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Abstract. We present a novel algorithm for planning the motion of rigid and
articulated robots in complex, dynamic, 3D environments. Our approach is to re-
formulate the motion planning problem as a simulation of a constrained dynamical
system, and guide this system using generalized Voronoi diagrams (GVDs). In our
framework, each rigid robot is subject to virtual forces induced by geometric and
mechanical constraints. These may include constraints to have a robot follow an
estimated path computed using a GVD, constraints to link rigid objects together
to represent an articulated robot, or constraints to enforce a spatial relationship
between multiple collaborative robots. The resulting algorithm uses all constraint
forces to move the robot along an estimated path through the environment, while
avoiding collisions with obstacles and enforcing joint and positional constraints.
Our algorithm works well in dynamic environments with moving obstacles and is
applicable to planning scenarios where multiple robots must move simultaneously
to achieve a collision free path.

1 INTRODUCTION

Motion planning is one of most fundamental problems in algorithmic robotics.
The classic motion planning problem, also referred to as the Piano Mover’s
problem, can be stated as the following: Given a robot R and a workspace
W, find a path, P, from an initial configuration 7 to a goal configuration
G, such that R never collides with any obstacle O; € W. The path P, if
such a path exists, is a continuous sequence of positions and orientations (i.e.
configurations) of R. Planning tasks are typically characterized by geometric
goal regions, a variety of mechanical and geometric constraints, and often a
partially known environment with uncertainties and moving obstacles.

Main Results: In this paper, we present a novel motion planning algorithm
for rigid and articulated robots. Our algorithmic framework is based on con-
strained dynamics [27] used for physically-based modeling. We reformulate
the motion planning problem as a dynamical system simulation, where con-
straints are enforced by virtual forces imposed on the system. Each robot is
treated as a rigid body, or a collection of rigid bodies, and is moved subject to
all types of constraint forces. These may include constraints that are inher-
ent to the planning scenario, such as constraints that enforce the joint angle
limits and link connectivity of articulated robots or constraints that enforce
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some required spatial relationships between multiple collaborative robots. In
addition to these required constraints, we introduce constraints designed to
guide the robot through the environment to the desired goal configuration.
Using global geometric analysis from the generalized Voronoi diagram [12] of
the workspace, we define constraints that move the robot to avoid both static
and moving obstacles, and also follow an estimated path to the goal. The so-
lution to the motion planning problem is the collection of configurations of
the dynamical system that satisfy all geometric and mechanical constraints.

Although our current implementation is only designed to handle certain
types of planning scenarios, our proposed framework is rather general. The
framework can be extended to incorporate many different constraint types
and also many different constraint solving methods, such as optimization,
local iteration, symbolic algebraic solvers, etc. Our planning planning frame-
work has the following characteristics:

e Portable: It can plan paths for both rigid and articulated robots of
any topology, including both revolute and prismatic joints, and of any
number of degrees of freedom. It can also be extended to handle robots
that deform over time governed by the law of physics.

e Dynamic: It can plan collision free motion for an object in the presence
of moving, or deforming, obstacles, as well as other collaborating robots,
whose motion is not known a priori.

e General: It allows the user to specify a wide range of relationships be-
tween robots as well as between robots and other objects in the scene.
Examples of such relationships include: a robot avoiding other moving
robots, multiple robots following a leader, and multiple robots collabo-
rating to manipulate an object.

To demonstrate our framework we have implemented a planner for rigid and
articulated robots in dynamic environment that runs at interactive rates for
many moderately complex scenes. We demonstrate the effectiveness of our
planner for virtual assembly and electronic prototyping. We show that it
works well in a changing scenes with moving obstacles and multiple col-
laborating robots, in applications to assembly line planning, automated car
painting, and maintainability studies.

Organization: The rest of the paper is organized as follows. In section 2, we
briefly survey related work. Section 3 presents an overview of our planning
framework. We describe the detailed formulation of various constraints in
section 4. Section 5 explains how planning scenarios are represented in our
framework. We demonstrate our planner working on several virtual proto-
typing problems in section 6. In section 7, we offer a conclusion and suggest
some future research directions.
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2 RELATED WORK

Motion planning has been extensively studied in robotics, computational ge-
ometry and computer-aided manufacturing for more than three decades [19].
Most of the earlier work has focused on the Piano Mover’s problem.

2.1 Global vs. Local Planning Methods

There have been two class of approaches to motion planning: global and local
methods. Global planning methods, including the first Roadmap Algorithm
[6], PRM [14,15] and other geometric or “criticality-based” methods [10,19],
are guaranteed to find a path, if one exists, although they may take a long
time computing it. Many of the global methods, with the exception to variants
of PRM, have been applied with limited success for mostly lower-dimensional
planning queries in static environments, due to high computational costs.

On the other hand, local methods such as artificial potential field methods
[16], are usually fast, but are not guaranteed to find a path, even if one exists.
Algorithms based on artificial potential field methods are frequently used in
industrial applications [7,21]. In a dynamic environment, where the motion
of obstacles in the scene is not know a priori, it is difficult for global methods
to compute the complete solution path in real time to avoid collision with
the moving obstacles. Local methods have known limitations as well. For
example, potential field methods are known for their entrapment problems
at local minima of the potential function.

Our method is an incremental construction of a roadmap, whose the
curves locally satisfy all constraints imposed on the robot while remaining
maximally clear of nearby obstacles. At the same time, to help avoid the local
minima problem, the framework takes global geometric analysis of the envi-
ronment, obtained from the Generalized Voronoi Diagram, into consideration
while performing the local planning.

2.2 Voronoi Diagrams in Motion Planning

Generalized Voronoi diagrams (GVDs) have long been used as a basis for
motion planning algorithms [5,8-10,13,22,25,26]. The GVD represents the
connectivity of a space but has a dimension lower by one, and (in three di-
mensions) it is composed of surfaces of maximal clearance. Unfortunately, no
good and practical algorithms are known for computing the Voronoi diagrams
of large environments. In the worst case the complexity of Voronoi diagrams
is O(n?), where n is the number of polygons in the environment. Moreover,
the Voronoi diagram of a polygonal environment is composed of quadric sur-
faces and degree four curves that meet at junctions whose algebraic degree is
eight. It is hard to accurately compute an arrangement of these curves and
surfaces using fixed precision arithmetic.

Our approach takes advantage of a method proposed in [12] which uses
graphics hardware to quickly compute a discretized, error-bounded approxi-
mation to the GVD of the workspace, to provide useful information for motion
planning.
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2.3 Constraint Solving

Geometric constraint solving has been extensively studied in many different
fields, such as CAD/CAM, molecular modeling, and theorem proving [3,4,17].
There are two basic strategies: instance solvers and generic solvers. Some
of the common approaches include numerical algebraic techniques, graph-
based algorithms, logical interference and term rewriting, symbolic algebraic
solvers, and propagation methods [3]. Any one of these techniques could be
used in our planning framework.

In our current implementation, we borrow a combination of ideas from
some of these techniques, and specializes them for motion planning. The goal
of our implementation is to achieve real-time performance for dynamic scenes
with moving obstacles and multiple, rigid or articulated, robots. Since, the
constraint solving problem for motion planning can be NP-hard for arbitrarily
high degree-of-freedom manipulators, we consider the intended solution and
infer certain metric and topological properties of the planning problem as
a dynamical system, and deduce a few heuristics that succeed with high
probability under the assumptions of compatible constraints and temporal
coherence. The details of our constraint solving approach will be given in
Sec. 4.

3 FRAMEWORK OVERVIEW

Our approach is an opportunistic planning framework powerful enough to
handle dynamic environments, and general enough to incorporate many dif-
ferent types of constraints and global analysis to govern an object’s motion.
It also allows the incorporation of complex relationships between collaborat-
ing entities. In this framework even articulated robots are represented using
constraints, linking collections of rigid objects. In addition, this framework
allows natural extension to planning of flexible robots and incorporation of
dynamics, non-holonomic, and other types of constraints.

3.1 Simulation Framework
The basic essence of our framework is to describe each rigid object in the plan-
ning scene as a dynamical system, which is characterized by its state variables
(i-e. position, orientation, linear and angular velocity). In this framework, a
robot can be a rigid body, or a collection of rigid bodies, subject to the in-
fluence of various forces in the workspace, and restricted by various motion
constraints. This transforms a motion planning problem into a problem of
defining suitable constraints, and then simulating the rigid body dynamics of
the scene with each constraint acting as a virtual force on the objects. That
is, if ¢ is the configuration of the robot at some time ¢, then each constraint
can be represented as a function of ¢, C(g). The virtual force induced by each
*3E6()q0 (9)

constraint is simply f, = where the energy function, E(C(q)), is

defined as E(C(q)) = %‘C’ (¢)-C(q) and ks is a generalized stiffness constant.
We’ll use the following notation for the rest of the paper:
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o Let R ={Ri1,...,Rn} be aset of m rigid objects.

e For each R; at time ¢, let a state vector st = (post,rott,lint, ang?) rep-
resent the objects position, rotation, linear and angular velocity.

e Let S? be the system state vector, obtained by concatenating the state
vectors st for all i.

e Let C = {C1,Cs,...,C,} be a set of n constraints.

e For each constraint C;, let F;(S*) be the force induced by constraint j
given the object system state St.

The simulation steps from time ¢ to time ¢ + h and updates the state
of each object subject to the forces induced by the constraints, using the
following steps:

BEGIN LOOP

Update Obstacles: For each dynamic obstacle O;, update its state in S*.
Compute Constraint Forces: Summingup all virtual forces, F,(S*) = Z?zl F;(SY).
Update System State: Compute S**"* from S* subject to F.(S?) [27].

Update Object States: For each object R;, update sﬁ’Lh from Stth.

Increment Time: t=t+h

END LOOP

In this framework the solution to the motion planning problem, for a
particular object R; emerges as the sequence of states, {s!, s?rh, . sz+k*h},
such that the object is in its initial configuration at time ¢, and achieves the
goal configuration at time ¢ + k x h. The simulation must run for as many
time steps as necessary for all objects for which a planned path is desired, to

reach their goal configurations.

3.2 Dynamic Scenes

Since our intent is to handles scenes in which obstacle motion is not known
a priori, our planning framework must incorporate an explicit dependence
on time. As a consequence, a path computed for a particular time interval
may not be valid for the different time interval due to different configurations
and trajectories of the obstacles. In the above simulation loop we ensure this
interdependence by synchronizing the time step of the planning simulation
with the time step that governs the motion of obstacles in the scene. It is
important to note that the total number of time steps needed to plan a path
through a dynamic scene can vary dramatically with the obstacle motion.
This occurs, for example, when the robot must wait for a slow moving obstacle
to move out of the way before proceeding to the goal.

3.3 Constraints
To achieve the desired results without robustness problems, we further classify
the constraints into soft and hard constraints and treat them differently.

Hard Constraints are those that absolutely must be satisfied at every time
step of the simulation. Common examples of hard constraints include:
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objects must stay within the bounds of the scene

objects must never intersect or penetrate each other %vspace*-0.25em
links of an articulated robot must remain attached together

the joint angles in an articulated object must remain within some pre-
defined limit

Soft Constraints serve as guides to encourage or influence the objects in the
scene to behave in certain ways. They are simulated using penalty forces.
Some common examples of soft constraints include:

an object should move to follow the nearby medial axis of the workspace
an object should move towards a goal configuration

an object should move to avoid the nearest obstacles

an object should move towards goals set by a higher level planner

More details on constraint formulation and constraint solving techniques
will be presented in Sec. 4.

3.4 Use of Voronoi Diagrams

In our framework we define constraints that guide the robot towards the
planning goal. To obtain these crucial constraints we use information about
the environment obtained by Voronoi diagrams. This is done in two ways:

Estimated Paths are used in a manner similar to the basic philosophy taken
by [2,8-10,26], to provide global information to the path planner. To obtain
this information we use the generalized Voronoi diagram (GVD) of the en-
vironment. The GVD computation is accelerated by graphics hardware and
can be recomputed as the environment changes. This global information is
incorporated into our framework as a constraint that guides the robot along
the path computed from the GVD of the environment. The estimated path
based on the GVD is not a true collision-free path, but by using other con-
straints our planner will correct the estimated path, avoiding collisions as the
simulation proceeds. This shares the similar theme with OBPRM [1].

Obstacle Avoidance is accomplished using a by-product of the GVD compu-
tation. This byproduct is a discretized distance field of the workspace. This
distance field can be recomputed in real time around the regions of interests,
using hierarchical bounding boxes and parallel computing on today’s graph-
ics hardware [12]. It is used to perform distance computation, as well as quick
rejection tests, which can be followed by exact collision detection if needed.
Using this distance field, we can also define soft constraints to maintain a
minimum clearance between a robot and its environment. The penalty forces
that result from this constraint will tend to align the robot to the medial axis
of the environment.

4 CONSTRAINT FORMULATION

4.1 Solving The Constraints
We use two main constraint solving techniques in the current implementation
of our planning framework: penalty forces and iterative relaxation. Penalty
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forces are used to represent soft constraints, while iterative relaxation is used
to enforce hard constraints. Other constraint solving techniques can also be
appropriately incorporated. Since we want the object states to satisfy all hard
constraints at the end of each time step, we perform relaxation on the hard
constraints after applying penalty forces based on soft constraints.

Applying Penalty Forces: We use penalty forces to apply soft constraints
to the rigid objects in a planning scene. As we will describe in Sec. 4.3, each
type of soft constraint, C;, has a method Get_Penalty_Force(C;, Rj, St, t)
which returns the force and torque generated by the constraint C;, on object
Rj, at time ¢, with the scene in the state S*. The total force on an object
is the sum of all penalty forces acting on that object. To update the object
state for each object, we integrate this total force using the Midpoint Method
[27]. We use this method because some of the soft constraint penalty forces
are computationally intensive to evaluate, and the midpoint method provides
stable integration with only two force evaluations per time step.

Iterative Relaxation: Once objects in the scene are updated as a result
of the penalty forces due to the soft constraints, their state may violate one
or more of the hard constraints. For each hard constraint, C, we define the
residual, Res(Cy,S?), to be a real number which represents the degree to
which Cp, is violated when the objects are in state St. For each type of hard
constraint Cp, we require an instance solver Relaxz(Cy, S?), to be described in
Sec. 4.2, which returns a new state, S, in which Res(C},.S) = 0. To efficiently
ensure that these constraints are satisfied, we use the well known Nonlinear
Gauss-Siedel method [23]. The iterative relaxation method, described in Al-
gorithm. 1, relaxes each constraint in sequence repeatedly, until the objects
converge to a state for which the sum of the residuals, over all constraints, is
Z€ro.

Relax_Constraints

Input The state S, at time #, of all rigid objects, points and vectors in the simu-

lation, the set C of all hard constraints.
Output New state vector S which satisfies all hard constraints.

Let S « S°.
Repeat:{
for each hard constraint C;: {
S < Relaz(C;, S).

}
tuntil 37 |Res(C:, S)| =0
return The state S.

ALGORITHM 1: Relax Hard Constraints
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Convergence of the Relaxation Method: Our framework allows the use
of many different constraint solving techniques. The reasons that we choose,
in our current implementation, to use the iterative relaxation method intro-
duced in Sec. 4.1, instead of other techniques (e.g. Lagrangian formalism)
to satisfy the hard constraints, is the method’s simplicity and because it al-
lows our implementation to achieve interactive performance in most practical
scenarios This rapid convergence can be attributed to two factors: temporal
coherence and compatible constraints.

Our system is able to take advantage of temporal coherence because, as
a physical simulation, it uses small time steps during which the objects in
the scene move very little. Moreover, if we assume that all hard constraints
are satisfied at the beginning of a time step, the fact that the object motion
due to soft constraints is small ensures that the iterative method starts in an
initial configuration that is near a valid configuration, if one exists. This all
but ensures that the iterative method converges to the solution. It also allows
convergence to take place in a relatively small number of iterations, providing
stable interactive performance in many practical scenarios. Of course, it is
possible for the method to never converge when, for example, there are two
incompatible constraints, such that satisfying one necessarily violates the
other. This situation does not typically occur in practice because the hard
constraints are defined so that they are initially compatible with each other.

4.2 Hard Constraints

To ensure that the simulation enforces the high level hard constraints, such
as those mentioned in Sec. 3.3, we use three atomic hard constraints in our
current implementation:

e Non-Penetration Constraints

e Point Distance Constraints

e Point Planar Angle Constraints
For each type of hard constraint we will now describe the instance solver
Relax(C, S?). This solver is used in the iterative algorithm of Sec. 4.1 to
enforce all of the constraints in the scene. For the constraints that act on rigid
objects the solver updates the state, including positions and orientations, of
the objects; while for point (distance or angle) constraints, the solver modifies
only the positions of the points.

Non-Penetration Constraints: Assuming that all rigid objects in the
scene represent closed volumes, we consider a non-penetration constraint be-
tween two objects to be satisfied as long as their volumes are disjoint. In
most cases, this constraint can be weakened to only require that the objects’
boundaries do not penetrate each other. Due to the importance of this con-
straint for correct motion planning, we use an in-house proximity (collision)
query package, PQP [11,18], to detect when two objects penetrate. The resid-
ual for a non-penetration constraint is then just O if the object are disjoint
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and 1 if the objects are not. The problem of separating objects that penetrate,
in a physical simulation, is one that has been addressed in many ways [27].
The approach that we use to implement the Relax solver for non-penetration
constraints is the impulse-based rigid body dynamic simulation [27]. The ad-
vantages of this method is that objects are guaranteed to be disjoint at the
end of every time step, and that objects rebound from collisions in the most
natural possible way. In most planning scenarios, non-penetration constraints
should be applied between all objects in the scene, ensuring that the objects
behave as if they are solid, although it is possible to have objects that are
selectively solid, or completely permeable, if desired.

Point Distance Constraints: These constraints enforce a fixed separation
between pairs of points. Thus at a time ¢, given:

e p; € R?, and its world transformation T}

e p» € R?, and its world transformation 7§

e d € R, the constraint distance.

the constraint is satisfied when dist(T}(p1), T2 (ps)) = d, where dist() is the
Euclidean distance. Given this formulation of a point distance constraint we
define the residual of the distance constraint as:

Res(Caist, S) = Aa = dist(T{ (p1), T (p2)) — d, (1)
where Ay represents the linear distance that the two points must travel to

reach the required separation. To solve the distance constraint we simply
move each point a straight line distance of A;/2 towards each other.

Point Planar Angle Constraints These constraints enforce the angle
between two points, about a specified axis of rotation. To define these con-
straints we require, at time ¢:

e p1 € R?, and its world transformation 77}

e p» € R3, and its world transformation T%

e 0 € R3 the origin of the joint, and its world transformation T}

. (E; € R3, axis of rotation for the joint, and its world transformation 7'

® Oin, Omaz € R, the angle limits.
We define the angle 6 as the planar angle betw_ee)n the vectors T} (p1) — T (o)
and T%(p2) — T (o) in the plane normal to T (azis). The constraint is satisfied
as long as 6 is in the interval [0in,Omaz]- Given this formulation of a point
planar angle constraint between points the residual of the angle constraint is
then defined as:

0 — Omag if 0 > 002

Res(Cang,S) = 0 — Opin if 6 < Opin (2)
0 otherwise

To satisfy the angel constrain, if Ag = Res(Cqng,t) # 0, the point T} (p1) is
rotated an angle Ay /2, and T¥(p2) rotates an angle —Ay/2 about the rotation
axis, T!(axis).
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Relating Constraints: Unlike the non-penetration constraints, the point
distance and point planar angle constraints are independent of the object ge-
ometry; they instead enforce relationships between points and vectors defined
in the scene. These points and vectors can be fixed in world coordinates or
expressed relative to the coordinate frames of objects in the scene. In Sec. 5.1
we will address how these point constraints can be combined to achieve the
high level hard constraints described in Sec. 3.3.

To allow these constraints between point and vectors to influence the
behavior of objects in the scene we use a rigid structure, such as a tetrahedron,
which we define using point distance constraints, to represent the coordinate
frame of each rigid object. We chose four linearly independent points in the
object’s coordinate system, and set distance constraints between them to
enforce their initial separations. When the object is transformed the rigid
structure is also transformed and its distance constraints remain trivially
satisfied. At the same time, as long as the constraints that define the rigid
structure are satisfied we can uniquely determine the object’s transformation
from the world locations of the four points of the rigid structure.

To constrain the relative motion of objects in the scene we define con-
straints between the points of their rigid structures. Thus the order in which
the hard constraints are relaxed in Alg. 1 is not arbitrary. At each frame of
the simulation the constraints between all of these points are enforced first,
possibly changing their locations. Then, from these new point locations, we
update the world state of the associated rigid object to a state that respects
the constraints. Only after the point constraints have been solved and the
associated rigid body states’ have been updated do we relax any constraints
between the rigid objects themselves.

4.3 Soft Constraints

Soft constraints, in our framework, are constraints that generate penalty
forces to guide the motion of objects without imposing strict motion restric-
tions. The types of soft constraints in our current system include:

e Surface repulsion

e Goal attraction

e High-level path following

For each soft constraint, we will describe the function that is used to generate
a force along the gradient vector of the constraint.

Surface Repulsion: These constraints use local proximity information,
computed as part of the GVD calculation, to allow objects to be repelled
from the surfaces of nearby obstacles. To define a surface repulsion constraint
for a rigid body, R4, relative to a second rigid object Rz, we specify distance
threshold, §, and a force coefficient k£ € [0,1]. In our method of assigning
an estimated path for a robot, R, using Voronoi information, the high level
planner is able to provide an associated minimum distance tolerance along
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Bounding box of R Distance -
field of R, o

R, R, i

Distance For ¢
i Threshold H orces:
H sample
points on
{Expanded bounding box of R R‘

distance field of Rs. (c) Forces act on R in the gradient direction of the distance
field.

the path, which can be used to initialize §. The priority, k, specifies the rel-
ative importance of repulsion constraints, so that if R; is trapped between
two obstacles, it will give more priority to evading one than the other. Soft
constraint priorities are set equal to 1, unless the user specifies another value.
To apply the constraint, we first perform some computations using axis-
aligned bounding boxes as approximations for the objects involved. For object
Ro we take the axis-aligned bounding box and expand it by the distance
threshold, 4, as shown in Fig. 1 (a). We intersect this expanded bounding box
with the bounding box of R; to perform a quick rejection test to determine if
the two objects are further than the distance threshold é apart. If this is the
case, then we can terminate the computation. If the bounding box test fails,
we compute the intersection, call it I, of the two bounding boxes. We then
use a hardware accelerated distance field computation [12], a by-product
of the GVD computation, to generate the distance values for the surface
features of object Ry in the region I as shown in Fig. 1 (b). The fact that
this computation is performed using graphics hardware enables the distance
field of the object to be generated in real time without any precomputation or
assumptions about the geometry. We intersect this distance field with sample
points on the surface of object R;. For each sample point that lies in I, we
check the distance from that point to the nearest point on the surface of R,
by referencing the distance field. A force is generated, at each sample point,
that is in the direction of the gradient of the distance field, proportional to the
distance between that sample point and the surface of R, as seen in Fig. 1
(c). This force should be zero for sample points beyond the distance threshold,
and increase to infinity as the distance between the surfaces decreases. In our
implementation the force at each sample point, p;, is given by:

5t e g
force(pi, Ro) = { distmiR2)* Lif dist(p;, R2) < 0 )
0 otherwise

The force induced by this constraint on R; is the sum of all forces on all [
sample points on R;. This is a force that moves R; away from R, enforcing
the surface repulsion constraint.

Goal Attraction: If the robot has not reached its goal configuration, this
constraint generates a penalty force that attracts the robot towards its goal.
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This constraint could be applied to one component of an articulated robot,
such as the end effector, or to multiple components of the robot.

High Level Path Following Using GVDs: One well-known problem with
using the penalty forces to achieve planning goals is that the robot can be
caught in a local minima and fail to reach the goal. To address this issue we in-
tegrate global geometric analysis, generated by a high-level task planner [20],
into our planning framework. There are many well known techniques for ob-
taining an estimated path for a robot based on the static obstacles in the
scene, such as a medial axis based planner [10,12], a Probabilistic Roadmap
Planner [14], a binary space partitioning of the workspace [21], or simply by
taking input from a user [7]. Any of these can be integrated into our planning
framework.

In our current implementation, we use a high level path planner based on
the GVD [10]. As described in Sec. 3.4 this planner can be utilized throughout
the planning simulation to provide updated estimated paths for the robot.
Although this is not a complete solution, it does ensure that the robot is
not easily trapped in a local minimum of the constraint force fields. The
object’s orientation along the estimated path is left arbitrary, so that it can
be determined by other soft constraints.

5 SCENE REPRESENTION

In this section we will briefly outline how to render the given geometry and
other sensory input into hard and soft constraints in the constraint-based
planning framework. Assume that the geometry representing the robots and
obstacles is given, as well as prescribed motion, simulated or scripted, for the
obstacles over time. Our system then defines constraints that will restrict the
motion of the robots to meet the design specifications, and also guide the
robots to complete the planning tasks.

5.1 Hard Constraints and Articulated Robot Joints

We will now illustrate how the connectivity and angle limit constraints of an
articulated object can be represented with a combination of point constraints
as described in Sec. 4.2. We rely on the ability to use constraints defined be-
tween points of a rigid structure of point distance constraints, that represents
the coordinate frame of each object, to enforce relationships between the ob-
jects themselves, as described in Sec. 4.2.

Ball Joint Example: Suppose that we have two rigid objects, Ry and R,
and wish to constrain them to only two relative rotational degrees of freedom,
i.e. a ball joint, about some world point o between them. We would then
define p; = o in the coordinate frame of R, and p; = o in the coordinate
frame of Ry. Then we would link p; and p2 to the rigid structures of R,
and Ro respectively, using three linearly independent distance constraints
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each. These constraints ensure that p; is rigidly attached to the structure
representing R; and p, is rigidly attached to the structure representing Rs.
We then define a distance constraint, with constraint distance of 0, between
p1 and po, so that their world positions are constrained to coincide. This
ensures that when all constraints are satisfied the two objects, Ry and R,
are rigidly attached to a common rotation point at o, whose position is now
expressed in the coordinate frames of the two objects, as shown in Fig. 2.

Rotation Axis

1
Vg

Constraints
Attach to the
Rigid Structure
of R,

Constraints Attach to
+ the Rigid Structure
0o=p;=p> of R,

¥
~
—

Fig. 2. LEFT: A ball joint, built from distance constraints linking the rigid struc-
tures of the two objects. RIGHT: A revolute joint, built from distance constraints
linking the rigid structures of the two objects.

Revolute Joint Example: We can extend our formulation of a ball joint
to obtain a revolute joint between two rigid objects from the specification of
the joint location, axis of rotation, and angle limits. Given such a specifica-
tion, it is possible to automatically generate the required point distance and
planar angle constraints to limit the robot’s degrees of freedom to only allow
rotation about the joint axis, within the angle limits. To define a revolute
joint between two rigid objects, R; and R», we use two ball joints. As long
as the two ball joints have distinct centers of rotation that lie on the intended
rotation axis, the constraints will limit the rigid objects to only one relative
rotational degree of freedom about the axis. For additional stability we define
a redundant distance constraint between the two rotation centers to maintain
their separation along the rotation axis.

To limit the angle of the revolute joint, we use a point planar angle con-
straint, defined to limit the angle about the rotation axis between one point
attached to the rigid structure of R;, and one point attached to the structure
of Rg.

There has been previous work, in the field of robot control, on specify-
ing joints using simple constraints [24]. The advantage of our approach is
that, using the rigid structure formulation, we reduce the problem of solving
constraints between rigid objects to a much simpler problem of solving con-
straints between points. As we have shown in Sec. 4.1, this allows for a fast
and stable constraint solving method to be used.
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Fig. 3. Left to right: (a) Maintainability Study (Scene 1); (b) Automated Car
Painting (Scene 2); (c) Assembly Line Planning (Scene 3).

5.2 Soft Constraints

While the specifications for all hard constraints are provided as part of the
specific planning scenario, the soft constraints are defined by our framework
to achieve the planning task. In our method, we automatically define soft
constraints to both propel the robots toward their goals, and ensure that
they do not collide with obstacles. It should be clear from our discussion of
soft constraints in Sec. 4.3 how these constraints can be applied to achieve
the desired behavior. To move the robots in the scene towards their planning
goals we use one of two soft constraints: goal attraction and path following. To
accomplish obstacles avoidance, we use surface repulsion constraints defined
between the robots and all of the objects in the scene.

6 IMPLEMENTATION AND PERFORMANCE

6.1 Implementation

Our system was implemented in an object-oriented framework using C++.
We use the Proximity Query Package [11,18] for collision detection, to enforce
non-penetration constraints, and HAVOC3D [12] to generate distance fields
for surface repulsion constraints.

6.2 System Demonstration

We have tested our motion planning system on following applications:

Scene 1: Maintainability Study

In assembly maintainability studies, motion planning is used to find whether
it is possible to remove a particular part from an assembly, and if so, to find
one possible removal path [7]. In our example, shown in Fig. 3(a), a bolt and
a washer must avoid each other in the confines of tight compartment inside
a pump assembly. The goal, to remove the bolt from the assembly, requires
both objects to maneuver around each other without colliding.

Scene 2: Automated Car Painting
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In this example seen in Fig. 3(b), an articulated robot arm, with 6 degrees
of freedom, is used to trace a path along the body of a car for painting. The
robot is composed of rigid components that are held together by constraints.
For all of the components of the robot, the planner must compute paths that
satisfy the joint constraints, do not collide with the obstacles or the car, and
lead the end effector along the prescribed path.

Scene 3: Assembly Line Planning

In this example, shown in Fig. 3(c), the robot arm from scene 2 must
access a part moving past it on a conveyer belt. The factory floor contains
a piping structure that is moving over the conveyer belt in the opposite
direction to the part’s movement. The moving obstruction causes the robot
to reactively modify its path to avoid collision.

The timings for these scenarios are presented in Table 1. The timings were
taken on a PC with a 933MHz Pentium III processor, 256 MB RAM and an
nVidia GeForce3 graphics card. The motion sequences captured in MPEG
are available at: http://gamma.cs.unc.edu/cplan.

Scene Poly|Cons|Per Step|Total
(1) Maintainability |20470 4| 0.093 sec|67 sec
(2) Auto Painting (25738 43| 0.038 sec|18 sec
(3) Assembly Line (16962 43]0.0085 sec|16 sec

Table 1. Benchmark timings in seconds on three example scenes. Poly: The number
of polygons in each scene. Cons: The total number of active constraints in each
scene. Per Step: The average time for the planner to compute one time step of the
simulation. Total: The total time taken to complete and execute the planning task.

6.3 Discussion
The planning tasks in the example scenes execute, on average, between 10
and 120 time steps per second. The primary bottleneck in our current im-
plementation is the distance field computation used to determine estimated
paths and the penalty forces for the surface repulsion constraints. We use a
one-level bounding box culling to limit the application of this computation
to areas near potential surface collisions. We also use simplified geometry for
computing the distance field wherever appropriate to speed up the proximity
queries. This approach works well, unless the scene, as in the case of Scene 1,
has highly non-convex complex geometry that is poorly approximated by the
bounding boxes. In such cases, hierarchical bounding box culling could be
used to further limit the application of the distance field computation to in-
crease runtime performance. We are currently working on this optimization,
as well as accelerating the 3D distance field computation. With the new opti-
mized implementation, we expect at least an order of magnitude performance
improvement.

The constraint solver we have developed for the current system uses an
iterative relaxation method that is specialized to provide interactive perfor-
mance when planning the motion of rigid and articulated robots in dynamic
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scenes. It works well for overconstrained and consistent systems, such as those
produced by our method of modeling robot joints using constraints, and in
our planning framework where the dynamic simulation typically advances
in small time steps allowing it to take advantage of temporal coherence to
achieve performance and stability. However, it is possible for our framework
to incorporate other efficient constraint solvers based on the non-trivial ex-
tension of [3,4,17], as we extend this work to plan the motion of flexible bodies
and to also include different types of geometric and dynamics constraints in
our system.

7 CONCLUSION AND FUTURE WORK

We reformulate the motion planning problem into a physical simulation where
constraints on the robot’s motion and the GVD of the workspace guide the
robot from its starting to its goal configurations. We have demonstrated its ef-
fectiveness and real-time performance on several challenging planning scenar-
ios. The flexibility of our framework offers the possibility of natural extension,
including: (a) additional constraints between robots, including constraints for
maintaining line of sight contact or other complex geometric relationships,
as well as dynamic and non-holonomic constraints; (b) extension to flexible
geometry that deforms over time due to contact; and (c) incorporation of
direction human interaction and control.
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