, we learn θe using the
following formula:

max
θe

∑
i = 1

I
we, ilog π(te, i; θe) . (8)

To solve (8), following [11], we select π to be gamma distribution,
as its positive domain and robustness against long-tail traffic data
are more suitable to model the travel time of a road segment. We
refer interested readers to [11] for more details. Subsequently, the
conditional sampling to suffice xTt∗ = Δtr using the shape factor α
and the scale factor β is realised as follows:

Ae ∼ Γ αe,
ξr, eβe
Δtr

,

te = Δtr
ξr, e

Ae
∑e Ae

, e:ξr, e = 1, e ∈ ℰ,
(9)

where {te}e = 1, …, |ℰ| = t∗ and {ξr, e}e = 1, …, |ℰ| = xr. For initialising
θe = (αe, βe), we take the current E(Z) as the expectation and 60 s
as the standard deviation.

After solving (8) for all road segments with GPS data coverage,
we have obtained an estimation of Z and our framework performs
map-matching again. The iteration continues until certain stop
criteria are reached (e.g. ten iteration runs) and the final E(Z) is
treated as f̄  to serve as the input to nested optimisation. In our
computation, the conversion between travel times and flows is
attained by inverting the road-segment performance function
proposed by the US Bureau of Public Roads:

te = te, min 1 + 1.5 f e
4

ce
, ∀e ∈ ℰ, (10)

where ce is the capacity of a road segment e computed as
ce = 1700 + 10te, min if te, min ≤ 70 mph and ce = 2400 otherwise.

4.3 Nested optimisation

The goal of this procedure is to address spatial sparsity within GPS
data by deriving traffic states on road segments without data
coverage.

We achieve this by solving (4) using ū (i.e. the target O–D
pairs), f̄  (i.e. the target road-segment flows), and ℳ (i.e. the
assignment map). While ū is usually obtained from existing data
and ℳ is chosen to be user equilibrium [i.e. (3)], f̄  is obtained
using the procedures explained in Sections 4.1 and 4.2. Following
[36], we select the distance function in (4) to be the generalised
least squares (GLS) estimator. By further assuming ū and f̄  are
results of the following stochastic system of equations:

ū = u^ + ϵ1,
f̄ = f^ + ϵ2 .

(11)

Equation (4) now has an explicit form: (see (12)) where U and V
are variance–covariance matrices of ϵ1 and ϵ2, respectively. We take
E(ϵ1) = 0 and E(ϵ2) = 0. The additional factor η is introduced to
leverage the importance of ū and f̄  in the estimation. We solve (12)
iteratively using quadratic programming and the Frank–Wolfe
solver [43].

4.4 Computational complexity

Here, we analyse the time complexity of our approach. A road
network is denoted as a directed graph G = (ℰ, V) where ℰ
represents edges and V the nodes. For each GPS point, during the
map-matching, we have a set of candidate mapping positions
denoted as Q. So, given a GPS trajectory which has |S| points, the
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map-matching complexity is O( |S | |Q |2 |ℰ | log |ℰ | ). If we choose
a small value for |Q| (e.g. 5), the actual complexity can be reduced
to O( |S | |ℰ | log |ℰ | ).

The complexity of conditional sampling is O(mn |S | ), where n
represents the number of road segments that a path covers and m
the number of random allocations we would like to generate. Since
m is a constant and can be a small number, the complexity is
O(n |S | ) in practice. The complexity of learning given gamma
distribution is the same as of the conditional sampling and can be
reduced to O(n |S | ) as well.

In solving the traffic assignment problem, we use a line search
within the Frank–Wolfe solver. This is also the key step to evaluate
the objective function. The complexity of a line search algorithm is
O(mlog n), where m represents the number of intervals and n the
number of iterations. Again, by choosing a small m, the algorithmic
complexity can be decreased to O(log n). We refer interested
readers to [43] for a thorough discussion of the rest aspects
regarding the Frank–Wolfe solver. We have used the CVX package
(obtained from http://cvxr.com/cvx/) for solving the convex
optimisation descried in (5) and the GLS estimator in (12). The
complexity information can be found in the package's website.
Lastly, in order to facilitate the computation, we need to store a
road network. By using the adjacency list presentation, the space
complexity is O(ℰ| + V | ).

5 Experiments
For evaluating our approach, we compare our method to Hunter
[11] and Rahmani et al. [15] on a real road network with extensive
heuristic traffic conditions and synthetic GPS traces. In Section 5.1,
we discuss the generation of our data sets. In Section 5.2, we
provide the comparison and evaluation to the two methods
mentioned previously. Lastly, in Section 5.3, we analyse the
parameters of our nested optimisation program.

5.1 Data sets

We use the road network from downtown San Francisco (obtained
from openstreetmap.org, Fig. 2) as the benchmark. The network
contains 5407 nodes, 1612 road segments, and 296 TAZs (obtained
from data.sfgov.org). We have also generated two sets of heuristic
network travel times using the Cabspotting data set [44] via the
technique developed in [39] (Fig. 2 Left) and abundant synthetic
GPS traces based on the generated heuristic network travel times.

The first set of heuristic network travel times is generated via
the system optimal (SO) model [45], which solves the traffic
assignment problem by minimising the entire travel time of a road
network. The result is a set of flows and travel times of all road
segments in a network. Since the Cabspotting data set only
represents partial vehicle population, we multiply the result by ten
constants resulting in ten congestion levels ranging uniformly from
0.19 to 1.85. [The congestion level is measured by volume over
capacity (VOC) and computed as ∑e ∈ ℰ ( f e/ce).]

The second set of heuristic network travel times is generated
through GPS timestamps. Using the Cabspotting data set, we
equally distribute the time difference of a pair of GPS points to all
paths that connect them. For a road segment that is covered by
multiple GPS traces, the average travel time is computed. Using
this approach, we have produced 24 network travel times
representing 24 h of a typical weekday. An example can be seen at
Fig. 2 Right. We refer to this method as the timestamp model.

Using the established network travel times, we generate 20
collections of GPS traces. Each collection contains 30 sets GPS
traces and all sets in a collection share the same number of traces,
which goes from 50 to 1000 in increments of 50. As a result, we
obtain over 10 million synthetic GPS traces for our experiments. A
sampled GPS trace is created by selecting a random source and a
target in the network and planning the route using the shortest
travel time criterion. To mimic features of the Cabspotting data set,
the sampling rate is set to be 60 s and all coordinates are perturbed
by the Gaussian noise (0, 20m) [22].

5.2 Evaluation and comparison

We evaluate our technique by comparing to Hunter [11] and
Rahmani et al. [15]. The first method is equivalent to the inner
loop of our travel-time inference. The number of EM iterations is
set to 5 and the number of random allocations per aggregate
measurement is set to 100. These settings are responsible for the
highest estimation accuracy in [11]. The second method takes a
non-parametric perspective, using a kernel-based technique to
estimate travel times. The weights used to allocate travel times on
individual road segments are set to be the ratio of free-flow travel
times among road segments [23].

The parameters of our nested iterative process are set as
follows: retaining the same settings for the inner loop as in [11], we
empirically set the number of iterations for the outer loop to 10.
This setting is based on the analysis that shows the relationship
between the normalised convergence rate and the number of
iterations for both types of network travel times. As a result, the
convergence rate decreases quadratically as the number of
iterations increases and tends to flatten after ten iterations. This can
be seen in Fig. 3. Each datum in the plot is the average value
computed using all network travel times across all sets of synthetic
GPS traces of either the SO model (6000 trails) or the timestamp
model (14,400 trails). The measurement of each trial is the mean
squared error (MSE) between an estimated and a heuristic traffic
condition, i.e. (∑e ∈ ℰ (te − t^e)2)/ |ℰ|, where te represents a heuristic
travel time and t^e an estimated travel time. 

We evaluate our technique using three metrics. The first metric
is the performance gain of our technique over the existing methods
on travel times by considering all road segments of a network. We
compute this metric based on M = (∑e ∈ ℰ (te − t^e)2)/ |ℰ| as
(Mother − Mour)/Mour, where Mour represents the error between a
recovered traffic condition and its corresponding heuristic traffic
condition computed using our technique, and Mother is the same as

minimise
û

η(ū − u^)TU−1(ū − u^) + (1 − η)( f̄ − f^)TV−1( f̄ − f^),

subject to f^ = ℳ(u^),
u^ ≥ 0,
f^ ≥ 0,
0 ≤ η ≤ 1,

(12)

Fig. 3  Relationship between the normalised convergence rate (%) and the
number of iterations of the outer loop of our iterative process is shown. The
convergence rate decreases quadratically as the number of iterations
increases and tends to flat after ten iterations
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Mour but computed using an existing method. The maximum
relative improvements over Hunter [11] and Rahmani et al. [15]
under the SO model are 78 and 97% (Fig. 4 Top-left), and under
the timestamp model are 54 and 49% (Fig. 4 Top-right),
respectively. In general, when more GPS traces used in estimation,
our technique achieves better performance gains. Such effects are
more apparent with the SO model than the timestamp model. 

The second metric is the error rate of the aggregate travel time
of a network, computed as

|∑e t^e − ∑e te|
∑e te

∀e ∈ ℰ .

Using the SO model, the minimum error rate of our technique is
18%, of Rahmani et al. [15] is 34%, and of Hunter [11] is 48%
(Fig. 4 Middle-left). Using the timestamp model, the corresponding
minimum error rates are 8, 28, and 37% (Fig. 4 Middle-right). As
the number of GPS traces used in estimation increases, our
technique demonstrates consistent advantages in performance over
the other two methods.

The third metric is the map-matching accuracy computed as

SR = #successfully identified road segments
#acutual road segments in the trace .

We compute the relative improvement as
∑SRour − ∑SRother /∑SRour by summing the success rates of all

road segments. The maximum gain of our method over Hunter [11]
and Rahmani et al. [15] under the SO model are 28 and 34%, and
under the timestamp model are 19 and 25%, correspondingly (Fig.
4 Bottom). Again, as the number of GPS traces used in computing
increases, gains in the improvements are observed.

5.3 Analysis of nested optimisation

We have shown that our approach outperforms the existing
methods on estimating travel times in areas with GPS data
coverage. In turn, by inverting (10), we obtain better estimations of
traffic flows. Using them as inputs to the nested optimisation
program [i.e. (12)], we can derive traffic states in areas without
data coverage. In the following, we analyse the factors that
influence the estimation accuracy of the nested optimisation.

The accuracy of (12) is affected by η (i.e. the weighting
parameter), the noise level of ū (i.e. target O–D pairs), and the
noise level of f̄  (i.e. target flows). In reality, the noise level of ū is
difficult to assess because the true values of ū are seldom [37]. For
this reason, in the analysis of η and noise levels of f̄ , we set the
normalised noise level of ū to 50%. In addition, we assume the
noises of ū and f̄  have zero mean and diagonal variance–
covariance matrices [37].

As we mentioned in Section 3, among the parameters, f̄
influences estimation accuracy the most. Here, as illustrated in Fig.
5, we show the normalised noise levels of f̄  computed based on
MSE of the estimated travel times to their corresponding heuristic
travel times, using either the SO model (Left) or the timestamp
model (Middle). Overall, our technique produces lower noise
levels of f̄  than the other two methods, especially with the SO
model, which better approximates real-world traffic than the
timestamp model [45]. 

We further analyse the impact of η and the noise level of f̄  on
the estimation accuracy of u^ (i.e. the estimated O–D pairs).
Specifically, we compute the normalised MSE of u^ using different
values of η and various noise levels of f̄ . The results are shown in
Fig. 5 Right. When η takes a small value (e.g. 0.1), the impact of ū
is restricted, thus, the MSE of u^ becomes sensitive to perturbations
of f̄ . As we gradually increase the value of η, the impact of f̄
attenuates. Nevertheless, the MSE of u^ increases as the noise level
of f̄  progresses. This result highlights the need of a lower noise
level of f̄ , which can be fulfilled with our technique as shown in
Fig. 5 Left and Middle.

6 Field tests
In order to study urban traffic dynamics, we conduct field tests in
two diverse cities in two continents, namely Beijing and San
Francisco.

The GPS data sets used in the field tests are from the
Cabspotting project [44] and the T-drive project [46]. The TAZs of
San Francisco are obtained from data.sfgov.org and the area
considered is from 〈37.7083, −122.514〉 to 〈37.812, −122.358〉
(in latitude and longitude). The TAZs of Beijing are constructed by
dividing the area from 〈39.8043, 116.1904〉  to 〈40.035,
116.5673〉 into 1 km by 1 km grids. More information regarding
our data sets can be found in Table 1. 

We first demonstrate the estimated traffic states of the two cities
in Fig. 6. All computations are conducted in epoch time and the
target O–D pairs are estimated using the technique from [39]. We
observe that the recovered traffic patterns show clearly periodic
phenomena over the course of a week, which is considered as one
of the hallmarks of traffic [27], for the entire network and
decomposed road types. In San Francisco, saddle shapes appear
showing mid-day traffic relief over several days of a week. Such
phenomena are more evident on major roads (i.e. motorway and
truck), but less on the other types of roads. In Beijing, we do not
observe such saddle structures. This suggests the similar usage of
various types of road as transportation infrastructure and the
congestion staying severe throughout daytime. 

We further visualise estimation results over four time intervals
of Beijing in Fig. 7: weekend morning traffic represented by
Sunday 9 AM, weekday morning traffic represented by Tuesday 9
AM, weekday mid-day traffic represented by Thursday Noon, and
weekday evening traffic represented by Friday 7 PM. We have
observed two traffic features in this visualisation. First, the Sunday
morning's congestion tends to be the least severe and the Friday
night's congestion tends to be the most severe. Second, the
congestion situation of Thursday Noon is slightly better than
Tuesday 9 AM, especially considering the traffic between the
fourth and the fifth ring roads, where more residential units are
found than the region inside the fourth ring road. 

7 Conclusion and future work
We have presented a novel framework for estimating urban traffic
states using iterative refinement and Wardrop equilibria on mobile-
sensor data.

First, we obtain the coarse inference of network travel times
using convex optimisation. Next, we take an iterative approach to
jointly estimate traversed paths of probe vehicles and travel times
of road segments in a network. Then, we incorporate the previous
estimated results into a nested optimisation program to estimate
traffic states in areas without data coverage. By further
interpolating the temporal missing values, we obtain full citywide
traffic dynamics.

We have evaluated our approach using a real road network
resulting in consistent and notable improvements over the state-of-
the-art methods. In order to study urban traffic patterns, two large-
scale field tests were conducted in Beijing and San Francisco. The
estimated results can further enable traffic simulations and
animations in various formats [47, 48].

There are several possible future directions. First of all, the
coordination of probe vehicles can be explicitly taken into account
to improve estimation efficiency. Second, with estimated traffic
states, a real-time probabilistic mapping technique for GPS traces
can be developed. Lastly, by fusing estimated results from
historical data with fine-grained traffic simulations, it is possible to
derive even more accurate forecasting of citywide traffic.
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Fig. 4  Left diagrams show results using the SO model while Right diagrams show results using the timestamp model. TOP, the performance gain of network
travel times measured in MSE. Middle: The error rates of all three methods on aggregate network travel times. Bottom: The performance gain of map-
matching accuracy measured using all synthetic GPS traces. Our technique achieves consistent improvements over the other two methods in all measurements

 

Fig. 5  Left and middle: The normalised noise levels of f̄  (i.e. target flows) computed using our technique and the existing methods. In general, for both
models, our technique produces lower noise levels than the other two methods. Right: The normalised MSE of û (i.e. target O–D pairs) using different values
of η and various noise levels of f̄ . When η is small, the error is more sensitive to perturbations of f̄ . Overall, the error increases as the noise level of f̄
increases. This highlights the need for a lower noise level of f̄  and can be fulfilled using our technique as shown in Left and Middle

 
Table 1 Statistics of road networks and GPS data sets used in our field tests. The road networks are obtained from http://
openstreetmap.org. The TAZ file of San Francisco is obtained from http://data.sfgov.org and the area considered is from
〈37.7083, −122.514〉 to 〈37.812, −122.358〉 in latitude and longitude. The TAZs of Beijing are constructed by dividing the area
from 〈39.8043, 116.1904〉 to 〈40.035, 116.5673〉 into 1 km × 1 km grids
City Road network GPS data set

#Nodes #Edges #TAZs Source Period Type #Vehicles #Points Distance travelled
San Francisco 37,635 43,778 786 Cabspotting [44] 3 weeks taxi cabs 536 ∼11 million >4.7 million (km)
Beijing 91,066 105,121 839 T-drive [46] 1 week taxi cabs 10,357 ∼15 million >9 million (km)
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