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Abstract
We present a novel approach for fast collision detection between multiple deformable and breakable objects in
a large environment using graphics hardware. Our algorithm takes into account low bandwidth to and from the
graphics cards and computes a potentially colliding set (PCS) using visibility queries. It involves no precompu-
tation and proceeds in multiple stages: PCS computation at an object level and PCS computation at sub-object
level, followed by exact collision detection. We use a linear time two-pass rendering algorithm to compute each
PCS efficiently. The overall approach makes no assumption about the input primitives or the object’s motion and
is directly applicable to all triangulated models. It has been implemented on a PC with NVIDIA GeForce FX5800
Ultra graphics card and applied to different environments composed of a high number of moving objects with
tens of thousands of triangles. It is able to compute all the overlapping primitives between different objects up to
image-space resolution in a few milliseconds.

1. Introduction

High-performance 3D graphics systems are becoming as
ubiquitous as floating-point hardware. They are now a part
of almost every personal computer or game console. In ad-
dition, graphics hardware is becoming more programmable
and is increasingly used as a co-processor for many diverse
applications. These include ray-tracing, intersection compu-
tations, simulation of dynamic phenomena, atmospheric ef-
fects and scientific computations.

In this paper, we mainly address the problem of collision
detection among moving objects, either rigid or deformable,
using graphics processing units (GPUs). Collision detection
is an important problem in computer graphics, game devel-
opment, virtual environments, robotics and engineering sim-
ulations. It is often one of the major computational bottle-
necks in dynamic simulation of complex systems. Collision
detection has been well studied over the last few decades.
However, most of the efficient algorithms are limited to rigid
bodies and require preprocessing. Although some algorithms
have been proposed for deformable models, either they are
limited to simple objects or closed sets, or they are designed
for specialized models (eg. cloth).

Many algorithms exploiting graphics hardware capabili-
ties have been proposed for collision queries and proximity
computations1, 2, 8, 9, 13, 18, 20, 22, 23. At a broad level, these al-
gorithms can be classified into two categories: use of depth
and stencil buffer techniques for computing interference and
fast computation of distance fields for proximity queries.
These algorithms perform image-space computations, and
are applicable to rigid and deformable models. However,
they have three main limitations:

• Bandwidth Issues:Although graphics hardware is pro-
gressing at a rate faster than Moore’s Law, the bandwidth
to and from the graphics cards is not increasing as fast
as computational power. Furthermore, many algorithms
readback the frame-buffer or depth buffer during each
frame. These readbacks can be expensive on commodity
graphics hardware, e.g. it takes 50 milliseconds to read
back the 1K×1K depth buffer on a Dell 530 Workstation
with NVIDIA GeForce 4 card.

• Closed Objects:Many of these algorithms are mainly re-
stricted to closed objects, as they use graphics hardware
stencil operations to perform virtual ray casting opera-
tions and determine whether a point is inside or outside.

• Multiple Object-Pair Culling: Most of the current algo-
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rithms are designed for a pair of objects and not intended
for large environments composed of multiple moving ob-
jects.

Main Contribution: We present a novel algorithm for col-
lision or interference detection among multiple moving ob-
jects in a large environment using graphics hardware. Given
an environment composed of triangulated objects, our algo-
rithm computes apotentially colliding set (PCS). The PCS
consists of objects that are either overlapping or are in close
proximity. We use visibility computations to prune the num-
ber of objects in the PCS. This is based on a linear time two-
pass rendering algorithm that traverses the list of objects in
forward and reverse order. The visibility relationships are
computed using image-space occlusion queries, which are
supported on current graphics processors.

The pruning algorithm proceeds in multiple stages. Ini-
tially it compute a PCS of objects. Next it considers allsub-
objects(i.e. bounding boxes, groups of triangles, or individ-
ual triangles) of these objects and computes a PCS of sub-
objects. Finally, it uses an exact collision detection algorithm
to compute the overlapping triangles. The complexity of the
algorithm is a linear function of the input and output size, as
well as the size of PCS after each stage. Its accuracy is gov-
erned by the image precision and depth buffer resolution.
Since there are no depth-buffer readbacks, it is possible to
perform the image-space occlusion queries at a higher res-
olution without significant degradation in performance. The
additional overhead is in terms of fill-rate and not the band-
width.

We have implemented the algorithm on a Dell 530 Work-
station with NVIDIA GeForce FX 5800 Ultra graphics card
and a Pentium IV processor, and have applied it to three
complex environments: 100 moving deformable objects in
a cube, 6 deforming torii (each composed of 20,000 poly-
gons), and two complex breakable objects composed of
35,000 and 250,000 triangles. In each case, the algorithm
can compute all the overlapping triangles between different
objects in just a few milliseconds.

Advantages: As compared to earlier approaches, our algo-
rithm offers the following benefits. It is relatively simple and
makes no assumption about the input model. It can even han-
dle “polygon soups". It involves no precomputation or addi-
tional data structures (e.g. hierarchies). As a result, its mem-
ory overhead is low. It can easily handle deformable models
and breakable objects with deforming geometry and chang-
ing topology. Our algorithm doesn’t make any assumptions
about object motion or temporal coherence between succes-
sive frames. It can efficiently compute all the contacts among
multiple objects or a pair of highly tessellated models at in-
teractive rates.

Organization: The rest of the paper is organized as fol-
lows. We give a brief survey of prior work on collision de-
tection and hardware accelerated computations in Section 2.
We give an overview of PCS computation using visibility

queries in Section 3. We present our two-stage algorithm in
Section 4. In Section 5, we describe its implementation and
highlight its performance on different environments. We also
analyze its accuracy and performance.

2. Previous Work

In this section, we give a brief survey of prior work on
collision detection and graphics-hardware-accelerated ap-
proaches.

2.1. Collision Detection

Typically for a simulated environment consisting of multiple
moving objects, collision queries consist of two phases: the
“broad phase” where collision culling is performed to reduce
the number of pairwise tests, and the “narrow phase” where
the pairs of objects in proximity are checked for collision
3, 10.

Algorithms for narrow phase can be further subdivided
into efficient algorithms for convex objects and general-
purpose algorithms based on spatial partitioning and bound-
ing volume hierarchies for polygonal or spline models
(please see survey in14, 15, 16, 19). However, these algorithms
often involve precomputation and are mainly designed for
rigid models.

2.2. Acceleration Using Graphics Hardware

Graphics hardware has been increasingly utilized to acceler-
ate a number of geometric computations, including visual-
ization of constructive solid geometry models5, 21, interfer-
ences and cross-sections1, 2, 18, 20, 22, distance fields and prox-
imity queries7, 8, Minkowski sums11, 12, and specialized al-
gorithms including collision detection for cloth animation
23 and virtual surgery17. All of these algorithms perform
image-space computations and involve no preprocessing. As
a result, they are directly applicable to rigid as well as de-
formable models. However, the interference detection algo-
rithms based on depth and stencil buffers2, 18, 20 are limited to
closed objects. The approaches based on distance field com-
putations7, 8 can also perform distance and penetration com-
putation between two objects. But, they require depth-buffer
readbacks, which can be expensive on commodity graphics
hardware.

3. Collision Detection Using Visibility Queries

In this section, we give an overview of our collision detec-
tion algorithm. We show how a PCS can be computed using
image-space visibility queries, followed by exact collision
detection between the primitives.

Given an environment composed ofn objects,
O1,O2, . . . ,On. We assume that each object is repre-
sented as a collection of triangles. Our goal is to check
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which objects overlap and also compute the overlapping
triangles in each intersecting pair. In this paper, we restrict
ourselves to inter-object collisions. Our algorithm makes no
assumption about the motion of objects or any coherence
between successive frames. In fact, the number of objects as
well as the number of triangles in each object can change
between successive frames.

3.1. Potentially Colliding Set (PCS)

We compute a PCS of objects that are either overlapping or
are in close proximity. If an objectOi does not belong to the
PCS, it implies thatOi does not collide with any object in
the PCS. Based on this property, we can prune the number
of object pairs that need to be checked for exact collision.
This is similar to the concept of computing the potentially
visible set (PVS) of primitives from a viewpoint for occlu-
sion culling4.

We perform visibility computations between the objects
in image space to check whether they are potentially col-
liding or not. Given a setS of objects, we test the relative
visibility of an objectO with respect toS using an image-
space visibility query. The query checks whether any part of
O is occluded byS. It rasterizes all the objects belonging to
S. O is consideredfully-visibleif all the fragments generated
by rasterization ofO have a depth value less than the corre-
sponding pixels in the frame buffer. We do not consider self-
occlusion of an object (O) in checking its visibility status.
We use the following lemma to check whetherO is overlap-
ping with any object inS.

Lemma 1: An object O does not collide with a set of objects
S if O is fully-visible with respect to S.

Proof: The proof of this lemma is quite obvious. IfO is over-
lapping with any object inS, then some part ofO is occluded
by S. We also note that this property is independent of the
projection plane.

The accuracy of the algorithm is governed by the under-
lying precision of the visibility query. Moreover, this lemma
only provides a sufficient condition and not a necessary con-
dition.

3.2. Visibility Based Pruning

We use Lemma 1 for PCS computation. Givenn objects
O1, ...,On, we check ifOi potentially intersects with at least
one ofO1, ..,Oi−1,Oi+1, ...,On, 1≤ i ≤ n. Instead of check-
ing all possible pairs (which can beO(n2)), we use the fol-
lowing lemma to design a linear-time algorithm to compute
a conservative set.

Lemma 2: Given n objects O1,O2, ...,On, an object Oi
does not belong to PCS if it does not intersect with
O1, ..,Oi−1,Oi+1, ...,On, 1 ≤ i ≤ n. This test can be eas-
ily decomposed as: an object Oi does not belong to PCS if

Figure 1: System Architecture: The overall pipeline of the colli-
sion detection algorithm for large environments

it does not intersect with O1, ..,Oi−1 and with Oi+1, ...,On,
1≤ i ≤ n.

Proof: Follows trivially from the definition of PCS.

We use Lemma 2 to check if an object belongs to the PCS.
Our algorithm uses a two pass rendering approach to com-
pute the PCS. In the first pass, we check ifOi potentially
intersects with at least one of the objectsO1, ..,Oi−1. In the
second pass, we check if it potentially intersects with one of
Oi+1, ...,On. If an object does not intersect in either of the
two passes, then it does not belong to the PCS.

Each pass requires the object representation for an object
to be rendered twice. We can either render all the triangles
used to represent an object or a bounding box of the object.
Initially, the PCS consists of all the objects in the scene. We
perform these two passes to prune objects from the PCS.
Furthermore, we repeat the process by using each coordinate
axis as the axis of projection to further prune the PCS. We
use Lemma 1 to check if an object potentially intersects with
a set of objects or not.

It should be noted that our GPU based pruning algorithm
is quite different from algorithms that prune PCS using 2D
overlap tests. Our algorithm does not perform frame-buffer
readbacks and computes a PCS that is less conservative an
algorithm based on 2D overlap tests.

3.3. Localizing the Overlapping Features

Many applications need to compute the exact overlapping
features (e.g. triangles) for collision response. We initially
compute the PCS of objects based on the algorithm high-
lighted above. Instead of testing each object pair in the PCS
for exact overlap, we again use the visibility formulation to
identify the potentially intersecting regions among the ob-
jects in the PCS. Specifically, we use a fast global pruning
algorithm to localize these regions of interest.

We decompose each object into sub-objects. A sub-object
can be a bounding box, a group ofk triangles (say a constant
k), or a single triangle. We extend the approach discussed in
Section 3.1 to sub-object level and compute the potentially
intersecting regions based on the following lemma.

Lemma 3: Given n objects O1,O2, ...,On and each object
Oi is composed of mi sub-objects Ti1,T i

2, ...,T i
mi , a sub-object

T i
k of Oi does not belong to the object’s potentially inter-

secting region if it does not intersect with the sub-objects
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of O1, ..,Oi−1,Oi+1, ...,On, 1≤ i ≤ n. This test can be de-
composed as, a sub-object Ti

k of Oi does not belong to the
potentially intersecting region of the object if it does not in-
tersect with the sub-objects of O1, ..,Oi−1 and Oi+1, ...,On,
1≤ i ≤ n.

Proof: Follows trivially from Lemma 2.

In this case, we again use visibility queries to resolve the
intersections among sub-objects of different objects. How-
ever, we do not check an object for self-intersections or self-
occlusion and therefore, do not perform visibility queries
among the sub-objects of the same parent object.

3.4. Collision Detection

Our overall algorithm performs pruning at two stages, object
level and sub-object level, and eventually checks the primi-
tives for exact collision.

• Object Pruning: We perform object level pruning by
computing the PCS of objects. We first use AABBs of
the objects to prune this set. Next we use the exact tri-
angulated representation of the objects to further prune
the PCS. If the PCS is large, we use the sweep-and-prune
algorithm3 to compute potentially colliding pairs and de-
compose the PCS into smaller subsets.

• Sub-Object Pruning: We perform sub-object pruning to
identify potential regions of each object in PCS that may
be involved in collision detection.

• Exact Collision Detection: We perform exact triangle-
triangle intersection tests on the CPU to check if two ob-
jects collide or not.

The architecture of the overall system is shown in Fig. 1,
where the first two stages are performed using image-space
visibility queries (on the GPU) and the last stage is per-
formed on the CPU.

4. Interactive Collision Detection

In this section, we present our overall collision detection
algorithm for computing all the contacts between multiple
moving objects in a large environment. It uses the visibil-
ity pruning algorithm described in Section 3.2. The overall
algorithm is general and applicable to all environments. We
also highlight many optimizations and the visibility queries
used to accelerate the performance of our algorithm.

4.1. Pruning Algorithm

We use a two-pass rendering algorithm based on the visi-
bility formulation defined in Section 3.2 to perform linear
time PCS pruning. In particular, we use Lemma 2 to com-
pute the PCS. In the first pass, we clear the depth buffer and
render the objects in the orderO1, ..,On along with image
space occlusion queries. In other words, for each object in
O1, ..,On, we render the object and test if it is fully visible

with respect to the objects rendered prior to it. In the second
pass, we clear the depth buffer and render the objects in the
reverse orderOn,On−1, ...O1 along with image space occlu-
sion queries. We perform the same operations as in the first
pass while rendering each object. At the end of each pass, we
test if an object is fully visible or not. An object classified as
fully-visible in both the passes does not belong to the PCS.

4.2. Visibility Queries

Our visibility based PCS computation algorithm is based
on hardware visibility query which determines if a prim-
itive is fully-visible or not. Current commodity graphics
hardware supports an image-space occlusion query that
checks whether a primitive is visible or not. These queries
scan-convert the specified primitives and check if the
depth of any pixel changes. Various implementations are
provided by different hardware vendors and each imple-
mentation varies in its performance as well as functionality.
Some of the well-known occlusion queries based on the
OpenGL extensions include the GL_HP_occlusion_test
(http://oss.sgi.com/projects/ogl-sample/
registry/HP/occlusion_test.txt ) and the
NVIDIA OpenGL extension GL_NV_occlusion_query
(http://oss.sgi.com/projects/ogl-sample/
registry/NV/occlusion_query.txt ). The
GL_HP_occlusion_test returns a boolean answer after
checking if any incoming fragment passed the depth test,
whereas the GL_NV_occlusion_query returns the number
of incoming fragments that passed the depth test.

We need a query that tests if all the incoming fragments
of a primitive have a depth valuelessthan the depth of the
corresponding fragments in the frame buffer. In order to sup-
port such a query, we change the depth test to pass only if the
depth of the incoming fragment is greater than or equal to
the depth of the corresponding fragment in the frame buffer.
With this depth comparison function, we use an image space
occlusion query to test if a primitive is not visible when ren-
dered against the depth buffer. If the primitive is classified as
not visible, then each incoming fragment has a depth value
less than the corresponding depth value in the frame buffer,
thus providing a visibility query to test if a primitive is fully
visible. Note that we need to disable the depth writes so that
the change of depth function does not affect the depth buffer.
We refer to these queries asfully-visibility queries in the rest
of the paper. These queries can sometimes stall the graphics
pipeline while waiting for results. We describe techniques to
avoid these stalls (discussed in section 4.5).

Bandwidth Requirements: Occlusion queries can be per-
formed at the rate of rasterization hardware and involve very
low bandwidth requirements in comparison to frame buffer
readbacks. If we performn occlusion queries, we readbackn
integers for a total of 4n bytes, sent to the host CPU from the
GPU. Moreover, the bandwidth requirement forn occlusion
queries is independent of the resolution of the frame buffer.
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4.3. Multiple Level Pruning

We extend the visibility pruning algorithm to sub-objects, to
identify the potentially intersecting regions among the ob-
jects in the PCS. We use Lemma 3 to perform sub-object
level pruning. We render each sub-object for every object in
the PCS with a fully-visibility query. The sub-object could
be a bounding box, a group of triangles, or even a single
triangle.

The following is the pseudocode of the algorithm.

• First pass:

1. Clear the depth buffer (use orthographic projection)
2. For each objectOi , i = 1, ..,n

– Disable depth mask and set the depth function to
GL_GEQUAL.

– For each sub-objectT i
k in Oi

RenderT i
k using an occlusion query

– Enable the depth mask and set the depth function to
GL_LEQUAL.

– For each sub-objectT i
k in Oi

RenderT i
k

3. For each objectOi , i = 1, ..,n

– For each sub-objectT i
k in Oi

Test if T i
k is not visible with respect to the

depth buffer. If it is not visible, set a tag to note
it as fully visible.

• Second pass:

Same as First pass, except that the two “For each ob-
ject” loops are run withi = n, ..,1.

4.4. Collision Detection

The overall collision detection algorithm performs object
level pruning, sub-object level pruning, and triangle inter-
section tests among the objects in PCS.

4.4.1. Object level pruning

We perform object level pruning to compute the PCS of ob-
jects. Initially, all the objects belong to the PCS. We first
perform pruning along each coordinate axis using the axis-
aligned bounding boxes as the object’s representation for
collision detection. The pruning is performed till the PCS
does not change between successive iterations. We also use
the object’s triangulated representation for further pruning
the PCS. The size of the resulting set is expected to be small
and we use all-pair bounding box overlap tests to compute
the potentially intersecting pairs. If the size of this set is
large, then we use sweep-and-prune technique3 to prune this
set instead of performing all-pair tests.

4.4.2. Sub-Object level pruning

We perform multiple level pruning to identify the poten-
tially intersecting triangles among the objects in the PCS.
We group adjacent local triangles (sayk triangles) to form
a sub-object used in multi-level pruning and prune the po-
tential regions considerably. This improves the performance
of the overall algorithm because performing a fully-visible
query for each single triangle in the PCS of objects can be
expensive. At the next level, we consider the PCS of sub-
objects and perform pruning using each triangle as a sub-
object. The multiple-level sub-object pruning is performed
across each axis.

4.4.3. Intersection Tests

We perform exact collision detection between the objects in-
volved in the potentially colliding pairs by testing their po-
tentially intersecting triangles.

4.5. Optimizations

In this section, we highlight a number of optimizations used
to improve the performance of the algorithm.
• AABBs and Orthographic Projections: We use ortho-

graphic projection of axis-aligned bounding boxes. These
could potentially provide an improvement factor of six
in the rendering performance. Orthographic projection is
used for its speed and simplicity. In addition, we use axis-
aligned bounding boxes to prune the objects for intersec-
tion tests.

• Visibility Query returning Z-fail : A hardware visibility
query providing z-fail (in particular, a query to test if z-fail
is non-zero) would reduce the amount of rendering by a
factor of two for AABBs under orthographic projections.
This query allows us to update the depth buffer along with
the occlusion query, thus providing a factor of two perfor-
mance improvement. We take additional care in terms of
ordering the view-axis perpendicular faces of the bound-
ing boxes, and ensure that the results are not affected by
possible self-occlusion, thus not affecting the query result
by self-occlusion.

• Avoid Stalls: We utilize GL_NV_occlusion_query to
avoid stalls in the graphics pipeline. We query the results
of the occlusion tests at the end of each pass, improving
the performance of our algorithm by a factor of four when
compared to a system using GL_HP_occlusion_test.

• Rendering Acceleration: We use vertex arrays in video
memory to improve the rendering performance by copy-
ing the object representation to the video memory. The
rendering performance can be further improved by repre-
senting the objects in terms of triangle strips and using
them along with vertex arrays.

5. Implementation and Performance

We have implemented our system on a Dell Precision Work-
station consisting of a 2.4 GHz Pentium 4 CPU and a
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GeForce FX Ultra 5800 GPU. We are able to perform around
400K image-space occlusion queries per second on this card.
We have tested our system on four complex simulated envi-
ronments.

• Environment 1: It consists of 100 deformable, open-
ended cylinders moving in a unit cube with a density of
5−6%. Each object consists of 200 triangles. The average
collision pruning time is around 4ms at an image-space
resolution of 800× 800. A snapshot from this environ-
ment is shown in Fig. 5(a).

• Environment 2: It consists of six deformable torii, each
composed of 20,000 triangles. The scene has an estimated
density of 6− 8%. The average collision pruning query
time is around 8ms. A snapshot from this environment is
shown in Fig. 5(b).

• Environment 3: It consists of two highly tessellated mod-
els: a bunny (35K triangles) and a dragon (250K trian-
gles). In Fig. 5(c), we show a relative configuration of the
two models and different colors are used to highlight the
triangles that belong to the PCS. A zoomed-up view of the
intersection region is shown in Fig. 5(d). It takes about 40
ms to perform each collision query.

• Breaking Objects: We used our collision detection al-
gorithm to generate a real-time simulation of breaking
objects. Fig. 6 highlights a sequence from our dynamic
simulation with the bunny and the dragon colliding and
breaking the dragon into multiple pieces due to impact.
The total number of objects and the number of triangles
in each piece are changing over the course of the simula-
tion. Earlier collision detection algorithms are unable to
handle such scenarios in real-time. Our collision detec-
tion algorithm takes about 35ms (on average) to compute
all the overlapping triangles during each frame.

5.1. Performance Analysis

We have tested the performance of our algorithm and system
on different benchmarks. Its overall performance is governed
by some key parameters. These include:

• Number of objects : Our object level pruning algorithm
exhibits linear time performance in our benchmarks. We
have performed timing analysis by varying the number of
deformable objects and Fig. 2 summarizes the results. In
our simulations, we have observed that the pruning algo-
rithm requires only a few iterations to converge (typically,
it is two). Also, each iteration reduces the size of PCS.
Therefore, the visibility based pruning algorithm traverses
a smaller list of objects during subsequent iterations.

• Triangle count per object : The performance of our sys-
tem depends upon the triangle count of the potentially in-
tersecting objects. We have tested our system with sim-
ulations on 100 deformable objects consisting of varying
triangle count. Fig. 3 summarizes the results. The graph
indicates a linear relationship between the polygon count

Figure 2: Number of objects v/s Average collision pruning time:
This graph highlights the relationship between number of objects
in the scene and the average collision pruning time (object pruning
and sub-object/triangle pruning). Each object is composed of 200
triangles. The graph indicates that the collision pruning time is linear
to the number of objects.

Figure 3: Polygons per object vs Average collision query time:
Graph shows the linear relationship between the number of poly-
gons per object and the average collision pruning time. This scene is
composed of 100 deforming cylinders and has a density of 1−2%.
The collision pruning time is averaged over 500 frames and at an
image-space resolution of 800×800

and the average collision query time. Moreover, the num-
ber of polygons per object is much higher than the number
of objects in the scene.

• Accuracy and Image-Space Resolution :The accuracy
of the overall algorithm is governed by image-space reso-
lution. Typically a higher resolution leads to higher fill-
rate requirements, in terms of rendering the primitives,
bounding boxes and performing occlusion queries. A
lower image-space resolution can improve the query time,
but can miss intersections between two objects, whose
boundaries are touching tangentially or have a very small
penetration. Figure 4 highlights the relationship between
collision pruning time and the image-space resolution.
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Figure 4: Image-space resolution vs Average collision query time:
Graph indicating the linear relationship between screen resolution
and average collision query time. The scene consists of 100 de-
formable cylinders and each object is composed of 200 triangles.

• Output Size: The performance of any collision detection
algorithm varies as a function of the output size, i.e. the
number of overlapping triangle pairs. In our case, the per-
formance varies as a linear function of the size of PCS
after object level pruning and sub-object level pruning as
well as the number of triangle pairs that need to be tested
for exact contact. In case two objects have a deep penetra-
tion, the output size can be high and therefore the size of
each PCS can be high as well.

• Rasterization optimizations: The performance of the
system is accelerated using the rasterization optimizations
discussed in Section 4.5. We have used AABBs with or-
thographic projections for our pruning algorithms. We
have used immediate mode for rendering the models and
breakable objects, and used GL_NV_occlusion_query to
maximize the performance.

5.2. Pruning Efficiency

Our overall approach for collision detection is based on
pruning techniques. Its overall performance depends on the
input complexity, the relative configuration of different ob-
jects in the scene as well as pruning efficiency of the object-
level and sub-object level algorithms. Most pruning algo-
rithms based on bounding volume hierarchies can take a long
time for parallel close proximity scenarios6 (eg. two con-
centric spheres with nearly same radius). Our algorithm per-
forms pruning at the triangle level and works well in these
configurations. It should be noted that the pruning efficiency
largely depends upon the choice of view direction for ortho-
graphic projection. Certain view directions may not provide
sufficient pruning as a larger number of objects may be par-
tially visible from this view. One possible solution to avoid
such configurations is randomly select the directions for or-
thographic projection.

5.3. Comparison with Other Approaches

Collision detection is well-studied in the literature and a
number of algorithms and public-domain systems are avail-
able. However, none of the earlier algorithms provide the
same capabilities or features as our algorithm based on PCS
computation. As a result, we have not performed any direct
timing comparisons with the earlier systems. We just com-
pare some of the features of our approach with the earlier
algorithms.

Object-Space Algorithms: Algorithms based on sweep-
and-prune are known for N-body collision detection3.
They have been used in I-COLLIDE, V-COLLIDE, SWIFT,
SOLID and other systems. However, these algorithms were
designed for rigid bodies and compute a tight fitting AABB
for each object using incremental methods, followed by sort-
ing their projections of AABBs along each axis. It is not
clear whether they can perform real-time collision detec-
tion on large environments composed of deformable mod-
els. On the other hand, our algorithm performs two passes
on the object list to perform the PCS. We expect that our
PCS based algorithm to be more conservative as compared
to sweep-and-prune. Furthermore, the accuracy of our ap-
proach is governed by the image-space resolution.

A number of hierarchical algorithms have been proposed
to check two highly tessellated models for overlap and some
optimized systems (e.g. RAPID, QuickCD) are also avail-
able. They involve considerable preprocessing and memory
overhead in generating the hierarchy and will not work well
on deformable models or objects with changing topology.

Image-Space Algorithms :These include algorithms based
on stencil buffer techniques as well as distance field com-
putations. Some systems such as PIVOT are able to per-
form other proximity queries including distance and local
penetration computation, whereas our PCS based algorithm
is limited to only checking for interference. However, our
algorithm only needs to readback the output of a visibility
query and not the entire depth-buffer or stencil buffer. This
significantly improves its performance, especially when we
use higher image-space precision. Unlike earlier algorithms,
our PCS-based algorithm is applicable to all triangulated 3D
models (and not just closed objects), and can handle arbi-
trary number of objects in the environment.

5.4. Conclusions and Future Work

We have presented a novel algorithm for collision detec-
tion between multiple deformable objects in a large environ-
ment using graphics hardware. Our algorithm is applicable
to all triangulated models, makes no assumption about ob-
ject motion and can compute all contacts up to image-space
resolution. It uses a novel, linear-time PCS computation ap-
plied iteratively to objects and sub-objects. The PCS is com-
puted using image-space visibility queries widely available
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on commodity graphics hardware. It only needs to readback
the results of a query, not the frame-buffer or depth buffer.

Limitations: Our current approach has some limitations.
First, it only checks for overlapping objects, and does not
provide distance or penetration information. Secondly, its
accuracy is governed by the image-space resolution. Finally,
it currently cannot handle self-collision within each object.

There are many avenues for future work. In addition to
overcoming these limitations, approaches. we would like to
use our PCS based collision detection for more applications
and to evaluate its impact on the accuracy of the overall sim-
ulation. We would like to further investigate use of the new
programmability features of graphics hardware to design im-
proved geometric query algorithms.
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(a) Environment1: This scene consists of100dy-
namically deforming open cylinders moving ran-
domly in a room. Each cylinder is composed of200
triangles.

(b) Environment2: This scene consists of10 dynamically
deforming torii moving randomly in a room. Each torus is
composed of20000triangles

(c) Environment3: Wired frame of dragon and bunny
rendered in the following colors - {cyan,blue} high-
light triangles in the PCS, {red, white} illustrate por-
tions not in the PCS. The dragon consists of250K
triangles and the bunny consists of35K faces

(d) Environment3: Zoomed view highlighting the ex-
act intersections between the triangles in the PCS.
The configuration of the two objects is the same as
Fig. 5(c). The cyan and blue regions are the overlap-
ping triangles of the dragon and bunny respectively.

Figure 5: Snapshots of simulations on three complex environments. Our collision detection algorithm takes 4,8, 40ms respectively on each
benchmark to perform collision queries on a GeForce FX 5800 Ultra with an image resolution of 800×800.

Figure 6: Environment with breakable objects: As the bunny (with 35K triangles), falls through the dragon (with 250K), the number of
objects in the scene (shown with a yellow outline) and the triangle count within each object change. Our algorithm computes all the overlapping
triangles during each frame. The average collision query time is 35 milliseconds per frame.
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