
Continuous Penetration Depth

Xinyu Zhang a,b Young J. Kim b Dinesh Manocha a

aThe University of North Carolina at Chapel Hill, U.S.A.
bEwha Womans University, Seoul, Korea

Abstract

We present a new measure for computing continuous penetration depth between two intersecting rigid objects. We generate a set
of samples in the configuration space, precompute an approximation of the contact space for two intersecting objects using binary
classification techniques, and construct a bijective mapping between the spherical space and the precomputed contact space. For
a given in-collision configuration, we search the spherical space for the nearest neighbor and find the corresponding image in
the contact space based on the predefined spherical parameterization. The resulting image is a witness equivalent to the nearest
configuration and is used to formulate the penetration depth direction based on our measure. Unlike prior algorithms, our algorithm
guarantees that both the penetration depth magnitude and direction are continuous with respect to the motion parameters. Our
algorithm is approximate in a sense that we approximate the exact contact space, and we have applied our algorithm to complex
rigid models composed of tens or hundreds of thousands of triangles and the runtime query takes only around 0.01 milliseconds.

Key words: penetration depth, discontinuity, spherical parameterization

1 Introduction

Measuring the extent of inter-penetration between two
intersecting objects is an important problem in physically-
based simulation, haptic rendering, geometric computing,
and robotics. Among these applications, a key computa-
tion is find a measure to separate two overlapping objects.
It is necessary to change the configuration variables which
describe the translational or even rotational motion of the
objects to eliminate their intersections. The problem has
been well studied in computer-aided design and robotics
for more than three decades [1]. Perhaps the most natural
measure for inter-penetration is penetration depth (PD),
which is defined as the minimum rigid transformation
required to separate two intersecting objects. This defini-
tion is widely used for contact resolution in dynamic simu-
lation [2], tolerance verification for virtual prototyping [3],
force computation in haptic rendering [4,5], motion plan-
ning in robotics [6], etc.

In many applications, the penetration depth query is
often performed repeatedly as the objects move continu-
ously along a path. The query result includes the magni-
tude and direction separating the intersecting objects [7].

Email addresses: zhangxy@cs.unc.edu (Xinyu Zhang),
kimy@ewha.ac.kr (Young J. Kim), dm@cs.unc.edu (Dinesh

Manocha).

However, the penetration depth computation can result in
large discontinuities in terms of direction or even magni-
tude. These discontinuities, for instance, can significantly
degrade the stability of the penalty response/force, which
is computed as a function of penetration depth. The
effects can include noticeable jittering and sudden local
jumps in the computed force. Fig. 1 shows an example
and illustrates this problem. For the optimization-based
approaches [8,9,5], the penetration depth computation
relies upon initial guesses and a series of projections on
the local contact space. A discontinuity can occur in terms
of both the magnitude and direction of penetration depth
results. During the optimization, the local minimum can
discontinuously vary with respect to the change of initial
guesses. The discontinuity can become more severe when
a contact space has many small surface features or local
minima.
Main Results: In this paper, we present a new measure

of inter-penetration which allows to efficiently computing
continuous penetration depth between two intersecting
rigid objects. Our new formulation of continuous penetra-
tion depth can guarantee that both the penetration depth
magnitude and direction are continuous with respect to the
motion parameters. This formulation relies on an implicit
distance metric defined using a space transformation and
a bijective mapping between the spherical space and the

1q

3q

2
q

2
q

2q

(a) Contact Space

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PD Magnitude

x

y Nearest Point

(b) Discontinuous Penetration Depth

-1.5

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PD Magnitude

x

y Nearest Point

(c) Continuous Penetration Depth

Fig. 1. The penetration depth is discontinuous based on a widely-used prior penetration depth definition, which corresponds to a nearest
point from the given in-collision configuration to the contact space. (a) An ellipse has a major radius of 1.25 and a minor radius of 0.76,

illustrating a contact space. A point (i.e., configuration) undergoes a continuous motion, while moving inside the ellipse. When the point

passes through q2, its nearest point on the contact space has a sudden “jump” (i.e., discontinuity) from q′2 to q′′2 . (b) The penetration depth
magnitude is not smooth and the nearest point is discontinuous at q2. The nearest point with its x and y coordinates are plotted in blue

and red, respectively. (c) The penetration depth magnitude and nearest points resulted from our continuous penetration depth definition.

contact space of two intersecting objects. Given the high
complexity of an exact contact space, we approximate the
contact space using support vector machines and precom-
pute the space transformation between the spherical space
and the contact space using spherical parameterization,
which can be precomputed. Our runtime algorithm uses a
nearest neighbor query in the spherical space and the space
transformation to approximate the continuous penetra-
tion depth. Our approach has been tested using complex
models with tens or hundreds of thousands of triangles. The
computational overhead for the performance of runtime
query is almost constant and takes about 0.01 millisec-
onds to compute continuous penetration depth for these
complex models.

Compared to prior approaches, our new measure of inter-
penetration and the derived approximation algorithm have
the following advantages:

(i) Continuity with respect to object motions; the pene-
tration depth magnitude and direction continuously
change for a continuous relative motion in configura-
tion space.

(ii) Differentiability with respect to the motion parame-
ters. The derivatives of continuous penetration depth
are well-defined if the contact space is smooth and
the motion is continuous.

(iii) Applicability to convex and non-convex contact
spaces that are homeomorphic to a sphere.

Organization: The rest of the paper is organized in the
following manner. We survey related work on penetration
depth formulations and techniques in Section 2. We intro-
duce our terminology and derive the formulation of our
continuous penetration depth in Section 3. Our methods
for approximating a contact space using binary classifica-
tion and for precomputing spherical parameterization are
given in Section 4. Our runtime penetration depth query is
given in Section 5. Some experimental results and compar-
isons are given in Section 6.

2 Related Work

There exists an extensive amount of work on the pene-
tration depth computation in computer-aided design and
robotics, and a few measures and algorithms have been

proposed. Some authors used an intersecting volume as
a measure of inter-penetration [10–12]. However, this
measure may not be able to correctly reflect the prox-
imity situation when one object is completely inside in the
other [10]; the measure remains constant regardless of the
amount of inter-penetration. Moreover, a relatively small
intersection between two complex objects may correspond
to a deep penetration. Thus the volume of intersection
may not provide an accurate measure of inter-penetration.

The growth distance [13,14] is a measure of inter-
penetration between convex objects and is based on the
idea of “growing” objects with respect to an interior seed
point. The measure corresponds to appropriate scaling
of the two objects to be just touching. This measure is
continuous with respect to an object motion. However,
this formulation is only applicable to convex objects. A
similar measure was proposed based on shrinking one of
the objects toward a reference point on the object until
the objects are touching [15]. However, their measure is
not continuous with respect to a continuous motion.

When the objects are in motion relative to one another,
a motion trajectory-dependent penetration depth was
proposed in [15]. Their measure of inter-penetration is
defined as the distance that the object must move backward
along the same path it used to approach before the objects
are no longer inter-penetrating, but just “touching”.

For convex polytopes, the penetration depth can be
computed using the Minkowski sum [16,17,3] and the pene-
tration depth is defined as the shortest distance between
the origin and the boundary of Minkowski sum of two
convex objects [1,10]. For non-convex objects, there are
various algorithms to compute their penetration depth.
The penetration depth can be computed by decomposing
each object into convex primitives, computing pairwise
Minkowski sums of the convex primitives, and computing
the union of all convex Minkowski sums [18]. However, the
union computation has a high computational complexity.
Other acceleration techniques use rasterization hard-
ware [18]. There are some algorithms to compute only
local penetration depth, which computes a transformation
to separate locally intersecting features [19–24]. Distance
fields can also be used for local translational PD compu-

2

tation [7] and can be computed in realtime using GPUs.
Point-based Minkowski sum approximation [25] can be
used to approximate translational penetration depth for
non-convex objects. None of these algorithms can consis-
tently avoid the problems of discontinuity.

Exact generalized PD can be computed by constructing
the exact contact space and then searching the contact
space to find a nearest point for a given query [6]. However,
due to high time and space complexity, most generalized
PD algorithms use optimization-based techniques [8,9,5],
computing a locally optimal solution based on local approx-
imation of the contact space. Convex decomposition tech-
niques can be used to compute lower and upper bounds
on generalized PD [6]. Recently, a new machine learning
method was suggested to approximate the contact space
for PD computation [26]. None of them takes account of
continuity.

3 Continuous PD Formulation

In this section, we first introduce our notation, then intro-
duce the conventional penetration depth formulation in
terms of configuration space and analyze its discontinuity.
We present our new formulation for computing continuous
penetration depth using spherical space transformation,
which avoids the problems with conventional discontinuous
formulation and local contact space methods.

3.1 Contact Space

Given two objects A and B, we denote their configura-
tion space as C-Space. Each point (i.e., configuration) in
C-Space corresponds to the relative configuration of A with
respect to B. For the rest of the paper, we assume that A
is movable and B is fixed. Moreover, we limit A to having
a translational motion. In this case, C-Space has 2 degrees
of freedom (DOF) for 2D objects and it has 3-DOF for 3D
objects. C-Space is composed of two components: collision-
free space Cfree = {q : A(q) ∩ B = ∅} and in-collision
space Ccol = {q : A(q) ∩ B 6= ∅}, where A(q) corresponds
to A located at the configuration q. The Contact Space is
the boundary of Ccol and is denoted as Ccont = ∂Ccol. Intu-
itively, the contact space corresponds to a set of configu-
rations where A and B just touch each other without any
inter-penetration.

3.2 Discontinuous PD Formulation

The conventional penetration depth is defined as a
minimum motion or transformation required to separate
two intersecting objects A and B [17,3]. The penetration
depth consists of two components: magnitude and direc-
tion. The underlying penetration depth formulation is
defined as

|PD(A(q0), B)| = min
q∈Ccont

dist(q0,q), (1)

where q0 is an in-collision configuration (q0 ∈ Ccol) and q is
a configuration that lies on the contact space Ccont. We use
dist(·, ·) to represent a distance metric between two config-

urations. The contact configuration at which |PD(A,B)|
attains its minimal value is denoted as

qC0 = argminq∈Ccont
dist(q0,q). (2)

qC0 is the nearest point from q0 to Ccont, which realizes the
|PD(A,B)|. We use the following metric for computing the
magnitude of penetration depth

dist(qi,qj) = q21 + q22 + q23 , (3)

where (q1, q2, q3) corresponds to a relative translation
between qi and qj .

3.3 Discontinuity

It is clear that the magnitude of penetration depth
defined by Eq. 1 is continuous because it is a single-valued
continuous mapping. However, the direction of penetration
depth defined by Eq. 2 is a multi-valued mapping between
Ccol and Ccont. There can be more than one configuration
in the contact space corresponding to the same magni-
tude of penetration depth. The discontinuity is intrinsic in
the penetration depth definition corresponding to Eqs. 1
and 2, and the discontinuity is also related to the medial
axis [27] of the in-collision space. Whenever a point crosses
the medial axis, a discontinuity occurs. Since the medial
axis has at least two nearest points on the boundary, there
exists a sudden transition from one nearest point on the
boundary to another when a query point crosses the medial
axis (see Fig.1). In case of separation distance compu-
tation, a continuity can be guaranteed by using strictly
convex objects such as sphere-torus patches bounding
volumes (STPBV) [28] or k-IOS [29], but it does not work
for penetration depth computation.

3.4 Continuous PD Formulation

The necessity for an alternative solution is obvious. If

we have a new metric d̃ist(·, ·) and under this metric Eq. 2
becomes a simple-valued mapping, there will be only one
configuration in the contact space that realizes the pene-
tration depth, and it is continuous. In order to simplify
our derivation, we assume that the contact space is home-
omorphic to a sphere. This assumption corresponds to the
contact spaces used in our benchmarking models shown in
Section 6. Unlike the explicit metric given in Eq. 3, our new
metric is implicitly defined via an intermediate spherical
space. Moreover, the medial axis of a sphere is reduced to
a simple point (its center), which motivates us to choose
spherical space as the intermediate space.

Now, we present our continuous penetration depth
formulation using the contact space and the spherical
space transformation. Let

φ : S 7→ Ccont (4)

be a bijective mapping that maps a point of the spherical
space S onto the one on the contact space Ccont. Assume
there exists another bijective mapping

ϕ : enc(S) 7→ enc(Ccont) (5)

3

that maps the space enclosed by S onto the one enclosed
by Ccont, where enc is the set of all points enclosed by a
space including the space boundary. Given the new metric

d̃ist(q0,q) = dist(ϕ−1(q0), φ−1(q)), (6)

our new measure of penetration depth can be analogously
defined as

qC0 = φ(argminq∈Ccont d̃ist(q0,q)) (7)

and

|PD(A(q0), B)| = dist(q0,q
C
0), (8)

where q0 is an in-collision configuration and q is a config-
uration that lies on the contact space Ccont and dist(·, ·) is
defined by Eq. 3.

Fig. 2 illustrates our new definition and its geometric

interpretation. Intuitively, qS0 = φ−1(qC0) is obtained by
finding the nearest point in the intermediate space S from
q0, and its image in Ccont is computed using the bijective
mapping φ. If the intermediate space is the same as Ccont,
it is the same as the conventional penetration depth formu-
lation given in Eqs. 1 and 2.

0 0()C Sq q

0q

0

S
q

S

Ccont

Fig. 2. Continuous penetration depth formulation. q0 is an in-colli-

sion configuration, qS0 is a point in the spherical space that attains

its minimal Euclidian distance dist(·, ·) for q0. φ maps the point qS0
of the spherical space to a point qC0 in the contact space. We assume
the mapping ϕ−1 is self-mapping, ϕ−1(q0) = q0. The magnitude of

penetration depth is defined as dist(q0,qC0).

3.5 Proof of Continuity

Theorem 1 Our new PD formulation defined in Eqs. 5∼
8 is continuous for any given in-collision configuration q ∈
Ccol (except the sphere center).
Proof : Based on an assumption that the bijective mapping
φ : S 7→ Ccont is continuous, so is its inverse mapping
φ−1 : Ccont 7→ S. For any in-collision configuration point
q0 undergoing a continuous motion, the Euclidean distance
from the configuration to the spherical space is

min
q∈S

dist(q0,q) = r − ‖q0‖. (9)

where r is the sphere radius. It is obvious this distance
is continuous for any q0 (except the sphere center). The
nearest point that realizes this distance is

qS0 = r
q0

‖q0‖
. (10)

It is not difficult to understand that, for any given contin-

uous query q0 except the sphere center, its nearest point qS0

is continuous. Since the bijective mapping φ : S 7→ Ccont is
continuous, the nearest point in the contact space Ccont is
continuous (Eq. 7). Then its distance computed using the
nearest point (Eq. 8) is continuous. 2

The sphere center is a singular point that has an infi-
nite number of nearest points on the spherical space.
However, we can easily handle this problem by avoiding
going through the sphere center.

Fig. 3 illustrates the intuitive interpretation of conti-
nuity. When the object A moves along a continuous path
(red) which connects q1 and q2, the witness (nearest) point
that realizes the minimum distance in the spherical space

continuously moves from qS1 to qS2 (blue path) while the
witness point of contact space that realizes the final PD

moves continuously from qC1 to qC2 (green path).

2

S
q

2

C
q

2q

1q

1

C
q

1

S
q

Ccont

S

Fig. 3. Intuitive interpretation of continuity. For a continuous in-col-

lision motion, our continuous PD formulation (Eqs. 7 and 8) can
guarantee the continuity of PD magnitude and nearest points.

Algorithm 1 CPD(A, B, q0)
Comment: compute a continuous PD for two objects

Output: [|PD|, qC0]
|PD|: return the PD magnitude

qC0 : return the nearest point on contact space

//precomputation phase
1: Ccont ← ApproximateContactSpace(A, B)
2: φ ← ComputeSphereicalParameterization(Ccont, S)

//runtime query phase
3: EmbedAndAlign(S, Ccont, φ)

4: qS0 ← NearestPoint(S, q0)

5: qC0 ← SphericalParamterization φ(qS0)

6: |PD| ← DIST(q0, qC0)

3.6 Algorithm Overview

Our algorithm consists of two main phases: a) precom-
putation, and (b) runtime PD query.
Precomputation: For two given intersecting objects,
we precompute their contact space and then compute its
spherical space transformation. The time complexity of
exact contact space computation in 3D can be very high
for two non-convex input models. Thus we use binary
classification techniques to efficiently approximate the
contact space. Then we use a spherical parameterization
to compute the space transformation between the approx-
imate contact space and the spherical space.

4

A

B

(a) (b) (c) (e) (d)

Fig. 4. Approximating a contact space using binary classification. (a) two given objects; (b) their exact contact space (orange); (c) initial
uniform sampling, where circles and red solid dots denote collision-free and in-collision samples, respectively; (d) initial approximation; (e)

refinement using new samples, where green and blue solid dots denote in-collision and collision-free samples, respectively.

Runtime Query: After computing the contact space
and spherical parameterization, we embed the contact
space into the space enclosed by the spherical space under
appropriate alignment. Given a query q0, we first search

the spherical space for a point qS0 that has the minimum

distance. An image qC0 in the contact space can be uniquely
found for the point of the spherical space. Finally, the

distance between q0 and qC0 is computed using an appro-

priate metric dist(q0, qC0).
The corresponding pseudocode is given in Alg. 1.

4 Precomputing Contact Space and Spherical
Parameterization

4.1 Approximating Contact Space

The time complexity of exact contact space computa-
tion in 3D can be as high as O(m3n3) for translational PD,
where m and n are the number of triangles for two non-
convex input models. Given the high complexity of exact
contact space computation, many approximate algorithms
have been proposed [25,30,5]. However, these methods
are either too slow or generate only a local contact space
approximation. Here, we use a new method suggested
in [26] to approximate the contact space. To guarantee the
consistent continuity, we assume that the resulting approx-
imation is homeomorphic to the exact contact space. Our
method uses a binary classification algorithm to accelerate
the computation of the contact space.

The algorithm is illustrated in Fig. 4. For a pair of
objects A and B (Fig. 4-(a)), our goal is to compute their
contact space (Fig. 4-(b)). We first uniformly generate a
small set of configuration samples in a subspace of C-space
that covers the entire in-collision space Ccol (Fig. 4-(c)).
Next, we classify these configurations into two classes,
collision-free (Cfree) or in-collision (Ccol), by performing
exact collision detection at the sampled configurations.
Using the classified configuration samples, an initial
approximation of contact space (Fig. 4-(d)) is computed
using a binary classifier based on support vector machines
(SVM). However, since this initial approximation is too
coarse to be used immediately, we add more new samples
to refine the classification model (Fig. 4-(e)). Then we
update the approximation (the black curve in Fig. 4-(e)).
This sampling process can be further accelerated using

active machine learning techniques such as [26].

4.1.1 SVM-based Classifier

A support vector machine (SVM) is a classification tech-
nique. It is straightforward to implement and computation-
ally efficient.

Φ

(a) input space

Φ-1

(b) feature space

Fig. 5. The original data is transformed to another data in a high

dimensional feature space using the mapping Φ. An optimal hyper-

plane is found in feature space and mapped back to input space.

As shown in Fig. 5, the core of SVM is to use a mapping
that transforms the original data in input space to the data
in feature space, so that the classification in input space is
reduced to a linearly separable problem in feature space.
Then the optimal separating hyperplane in feature space
is mapped back into input space via its inverse mapping.
Though the separating hyperplane is linear in feature space,
the resulting surface in input space can have a very high
complexity. Let Φ be a mapping function from input C-
Space (configuration space) into a feature space H. We
assume C to be Rn(n ≤ 3) and H to be R. Let K(qi,qj) =
〈Φ(qi),Φ(qj)〉 be the kernel function. Essentially, K is a
function used to calculate inner products in feature space.
In our algorithm, we use the radial basis function (RBF)
as the kernel

K(qi,qj) = exp(γ‖qi − qj‖2), (11)

where γ is a positive parameter. Then the classifier can be
modelled using an function

f(q) = w · Φ(q) + b (12)

where w ∈ H and b ∈ R. f(q) = 0 is called a decision
boundary. The formulation can be rewritten as

f(q) =

k∑
i=1

αiciK(qi,q) + b, (13)

5

where αi ≥ 0. A few αi’s are non-zero and the corre-
sponding qi are the support vectors. ci are collision states
(either −1 or +1). This SVM problem can be solved using
sequential minimal optimization (SMO) algorithm [31,32].
For more details on SVM, we refer readers to [33,34].

4.1.2 Sampling

We propose a tree-based method for efficiently adding
new samples in the configuration space and refining the
initial contact space approximation. As shown in Fig. 6, an
octree is first constructed for the decision boundary of the
initial SVM model. For each node in the tree, we predict
the collision states of its center and all the neighbor corners
using the initial SVM model f(q). If these states do not
have the identical signs and the distance from the node
center to the decision boundary (f(q) = 0) is larger than
a threshold, the node needs to be further split. Since f(q)
is a zero set function, it is nontrivial to compute the exact
distance to the decision boundary. Therefore, we use the
following strategy to compute the lower bound of distance
for a given configuration. The idea is based on an obser-
vation that it is trivial to compute the distance from q to
f(q) = 0 in the feature space, where f(q) = 0 is in the
form of a hyperplane:

dft = dist(Φ(q),HyperPlane(w, b))

=
|w · Φ(q) + b|
‖w‖2

=
|f(q)|√∑

i,j αiαjcicjK(qi,qj)
. (14)

Since we use the RBF as the kernel, the distance dft in the
feature space corresponds to a lower bound of the distance
din in input space

din ≥ −
1

γ
ln(1−

d2ft
2

). (15)

After the tree structure is computed, the centers of all the
leaf nodes are the candidates for new samples near the deci-
sion boundary. We use k-centroid clustering algorithm to
select the required number of samples from these candi-
dates.

(a) (b)

C1

C2

Fig. 6. (a) We approximate the initial decision boundary (the orange
curve) using an octree structure. (b) The leaf nodes close to the

decision boundary are returned as new samples (green for in-collision
samples and blue for collision-free samples).

To further accelerate the computation, we can use active
learning and non-uniform sampling techniques [26].

4.2 Precomputing Spherical Parameterization

Given a SVM model and its decision boundary f(q) =
0, we convert it into a triangular mesh and perform
mesh parameterization. A parameterization is a bijective
mapping between a surface and a parameter domain. If
the surface and the parameter domain have the same
topology, then such a bijective mapping is guaranteed to
exist. In this reason, we assume that the resulting contact
space is homeomorphic to a sphere and we apply spherical
parameterization to the contact space.

4.2.1 Convex Contact Space

Since any compact convex space with a nonempty inte-
rior is homeomorphic to a closed ball [35], a spherical
parameterization for a convex contact space can be easily
computed by projecting each point of Ccont onto the sphere
along the radial direction. φ : S 7→ Ccont can be expressed
as follows

φ−1(q) = r
q

‖q‖2
,q ∈ Ccont. (16)

Due to convexity, the simple projection φ : S 7→ Ccont is
bicontinuous.

4.2.2 Non-Convex Contact Space

Here, we consider the contact space embedding in R3

and the intermediate space being a spherical surface in
R3. Given a contact surface Ccont, the spherical parame-
terization is to find a continuous invertible map φ : S 7→
Ccont from a sphere S to the contact surface Ccont. For a
given approximate contact space represented by a mesh,
the map is specified by assigning each point q a parameter-
ization φ−1(q) ∈ S. Each mesh edge is mapped to a great
circle arc, and each mesh triangle is mapped to a spherical
triangle bounded by these arcs. If we assume that contact
surface Ccont is homeomorphic to a sphere, then the map is
continuous and one-to-one. To guarantee a valid spherical
parameterization, each vertex position must be expressed
as a convex combination of the positions of its neighbors
projected on the sphere [36]. Let (V,E) be a mesh in R3 if
the contact space is represented as a triangulation, where
V is a set of vertices and E is a set of edges. The convex
combination can be expressed with respect to the neigh-
borhood of a vertex.

vi =
k∑

i=1

λijvj , vi,vj ∈ V,

λij = 0 if eij /∈ E,

λij > 0 if eij ∈ E,
k∑

i=1

λij = 1.

(17)

where eij ∈ E is the edge connecting vi and its neighbor
vj .

Under the above convex condition, none of the trian-
gles are allowed to overlap. In the 2D planar case, once

6

(a) bunny-bunny models, their contact space and spherical parameterization

(b) bunny-sphere models, their contact space and spherical parameterization

Fig. 7. The contact space approximated by a SVM-based classifier and space transformation using spherical parameterization.

the boundary of the triangulation has been fixed and the
barycentric coordinates are chosen, the positions of the
interior vertices are uniquely determined by solving a linear
system. Uniqueness may not be guaranteed for the spherical
case, which requires more constraints. First, the spherical
triangulation may be controlled by choosing a proper set
of symmetric weights. The above system can be expressed
as a set of non-linear equations in terms of the vertices of a
mesh after introducing k auxiliary scaling variables ai and
spherical distance constraint v2x,i + v2y,i + v2z,i = 1 for any
vertex vi = (vx,i, vy,i, vz,i).

aivi =
k∑

i=1

λijvj

v2x,i + v2y,i + v2z,i = 1.

(18)

These equations can be solved by iteratively minimizing
the quadratic spring energy

W =
1

2

k∑
i=1

k∑
j=1

λij ‖vi − vj‖2. (19)

To avoid degenerate scenarios and have fast convergence,
we can anchor one or two vertices to a fixed position on
the sphere. In our implementation, we choose the farthest
vertex from the origin and map it to the closet point on the
sphere.
Theorem 2 φ : S 7→ Ccont is bicontinuous.
Proof : This directly follows from the assumption that the
genus-zero contact space is homeomorphic to a sphere.
Therefore, φ : S 7→ Ccont is a bijection, φ : S 7→ Ccont is
continuous and the inverse function φ−1 : Ccont 7→ S is
continuous (φ : S 7→ Ccont is an open mapping). At the

same time, based on our assumption on the homeomor-
phism between Ccont and its approximation, the mapping
between Ccont and its approximation is bicontinuous, too.
2

Note that any continuous motion on the spherical space S
corresponds to a continuous trajectory on the approximate
contact space Ccont and corresponds to another continuous
trajectory on the exact contact space Ccont as long as the
homeomorphism between these spaces remains valid.

Fig. 7 shows two examples of approximated contact space
and their spherical parameterization. Note that we can use
other spherical parameterization methods [37] to compute
φ as long as bijective mapping (no local and global overlaps)
can be guaranteed.

5 Runtime PD Queries

We use the approximated contact space and its corre-
sponding spherical parameterization to perform runtime
queries. Based on our new PD formulation (also refer to
Fig. 2), a runtime query is very straightforward after space
transformation. Given a configuration q0 ∈ Ccol, we find
the nearest point in the spherical space by projecting q0

along radial direction. Let qS0 ∈ S be this nearest point.

qS0 can be computed Eq.10. Next, we search the spherical

parameter domain for the spherical triangle containing qS0 .

Let this spherical triangle be v1v2v3. We compute qS0 ’s
barycentric coordinates (w1, w2, w3) with respect to the
spherical triangle v1v2v3. Based on the spherical parame-
terization φ, the corresponding triangle in the contact space

is φ(v1)φ(v2)φ(v3). Using qS0 ’s barycentric coordinates,
the point of contact space corresponding to the nearest

7

point qS0 is

qC0 = w1φ(v1) + w2φ(v2) + w3φ(v3). (20)

Since the spherical parameterization is represented as
a triangular mesh, the barycentric coordinates can be
computed by

w1 = 4qS0 v2v3/4 v1v2v3

w2 = 4qS0 v3v1/4 v1v2v3

w3 = 4qS0 v1v2/4 v1v2v3

(21)

We use bounding volume hierarchies and hashing tech-
niques [38] to accelerate the search for the triangle that

contains qS0 . Eventually, the PD magnitude can be

computed using Eq. 8 for q0 and qC0 .
For now, we only consider the continuity for a configura-

tions inside Ccol. However, for a configuration q0 ∈ Ccont,
its PD magnitude may not be a non-zero value. When a
configuration moves from the collision-free space into the
in-collision space or moves out of the in-collision space to
the collision-free space, a discontinuity may occur. We illus-
trate this problem in Fig. 8. Consider a continuous path
from q1 to q2 (q1,q2 ∈ Ccont). For the configurations q1

and q2, their nearest points in the spherical space S are

initially qS1 and qS2 . Then the corresponding points in the
contact space are qC

1 and qC
2 . If qC

1 6= q1, its PD magnitude
will suddenly jump from zero to non-zero when q1 moves
from Cfree into Ccol. Similarly, when a point q2 moves out of
Ccol to Cfree, the PD magnitude may suddenly jump from
non-zero to zero.

2

S
q 2

C
q

2q

1

C
q

1q 1

S
q

Fig. 8. A discontinuity may happen between the in-collision and colli-
sion-free spaces. The PD magnitude may suddenly jump from zero

to non-zero when q1 moves from Cfree into Ccol; when a configura-
tion q2 moves out of Ccol to Cfree, the PD magnitude may suddenly
jump from non-zero to zero.

This discontinuity problem is mainly caused by the
distortion of spherical parameterization and by our
assumption that the mapping ϕ−1 is self mapping. As a
result, for a configuration q0 ∈ Ccont, the nearest point is
not necessary to be itself and its PD magnitude can be a
non-zero value. In order to eliminate such discontinuity,
we use the following strategies.
Move in Ccol: The discontinuity can be avoid by intro-

ducing a rotation to the mapping φ between the spherical

space space and the contact space during runtime query.
As shown in Fig. 9, for a move-in configuration q1, we first

find the nearest point qS1 in the spherical space. At the
same time, for q1, we search for its corresponding point
φ−1(q1) in the contact space using spherical mapping
φ. Then we rotate the spherical space by χ(θ) so that

φ−1(q1) = qS1 . After applying the rotation to the spher-
ical space, the nearest point is identical to the move-in
point q1 and the PD magnitude becomes zero. When a
configuration moves deep inside the in-collision space, we
gradually and continuously relax the rotation applied to
the spherical space so that the point φ−1(q1) is restored to
the original position. If we let the restoring region be [0, ε],
the following linear rotation allows us to continuously
restore the original spherical space

S ′ = χ(
ε− |PD|

ε
θ)S, |PD| ∈ [0, ε].

Here S ′ is the spherical space after rotation.

1q
2q

2

S
q

1

S
q

1

1() 
q





2

C
q



Fig. 9. For a move-in contact configuration q1, the discontinuity
can be eliminated by rotating the spherical parameter space. For a

move-out contact configuration q2, the discontinuity can be avoided

by a linearly decreasing function in the collision-free space.

Move out of Ccol: The above strategy does not work for
a configuration moving from the in-collision space to the
collision-free space because we have little knowledge about
the transitioning contact configuration a priori. Instead, we
use a linearly decreasing function to eliminate the disconti-
nuity when the configuration leaves the in-collision space.
As shown in Fig. 9, if we let q2 be a move-out configuration,
the PD magnitude at the contact point q2 is |PD|. When
two objects separate (i.e. the configuration moves out of
the in-collision space), let the distance between them be d.
If their distance falls within a distance interval [0, ε], we use
the following formulation to diminish the discontinuity.

|PD|′ =
ε− d
ε
|PD|

The new PD magnitude will gradually and continuously
reduce to zero and the nearest point will remain the same.

6 Implementation and Performance

In this section, we give some implementation details,
highlight the performance of our algorithm on some
complex benchmarks and compare our algorithm with
prior techniques.

8

6.1 Implementation

We implemented our algorithm using C++ under Visual
Studio 2010 and Windows 7. We use the following algo-
rithms and libraries in our implementation. The perfor-
mance is measured on a PC with 3.2GHz Intel Core i7 CPU
and 6G memory.
SVM-based Classifer: We used the open SVM libary
SVMLIB [32] for approximating the contact surface.
Collision Detection: Bounding volume hierarchies
(BVHs) are the most popular techniques and data struc-
ture to accelerate collision queries. Thus, we used the open
library OBB-Tree [39] for exact collision detection between
polygonal objects.
Spherical Parameterization: A non-manifold geometric
library ARCHMIND 1 was used for spherical parameteri-
zation.
Others: We use the library PQP 2 [40] to perform distance
computation. This is mainly used for avoiding discontinuity
when a point moves from in-collision space to collision-free
space. The open PD library PolyDepth 3 [5] based on local
optimization and projection is used for comparison.

6.2 Benchmarks

We used the following benchmarks to evaluate the
performance of our algorithm. Some of them are shown in
Figs. 10∼13. It typically takes 0.5∼3 seconds to approx-
imate the contact space using the binary classification
technique, including collision detection and solving SVM
classifier. It takes 2-10 seconds for spherical parameteri-
zation. The runtime query takes a nearly constant time,
around 0.01 milliseconds.

We analyze the continuity in these benchmarking
scenarios. In Figs. 10∼13, we use green curves to highlight
the PD magnitude computed by our algorithm and gray
curves to represent the result computed by PolyDepth.
We use individual color to illustrate each coordinate of the
nearest point. The x, y and z coordinates are plotted in
blue, red and orange, respectively.

Hose vs. Point: The contact space between a model
and a point is the model itself. Fig. 10 shows a hose model
(4.2K triangles) and its spherical parameterization. When
a point undergoes a continuous path (from top to bottom)
inside the model, the PD magnitude and nearest points are
shown in Fig. 10-(c)∼(d).
Dragon vs. Sphere: Fig. 11 shows a dragon model

and a sphere model, where the sphere undergoes a contin-
uous motion. The dragon model consists of 214K trian-
gles and the sphere consists of 1.6K triangles. The interme-
diate contact surface and its parameterization are shown
in Fig. 11-(b) and (c).

Cup vs. Spoon: We demonstrate our algorithm using
the cup and spoon models. The cup and spoon consist of

1 http://www.cs.uoi.gr/̃fudos/smi2011.html
2 http://gamma.cs.unc.edu/SSV/
3 https://code.google.com/p/polydepth/

1000 and 1344 triangles, respectively. In the top row of
Fig. 12, the spoon is placed inside the cup and moves.
Buddha vs. Buddha: Fig. 13-(a) shows two Buddha

models; one model is stationary and the other undergoes a
continuous motion in the configuration space. Each Buddha
model consists of 20K triangles. The intermediate contact
surface and parameterization are shown in Fig. 13-(b) and
(c).

6.3 Comparison with Prior Methods

In Section 2, we have highlighted different techniques
for PD computation. In order to better understand the
difference between our algorithm and the prior methods,
we compared our algorithm with optimization-based
methods [8,9,5]. In these methods, a sequence of configura-
tion samples on the contact space are iteratively computed
until a local minimum configuration is found. The perfor-
mance of these algorithms relies heavily upon the initial
configuration guesses. The continuity is not guaranteed in
these algorithms. As shown in Figs. 10∼13, our PD algo-
rithm provide continuous, smooth PD values compared to
the most recent optimization-based work, PolyDepth [5].

The intersecting volume-based method can obtain
continuous PD magnitude and direction when the normal
cones are well defined [11,12]. However, it is not clear
whether it can be extended to the cases where normal
cones are not defined. For instance, when one object is
completely embedded inside the other object, the normal
cones cannot be defined using the techniques suggested
in [12]. Growth distance [13,14] can achieve continuous
penetration depth for convex objects, but the property of
continuity may not be preserved for non-convex objects.

7 Limitations and Conclusions

Penetration depth computation is used in various colli-
sion response algorithms and many applications. Under the
conditions of continuous motion, conventional penetration
depth formulations exhibit a discontinuity with respect to
the motion parameters, which can cause an instability in
collision response. We have presented a new approach to
computing continuous penetration depth between polyg-
onal models. The main idea is based on contact space
approximation and spherical parameterization.

The overall approach is simple (see Alg. 1). The basic
components of our continuous penetration depth algorithm
consist of the following routines: SVM-based classifica-
tion, collision detection, nearest-neighbor computation,
and spherical parameterization. Good implementations of
these algorithms are easily available in public domain (see
Section 6.1).

Our approach has a few limitations. The algorithm
only handles translational penetration depth. Moreover,
our algorithm currently computes an approximation to
the continuous PD formulation in Eqs. 7 and 8 and its
accuracy depends almost completely on the sufficiency of
samples during classification. Without sufficient sampling,
the assumption of homeomorphism between the exact

9

(a) (b)

0

2

4

6

8

10

12

PD Magnitude

Ours

PolyDepth

(c)

-10

-8

-6

-4

-2

0

2

4

6

8

10

x

y
Nearest Point

z

(d)

-10

-8

-6

-4

-2

0

2

4

6

8

10

x

y
Nearest Point

z

(e)

Fig. 10. (a) hose model (b) spherical parameterization (c) PD magnitude: Our algorithm vs. PolyDepth. (d) nearest points computed by

PolyDepth; (e) nearest points computed by our continuous PD algorithm.

(a) (b) (c)

0

20

40

60

80

100

120 PD Magnitude

Ours

PolyDepth

(d)

-100

-50

0

50

100
Nearest Point (PolyDepth)

(e)

-100

-50

0

50

100
Nearest Point (ours)

y

x

z

(f)

Fig. 11. (a) dragon and sphere; (b) contact space; (c) spherical parameterization (d) PD magnitude: Our algorithm vs. PolyDepth. (e) nearest

points computed by PolyDepth; (f) nearest points computed by our continuous PD algorithm.

contact space and its approximation may not be valid. For
example, a dumbbell shape contact space with a very thin
neck may require very dense samples to preserve the shape
using a SVM-classifier; otherwise, the approximate contact
space may contain two disconnected components. In this
case, the sampling techniques using adaptive and active
strategies such as [26] can be a very promising alternative.
Our algorithm is based on an assumption that there is
homeomorphism between the contact space and spherical
space. This simplification brings about a few benefits in
terms of reducing the problem complexity, but it can be
challenging to extend to high-genus contact spaces. It is
not very desirable for the queries that require frequent
recomputation of the contact space and the spherical
parameterization since these two precomputation steps
largely dominate the overall computation.

There are many avenues for future work. We would like
to extend our algorithm to generalized penetration depth
computation. The basic components of our precomputation

and run-time phases (SVM-based classifier, collision detec-
tion, nearest-neighbor computation, and spherical param-
eterization) can be accelerated using GPU parallelism. It
would be interesting to investigate the discontinuity with
other PD formulations, such as intersecting volume [11] and
growth distance [14] for non-convex models.

Acknowledgement

This research was supported in part by ARO under
contract W911NF-10-1-0506, by NSF awards 1000579
and 1117127. This research was supported in part
by NRF in Korea (No. 2012R1A2A2A01046246, No.
2012R1A2A2A06047007).

References

[1] S. Cameron, R. Culley, Determining the minimum translational

distance between two convex polyhedra, in: Proceedings of IEEE

10

(a) (b) (c) (d)

0

20

40

60

80

100

120

140

-140

-90

-40

10

60

110

-140

-90

-40

10

60

110

PD Magnitude

Ours

PolyDepth

Nearest Point (ours)

x

y

z

x

y

z

Nearest Point (PolyDepth)

(e)

Fig. 12. (a) cup and spoon models; (b) different positions of the spoon along a continuous path; (c) the contact space approximation of

cup and spoon. (d) the spherical parameterization of the approximate contact space. (e) the PD magnitude and nearest points. x, y and z
coordinates are plotted in blue, red and orange, respectively.

International Conference on Robotics and Automation, 1986,
pp. 591–596, volume 3.

[2] D. Baraff, A. Witkin, Physically Based Modeling, ACM

SIGGRAPH Course Notes, 2001.

[3] Y. J. Kim, M. C. Lin, D. Manocha, DEEP: Dual-space expansion

for estimating penetration depth between convex polytopes,

in: Proceedings of International Conference on Robotics and
Automation, 2002, pp. 921–926.

[4] D. Wang, S. Liu, X. Zhang, J. Xiao, Configuration-based
optimization for six degree-of-freedom haptic rendering for fine

manipulation, Transactions on Haptics.

[5] C. Je, M. Tang, Y. Lee, M. Lee, Y. J. Kim, Polydepth: Real-
time penetration depth computation using iterative contact-

space projection, ACM Transactions on Graphics 31 (1) (2012)

5:1–5:14.

[6] L. Zhang, Y. J. Kim, G. Varadhan, D. Manocha, Generalized

penetration depth computation, Computer-Aided Design 39 (8)
(2007) 625–638.

[7] B. Heidelberger, M. Teschner, R. Keiser, M. Mller, M. H. Gross,

Consistent penetration depth estimation for deformable collision
response, in: International Fall Workshop on vision, modeling

and visualization, 2004, pp. 339–346.

[8] G. Nawratil, H. Pottmann, B. Ravani, Generalized penetration
depth computation based on kinematical geometry, Computer

Aided Geometric Design 26 (4) (2009) 425–443.

[9] L. Zhang, Y. J. Kim, D. Manocha, A fast and practical algorithm
for generalized penetration depth computation, in: Robotics:

Science and Systems, 2007.

[10] S. S. Keerthi, K. Shidharan, Measures of intensity of collision
between convex objects and their efficient computation, in: Proc.

of Int. Conf. on Intelligent Robotics, 1991.

[11] R. Weller, G. Zachmann, Inner sphere trees for proximity and

penetration queries, in: Proceedings of Robotics: Science and
Systems, Seattle, USA, 2009.

[12] R. Weller, G. Zachmann, Inner sphere trees for proximity
and penetration queries, in: International Design Engineering
Technical Conferences & Computers and Information in
Engineering Conference (IDETC/CIE), San Diego, USA, 2009.

[13] E. G. Gilbert, C. J. Ong, New distances for the separation and
penetration of objects, in: ICRA, 1994, pp. 579–586.

[14] C. J. Ong, E. G. Gilbert, Growth distances: New measures

for object separation and penetration, IEEE Transactions on
Robotics and Automation 12 (6) (1996) 888–903.

[15] C. Y. Liu, R. W. Mayne, Distance calculations in motion
planning problems with interference situations, in: ASME DETC

16th Design Autom. Conf, 1990, p. 145152.

[16] G. van den Bergen, Proximity queries and penetration depth
computation on 3D game objects, in: Game Developers

Conference, 2001.

[17] P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch,

M. Sharir, Computing the penetration depth of two convex
polytopes in 3d, in: Proceedings of Scandinavian Workshop on
Algorithm Theory, 2000, pp. 328–338.

11

(a) (b) (c)

0

20

40

60

80

100

120

140

160

180

200

PD Magnitude

Ours

PolyDepth

(d)

Nearest Point (PolyDepth)

-200

-150

-100

-50

0

50

100

150

200

y

x

z

(e)

-200

-150

-100

-50

0

50

100

150

200

Nearest Point (ours)

y

x

z

(f)

Fig. 13. (a) two Buddha models; (b) precomputed contact space approximation; (c) spherical parameterization of the approximate contact
space; (d) PD magnitude: Our algorithm vs. PolyDepth, in which PD magnitudes computed by PolyDepth are not continuous; (e) nearest

points computed by PolyDepth are not continuous; (f) nearest points computed by our continuous PD algorithm are continuous.

[18] Y. J. Kim, M. A. Otaduy, M. C. Lin, D. Manocha, Fast

penetration depth computation for physically-based animation,

in: Proceedings of SIGGRAPH/Eurographics Symposium on
Computer Animation, 2002, pp. 23–31.

[19] E. Guendelman, R. Bridson, R. Fedkiw, Nonconvex rigid bodies

with stacking, ACM Transactions on Graphics 22 (3) (2003)
871–878.

[20] S. Redon, M. C. Lin, A fast method for local penetration depth
computation, Graphical Tools 8 (1) (2006) 63–70.

[21] J.-M. Lien, A simple method for computing minkowski sum
boundary in 3d using collision detection, in: Algorithmic

Foundation of Robotics VIII, Vol. 57, 2009, pp. 401–415.

[22] M. Tang, M. Lee, Y. J. Kim, Interactive hausdorff distance
computation for general polygonal models, ACM Transactions

on Graphics 28 (3) (2009) 74:1–74:9.

[23] M. Tang, D. Manocha, M. A. Otaduy, R. Tong, Continuous
penalty forces, ACM Transactions on Graphics 31 (4) (2012)
107:1–107:9.

[24] B. Wang, F. Faure, D. K. Pai, Adaptive image-based intersection
volume, in: Proceedings of SIGGRAPH, 2012, pp. 97:1–97:9.

[25] J.-M. Lien, Covering minkowski sum boundary using points with

applications, Computer Aided Geometric Design 25 (8) (2008)
652–666.

[26] Anonymous, Efficient penetration depth computation using

active learning, Tech. rep. (Jan. 2013).

[27] D. Attali, J.-D. Boissonnat, H. Edelsbrunner, Stability and
Computation of Medial Axes: a State of the Art Report,

Mathematical Foundations of Scientific Visualization, Computer

Graphics, and Massive Data Exploration, Springer-Verlag, 2009,
pp. 109–125.

[28] A. Escande, S. Miossec, A. Kheddar, Continuous gradient

proximity distance for humanoids free-collision optimized-
postures, in: Proc. 7th IEEE-RAS International Conference on
Humanoid Robots, 2007, pp. 188–195.

[29] X. Zhang, Y. J. Kim, k-IOS: Intersection of spheres for efficient
proximity query, in: ICRA’12, 2012, pp. 354–359.

[30] M. G. Choi, E. Ju, J.-W. Chang, J. Lee, Y. J. Kim, Linkless
octree using multi-level perfect hashing, Computer Graphics

Forum 28 (7) (2009) 1773–1780.

[31] J. Platt, Advances in Kernel Methods - Support Vector Learning,
MIT Press, 1999, Ch. Fast Training of Support Vector Machines

using Sequential Minimal Optimization, pp. 185–208.
[32] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support

vector machines, ACM Transactions on Intelligent Systems

and Technology 2 (2011) 27:1–27:27, software available at

http://www.csie.ntu.edu.tw/ cjlin/libsvm.
[33] N. Cristianini, J. Shawe-Taylor, An Introduction to Support

Vector Machines and Other Kernel-based Learning Methods,

Cambridge Universimity Press, 2000.
[34] F. Steinke, B. Scholkopf, V. Blanz, Support vector machines

for 3d shape processing, Computer Graphics Forum 24 (2005)
285294.

[35] G. E. Bredon, Topology and Geometry, Springer, 1993.

[36] C. Gotsman, X. Gu, A. Sheffer, Fundamentals of spherical
parameterization for 3d meshes, in: ACM SIGGRAPH, 2003,

pp. 358–363.

[37] A. Sheffer, E. Praun, K. Rose, Mesh parameterization methods
and their applications, Found. Trends. Comput. Graph. Vis.

2 (2) (2006) 105–171.

[38] S. Ehmann, M. Lin, Accurate and fast proximity queries between
polyhedra using surface decomposition, Computer Graphics

Forum 20 (3) (2001) 500–510.

[39] S. Gottschalk, M. C. Lin, D. Manocha, OBBTree: a hierarchical
structure for rapid interference detection, in: Proceedings of

SIGGRAPH, 1996, pp. 171–180.

[40] E. Larsen, S. Gottschalk, M. C. Lin, D. Manocha, Fast proximity
queries with swept sphere volumes, in: International Conference

on Robotics and Automation, 2000, pp. 3719–3726.

12

