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Abstract

We present a new local collision avoidance algorithm between multiple agents for real-time simulations. Our
approach extends the notion of velocity obstacles from robotics and formulates the conditions for collision free
navigation as a quadratic optimization problem. We use a discrete optimization method to efficiently compute the
motion of each agent. This resulting algorithm can be parallelized by exploiting data-parallelism and thread-level
parallelism. The overall approach, ClearPath, is general and can robustly handle dense scenarios with tens or
hundreds of thousands of heterogeneous agents in a few milli-seconds. As compared to prior collision avoidance
algorithms, we observe more than an order of magnitude performance improvement.

1. Introduction

Multi-agent systems are used to model a network of loosely
coupled dynamic units, often called agents. Based on the pi-
oneering work on distributed behavior models by Reynolds
[Rey87], the study of multi-agent simulation has grown
tremendously over the last two decades. Many simulation al-
gorithms have been developed based on simple models and
local rules. Besides computer graphics, multi-agent systems
are widely used to model the dynamics of crowds, robots and
swarms in traffic engineering, virtual environments, control
theory, and sensor networks.

In this paper, we address the problem of real-time colli-
sion avoidance in multi-agent systems that use distributed
behavior models. The motion of each agent is typically gov-
erned by some high-level formulation and local interaction
rules (e.g. collision avoidance). It is important that agents
do not collide with their neighbors. Collision avoidance can
quickly become a major computational bottleneck in multi-
agent simulations, especially in tightly packed scenarios.
This is an important issue in computer games, as the sys-
tem may only be able to devote less than 5% of processing
cycles to collision avoidance and behavioral computations.
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Figure 1: Building evacuation: 1,000 independent agents in dif-
ferent rooms of a building move towards the two exit signs and
cause congestion. Our new parallel collision avoidance algorithm,
P-ClearPath can efficiently perform local collision avoidance for
all agents in such tight packed simulations at 550 FPS on Intel
quad-core Xeon (3.14 GHz) processor, and 4,500 FPS on a 32-core
Larrabee processor. Our algorithm is an order of magnitude faster
than prior velocity-obstacle based algorithms.

Furthermore, applications such as large-scale urban simula-
tions often need to simulate tens or hundreds of thousands of
heterogeneous agents at interactive rates.

One of our goals in studying the computational issues
involved in enabling real-time agent-based simulation is
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Figure 2: Dense Circle Scenario: 1,000 agents are arranged uniformly around a circle and move towards their antipodal position. This
simulation runs at over 1,000 FPS on an Intel 3.14 GHz quad core, and over 8,000 FPS on 32 Larrabee cores.

to exploit current architectural trends. Recent and future
commodity processors are becoming increasingly parallel.
Specifically, current GPUs and the upcoming x86-based
many-core processor Larrabee consist of tens or hundreds of
cores, with each core capable of executing multiple threads
and vector instructions to achieve higher parallel-code per-
formance. Therefore, it is important to design collision
avoidance and simulation algorithms such that they can ex-
ploit substantial amounts of fine-grained parallelism.

Main Results: We present a highly parallel and robust col-
lision avoidance approach, ClearPath, for multi-agent navi-
gation. Our formulation is based on the concept of velocity
obstacles (VO) that was introduced by Fiorini and Shiller
[FS98] in robotics for motion planning among dynamic ob-
stacles. We use an efficient velocity-obstacle based formula-
tion that can be combined with any underlying multi-agent
simulation. We show that local collision avoidance compu-
tations can be reduced to solving a quadratic optimization
problem that minimizes the change in underlying velocity
of each agent subject to non-collision constraints (Section
3). We present a polynomial-time algorithm for agents to
compute collision-free, 2D motion in a distributed manner.
In practice, ClearPath is more than one order of magnitude
faster than prior velocity-obstacle based methods.

We show that ClearPath is amenable to data-parallelism
and thread-level parallelism on commodity processors and
present a parallel extension in Section 4. The resulting par-
allel extension, P-ClearPath, exploits the structure of our op-
timization algorithm and architectural capabilities such as
gather/scatter and pack/unpack to provide improved data-
parallel scalability. We evaluate its performance in var-
ious scenarios on different platforms like current multi-
core CPUs and the upcoming many-core processor code-
named Larrabee. In practice, P-ClearPath demonstrates 8-
15X speedup on a conventional quad-core processor over
prior VO-based algorithms on similar platforms. When exe-
cuted on a Larrabee simulator with 32-64 cores, P-ClearPath
achieves additional speedup of up to 15X, resulting in up to
100-200X speedup over prior VO-based approaches (Sec-
tion 5). Overall per frame, for simple game-like scenar-
ios with a few hundred agents, P-ClearPath takes about
2.5 milliseconds on a single Larrabee core, while a com-

plex simulation with few hundreds of thousands of hetero-
geneous agents takes only 35 milliseconds on the simulated
64-core Larrabee processor. To the best of our knowledge,
P-ClearPath is the first scalable approach that performs ro-
bust collision avoidance in multi-agent simulations with a
few hundred thousand agents at interactive rates.

2. Related Work

Different techniques have been proposed to model behav-
iors of individual agents, groups and heterogeneous crowds.
Excellent surveys have been recently published [TOCDO06,
PABOS]. These include methods to model local dynam-
ics and generate emergent behaviors [Rey87, Rey99], psy-
chological effects and cognitive models [YTO7], cellular
automata models and hierarchical approaches. We briefly
overview related work in collision detection and avoidance.

2.1. Collision detection and path planning

There is a rich literature on detecting collisions between ob-
jects. Many fast algorithms have been proposed for check-
ing whether these objects overlap at a given time instance
(discrete collision detection) or over a one dimensional
continuous interval (continuous collision detection) [Eri04].
Optimization techniques for local collision detection have
been proposed for a pair of objects, including separation
or penetration distance computation between convex poly-
topes [Cam97, Lin93] and local collision detection between
convex or non-strictly convex polyhedra with continuous ve-
locities [FT87, KLK*08].

The problem of computing collision-free motion for one
or multiple robots among static or dynamic obstacles has
been extensively studied in robot motion planning [LaV06].
These include global algorithms based on randomized sam-
pling, local planning techniques based on potential field
methods, centralized and decentralized methods for multi-
robot coordination, etc. These methods are either too slow
for interactive applications or may suffer from local minima
problems.

2.2. Collision avoidance

Collision avoidance problems have been been studied in con-
trol theory, traffic simulation, robotics and crowd simulation.
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Different techniques have been proposed for collision avoid-
ance in group and crowd simulations [MT97,Rey99,SNHO1,
LD04,HBIJWO05,FN06, TOCD06,SGA*07]. These are based
on local coordination schemes, velocity models, prioritiza-
tion rules, force-based techniques, or adaptive roadmaps.
Other techniques [YMMTO8] have used LOD techniques to
trade-off fidelity for speed.

The notion of velocity obstacles (VO) was proposed for
motion planning in dynamic environments and has been ex-
tended to deal with uncertainty in sensor data [FS98, FSL07,
KP07]. Recently, Berg et al. [BLMOS, BPS*08] extended
the VO formulation for reducing collisions between agents.
Berg’s technique however, relies on extensive sampling for
computing collision free velocities which prevents fast im-
plementations. Other extensions [SLS01, PPD07] have also
been proposed. However, these techniques provide higher-
order path-planning with implementations that are not yet
fast enough for very large simulations.

3. Local Collision Avoidance

In this section, we present our collision avoidance algorithm.
Our approach is general and can be combined with different
crowd and multi-agent simulation techniques.

Assumptions and Notation: We assume that the scene con-
sists of heterogeneous agents with static and dynamic obsta-
cles. The behavior of each agent is governed by some extrin-
sic and intrinsic parameters and computed in a distributed
manner for each agent independently. The overall simula-
tion proceeds in discrete time steps and we update the state
of each agent, including its position and velocity during each
time step. Given the position and velocities of all the agents
at a particular time instant 7', and a discrete time interval of
AT, our goal is to compute a velocity for each agent that re-
sults in no collisions during the interval [T, T + AT]. We will
recompute this velocity for every agent, every time step.

We also assume that the agents are moving on a 2D plane,
though our approach can be extended to handle agents mov-
ing in 3D space. At any time instance, each agent has the in-
formation about the position and velocity of nearby agents.
This can be achieved efficiently by storing the state of every
agent in a KD-tree. We represent each agent using a circle
or convex polygon in the plane. If the actual shape of the
agent is non-convex, we use its convex hull. The resulting
collision-avoidance algorithm becomes conservative in such
cases. In the rest of the paper, we describe the algorithm for
circular agents, however we note that our algorithm can be
easily extended to other convex shapes. Given an agent A,
we use pga, 74, and v4 to denote its position, radius and ve-
locity, respectively. We assume that the underlying simula-
tion algorithm uses intrinsic and extrinsic characteristics of
the agent or some high level model to compute desired ve-
locity for each agent (v4¢) during the time step. Let Vimax
and auqx represent the maximum velocity and acceleration,
respectively, of the agent during this timestep. Furthermore,
qL denotes a line perpendicular to line g.
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3.1. Velocity Obstacles

Our approach is built on velocity obstacles [FS98]. We use
the notion of Minkowski sum, A & B, of two objects A and
B and let —A denote the object A reflected in its reference
point. Furthermore, let A(p, v) denote the a ray starting at p
and heading in the direction of v: A(p,v) = {p+¢tv|t > 0}.

Let A be an agent moving in the plane and B be a planar
(moving) obstacle on the same plane. The velocity obstacle
VO (vp) of obstacle B to agent A is defined as the set con-
sisting of all those velocities v4 for A that will result in a
collision at some moment in time (+ > T) with obstacle B
moving at velocity vp. This can be expressed as:

VOR(vE) = Va | M(pa,va —vp) NB& —A # 0

This region has the geometric shape of a cone. Let
o(v,p,u) denote the distance of point v from p along u:

o(v,p,p) ={(v—p) -1}

Henceforth, the region inside the cone is represented as
1 L
VOR(v) = (0(V, VB PABIesi) = 0) A (O(V, VB, PABigi) > 0),

where p/fB Jefr and p/fB right 4re the inwards directed rays per-
pendicular to the left and right edges of the cone, respec-
tively. The VO is a cone with its apex at vp (Fig. 3(a)).

Recently, Van den Berg et al. [BLM08,BPS*08] presented
an extension called RVO. The resulting velocity computa-
tion algorithm guarantees oscillation free behavior for two
agents. An RVO is formulated by moving the apex of the VO
cone from vp to W. If A has N nearby agents, we ob-
tain N cones, and each agent needs to ensure that its desired
velocity for the next frame, v4°, is outside all the N velocity
obstacle cones to avoid collisions. RVO algorithm performs
random sampling of the 2D space in the vicinity of fo”, and
heuristically attempts to find a solution that satisfies the con-
straints. However, this may not find a collision-free veloc-
ity even if there is a feasible solution. Since RVO uses infi-
nite cones, the extent of the feasible region decreases as N
increases. In practice, RVO formulation can become overly
conservative for tightly packed scenarios.

3.2. Optimization Formulation for Collision Avoidance

In this section, we pose the local collision avoidance prob-
lem for N agents as a combinatorial optimization problem.
We extend the VO formulation by imposing additional con-
straints that can guarantee collision avoidance for each agent
during the discrete interval. We take into account the discrete
time interval and define a truncated cone (FVO) to represent
the collision free region during the time interval correspond-
ing to AT'. This truncation is a similar idea to other work in
robotics [FS98], however we extend the technique from one
agent moving through unresponsive dynamic obstacles, to
handle several responsive agents moving around each other.
The original VO or RVO is defined using only two con-
straints (left and right), as shown in Fig. 3(a). The FVO is
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Figure 3: (a) The Velocity Obstacle VOg (vB) of a disc-shaped obstacle B to a disc-shaped agent A. This VO represents the velocities that
could result in a collision of A with B (PCR). (b) FVOg(VB) of a disc-shaped obstacle B to a disc-shaped agent A. This formulation takes into
account the time interval for local collision avoidance. (c) Classifying FVO boundary subsegments as Inside/Outside of the remaining FVO

regions. These classifications are used to compute a non-colliding velocity for each agent.

defined using a total of four constraints. The two boundary
cone constraints of the FVO are same as that of RVO:

FVOL/I?’(V) = ¢(V7 (VA + VB)/27pr\_Blefz) >0
FVORZI% (V) = ¢(V7 (VA + VB)/27pr\_Brighz) >0

Additionally, we impose two more types of constraints:

Type-I Constraint - Finite time interval: We only guar-
antee collision avoidance for the duration AT. We compute
a finite subset of the RVO cone that corresponds to the for-
bidden velocities that could lead to collisions in AT. The
truncated cone (expressed as shaded region in Fig. 3(b)) is
bounded by a curve Y45(v) (derivation is given in the ap-
pendix). Due to efficiency reasons, we replace yag(v) with
a conservative linear approximation I'4g(v). In practice, this
increases the area of the truncated cone by a small amount.
This additional constraint is represented as: FVO74(v) =

Tap(¥) = (M= pizn. pis )  where

. 1 Fa+r
N =tan (sm 1A73) (Ipa| — (ra +rp)),and
[pas|
—— VAV
M = (|pag| — (ra +78))PaB + ATB

Type-II Constraint - Consistent velocity orientation:
A sufficient condition to avoid collisions among multi-
ple agents is to ensure that each agent chooses a velocity
that is on the same side of the line bisecting their RVO
cone [BPS*08]. We have each agent pass on the side closest
to its current velocity, imposed by: FVOca(v) = (0(v, (V4 +
v3)/2,0(vA, VB, Piz)Pig) > 0). This is also a conservative
formulation to guarantee collision-free motion.

Any feasible solution to all constraints, which are sep-
arately formulated for each agent, will guarantee collision
avoidance. In our technique, we compute in a distributed
manner, a new, constraint satisfying velocity for each agent
which minimizes the deviation from v4% — the velocity
desired by the underlying simulation algorithm. Let Bj,..,
By represent the N nearest neighbors of an agent A. We pose
the computation of a new velocity (v{") as the following
optimization problem:

Minimize ||(vVi¢" — v4¢)||, such that

((FVO 05 U =FVOy 4 U~FVO, 4) N~V (7)) N

((FVORE™I U ~FYO ) U=FVOA4™) N ~FVOA (™))

This is a quadratic optimization function with non-convex
linear constraints for each agent. It can be shown to be NP-
Hard [Kan00] for non-constant dimensions via reduction to
quadratic integer programming . It has a polynomial time so-
Iution when the dimensionality of the constrains is constant
— two in our case.

We refer to union of each neighbor’s FVO as its poten-
tially colliding region (PCR), and the boundary segments
of each neighbor’s FVO as collectively the Boundary Edges
(BE). BE consists of 4N boundary segments — 4 from each
neighbor of A. We exploit the geometric nature of the prob-
lem to derive the following lemma (proof in appendix):

Lemma 1: If V4% is inside PCR, V" must lie on BE.

In many simulations, there are other constraints on the
velocity of an agent. For example, kineodynamic con-
straints [LaV06], which impose certain bounds on the mo-
tion (e.g. maximum velocity or maximum acceleration). In
case the optimal solution to the quadratic optimization prob-
lem doesn’t satisfy these bounds, we relax the constraints
by removing the furthest agent from A, and recompute the
optimal solution by considering only N — 1 agents. This re-
laxation step is carried on until an optimal solution satisfying
all the constraints is obtained.

3.3. ClearPath-1: Guaranteed Collision Avoidance

A key aspect of our algorithm is to derive rigorous conditions
for collision avoidance during a given interval. This is given
by the following theorem (with a proof in the appendix):

Theorem 1: If ClearPath finds a feasible solution for
all the agents, then the resultant path is guaranteed to be
collision-free.

(© The Eurographics Association 2009.
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Based on the collision free guarantees, we use the following
algorithm to compute collision free path for each agent.

ClearPath-1: Our goal is to compute a collision-free path
during discrete time interval AT. In case there exists a fea-
sible solution to the optimization algorithm, we have a
collision-free solution. However, it is possible that the op-
timization algorithm may not find a feasible solution. It is
possible that there may be no collision-free path for the en-
tire interval or our constraints are overly conservative. In this
case, we reduce the time interval to (AT/2) and recompute
the constraints and the feasible solution for a shorter dura-
tion. This process is repeated till we find a feasible solution.

3.4. ClearPath-2: Relaxing Collision Constraints

It is possible that the algorithm highlighted above may need
to consider a very short interval to find a feasible solution.
Every step of the bisection approach involves solving a new
optimization problem. Furthermore, the Type-II constraint in
the optimization formulation can be overly restrictive. In this
case, we present an alternate algorithm that only considers
Type-I constraints in terms of the optimization formulation.
The resulting algorithm, ClearPath-2, computes v with
respect to 3N constraints. In this case, some agents may col-
lide and we use the following scheme to resolve collisions.

Collision Resolution: In cases when agents are colliding,
they should choose a new velocity that resolves the colli-
sion as quickly as possible. This results in an additional con-
straint in velocity space that we conservatively approximate
as a cone. In this case, the PCR is the intersection between
two circles. The first circle is the set of maximal velocities
reachable by an agent in a single time step (a circle of radius
amax X AT). The second circle is the Minkowski difference
of the two agents: B@® —A. The region which lies in the first
circle, but not the second is the set of velocities which es-
capes the collision in one time step. The region which lies
in both circles are reachable velocities which fail to resolve
the collision next time step. This area is conservatively ap-
proximated with a cone, creating an additional constraint for
any colliding agents. These constraints are combined with
the existing PCR from the neighboring agents. A colliding
agent’s preferred velocity is set to zero so that the smallest
possible velocity which resolves the collision is chosen. This
will minimize oscillations due to collision resolution.

3.5. ClearPath Implementation

We use the mathematical formulation to design a fast algo-
rithm to compute a collision-free velocity for each agent in-
dependently. Specially, we exploit Lemma 1 and compute all
possible intersections of the boundary segments of BE with
each other. Consider segment X in Fig. 3(c). The k intersec-
tion points of the FVO region labeled as X, .., Xj.. Note that
these points are stored in a sorted order of increasing dis-
tance from the corresponding end point (X() of the segment.
We further classify each intersection point as being Inside
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or Outside of PCR. After performing this classification, we
now classify the subsegments between these points as being
Inside or Outside of the PCR, based on the following lemma
(proof in appendix):

Lemma 2: The first subsegment along a segment is classi-
fied as Outside iff both its end points are tagged as Outside.
Any other subsegment is classified as Outside iff both its end
points are Outside, and the subsegment before it is Inside the
PCR.

For example, both Xy and X are tagged as Outside, and
hence the subsegment XX is tagged as Outside. However,
the subsegment XX, is tagged as Inside since XoX| is Out-
side the PCR. The closest point on the Outside subsegments
of BE is the new velocity.

ClearPath performs the following steps for each agent:

Step 0. Given an agent, query the KD-tree for the N nearest
agents, and compute the FVO constraints to arrive at BE.
Step 1. Compute the normals of the each segment in BE.
Step 2. Compute the intersection points along each segment
of BE with the remaining segments of 5.

Step 3. Classify the intersection points as Inside or Outside
of the PCR.

Step 4. Sort the intersection points for each segment with
increasing distance from its corresponding end point.

Step 5. Classify the subsegments along each segment as In-
side or Outside, and compute/maintain the closest point for
the Outside subsegments.

Step 6. In case the resulting solution does not satisfy the ki-
neodynamic or velocity constraints, relax the constraints by
removing the FVO corresponding to the furthest neighbor by
distance, and repeat the algorithm with fewer agents.

For M number of total intersections segments in BE, the run-
time of the algorithm for a single agent is O(N(N +M)).

4. P-ClearPath: Parallel Collision Avoidance

The current trend is for processors to deliver high-
performance through multithreading and wider SIMD in-
structions. In this section, we describe a data-parallel ex-
tension of ClearPath that can exploit the capabilities of cur-
rent multi-core CPUs and many-core accelerators. The al-
gorithms described in this section are applicable to both
ClearPath-1 and ClearPath-2 variants of ClearPath.

ClearPath operates on a per-agent basis in a distributed
manner, finding each agent’s nearest neighbors and comput-
ing a collision-free velocity with respect to those neighbors.
There are two fundamental ways of exploring Data-Level
parallelism (DLP).

Intra-Agent: Consider Fig. 4(a). For each agent, we explore
DLP within the ClearPath computation. Since the agents op-
erate in 2D, they can perform their X and Y coordinate up-
dates in a SIMD fashion. This approach does not scale to
wider SIMD widths.
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Inter-Agent: We can operate on multiple agents at a time,
with each agent occupying a slot in the SIMD computation.
This approach is scalable to larger SIMD widths, but needs
to handle the following two issues:

1. Non-contiguous data access: In order to operate on mul-
tiple agents, ClearPath requires gathering their obstacle
data structure into a contiguous location in memory. Af-
ter computing the collision-free velocity, the results need
to be scattered back to their respective non-contiguous
locations. Such data accesses become a performance bot-
tleneck without efficient gather/scatter operations.

2. Incoherent branching: Multiple agents within a SIMD
register may take divergent paths. This degrades SIMD
performance, and is a big performance limiter during in-
tersection computations and inside/outside tests. One or
more of the agents may terminate early, while the remain-
ing ones may still be performing comparisons.

Current SSE architectures on commodity CPUs do not
have efficient instructions to resolve the above two prob-
lems. Therefore, when we used the intra-agent SIMDfication
approach we obtained only moderate speedups (see Section
5). For the remainder of this section, we focus on exploiting
wider SIMD, with the SIMD width being C-wide.

P-ClearPath adopts the inter-agent approach, and per-
forms computation on K agents together. Fig. 4(b) shows
a detailed mapping of the various steps in ClearPath algo-
rithm. For collision-free velocity computation, each agent A;
is given as input its neighboring velocity obstacles (truncated
cones) and the desired velocity. The steps performed by each
agent are described in Section 3.5.

We start by gathering the obstacle data structure of C
agents into contiguous chunks of memory and then loading
various fields as needed by the SIMD operation. Although
each of the steps listed there map themselves well to SIMD,
there are a few important issues that need to be addressed.

1. Varying number of neighbors for each agent: This
affects each of the steps, decreasing the SIMD utilization.
For example, if one of the agents in the SIMD computa-
tion has N neighbors, and the second one has N/2, the sec-
ond agent is masked out [SCS*08] for half of the execution

and does not perform any computation. To address this, we
reorder agents based on their neighbor count, and execute
agents that have the same number of neighbors together in
a SIMD fashion. Since number of agents is relatively small,
reordering runs in linear time and takes up insignificant por-
tion of runtime.

2. Classifying points as inside/outside: This is the most
important part of the algorithm. While classifying points as
being inside or outside of the truncated cones, we test their
orientation with respect to each truncated cone. As soon as
it is detected being inside any of the cones, it does not need
to be tested against the remaining cones. However, it is of-
ten the case that some other point within the SIMD register
is still being tested and the computation for other lanes is
wasted. In the worst case, the SIMD utilization may be as
low as 1/K. We exploit the pack instructions [SCS*08] to
improve the efficiency of this step.

We adapt the ClearPath algorithm to improve the effi-
ciency as follows. After testing the orientation w.r.t. the first
cone, we pack the points contiguously as described above.
In subsequent iterations, the points are loaded and tested
against the next cone, and the process repeated. Note that
the SIMD code tests each point against the same number of
points as the scalar version of the code. However, to improve
SIMD efficiency, the points are packed, and then retrieved
for each cone they are checked against. This increases the
overhead, but improves the SIMD efficiency to around K/3-
IC/2. Note that after termination, the computed results need
to be scattered to appropriate memory locations.

With the above discussed modifications, and appropriate
support for gather/scatter and pack instructions, P-ClearPath
should achieve around /2 SIMD speedup as compared to
the scalar version.

5. Implementation and Results

In this section, we describe implementation of our algo-
rithms and report performance on various benchmarks.

5.1. Multi-agent simulation

To test ClearPath, we incorporated it into two open-
source crowd/multi-agent simulation systems: the RVO-
Library [BLMOS8] and OpenSteer [Rey99]. These simula-
tions provide the desired velocities, which ClearPath mini-
mally modifies to provide collision free motion among the
agents. A diagram of this process is shown in Fig. 5. New
Velocities were applied using simple Euler integration. The
Nearest Neighbor List was obtained efficiently using a KD-
tree. The algorithm for the Desired Velocity for each agent
depends on the simulation and is described below.

RVO-Library: This library provides a global goal for each
agent and can perform collision avoidance. We removed
the collision avoidance, using ClearPath instead. The global
navigation uses a graph-based roadmap that is pre-computed

(© The Eurographics Association 2009.
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Figure 5: Each time step, for each agent, ClearPath uses the
agent’s desired velocity (from a multi-agent simulation), and its of
nearby neighbors and computes a new minimally perturbed velocity
which avoids collisions. This is used as the agent’s new velocity.

for a given environment. At runtime, A* is used to search
the graph and compute a desired path for each agent towards
its goal position. The direction along the path scaled by the
agent’s desired speed provides its desired velocity, vaes,

OpenSteer: OpenSteer uses steering forces to guide agents
towards their goals and away from each other. We can take
either this output as an agent’s desired velocity or optionally
replace OpenSteer’s collision avoidance with ClearPath’s.

We used different kinds of benchmarks to evaluate the
performance of our algorithms. These vary from simple
game-like scenes with a few dozen agents to complex ur-
ban scenes with tens to hundreds of thousands of agents. In
our tests, the collision avoidance part of local navigation can
take 50% — 80% of the total runtime and is a major bottle-
neck in the overall multi-agent system. Each agent is mod-
eled as a heterogeneous agent and we perform separate col-
lision avoidance on each agent in a distributed manner. All
timings reported in this section are based on the ClearPath-2
algorithm described in Section 3.5.

Performance Comparison of Serial Algorithms: We com-
pared the performance of the serial implementation of
ClearPath with roadmaps, versus the original RVO-Library
and open source implementation of collision-avoidance in
OpenSteer. All of them were running on a single Xeon
core. Even though each of these algorithms performs a goal-
directed simulation where each agent has a desired goal, they
still result in different agent behaviors with varying veloci-
ties and motions.

We observe 8§ — 12X improvement in performance when
using ClearPath over the original RVO-Library (Fig. 6), and
the absolute running time of ClearPath is comparable to the
collision-avoidance routine in OpenSteer. However, Open-
Steer can result in many collisions among the agents (shown
in the video and Fig. 8), making a direct comparison very
difficult. Fig. 6 shows the performance of RVO-Library,
ClearPath and P-ClearPath.

5.1.1. Behavior Evaluation

We set up artificial scenarios to evaluate the local navigation
and some emergent behaviors of ClearPath: lane-formation,
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Figure 6: Performance of RVO-Library, ClearPath and SSE imple-
mentation of P-ClearPath measured on a single core Xeon. Target
FPS range of 30 — 60 is highlighted. The ClearPath implementation
is about 5X faster than RVO-Library.

arching at narrow passages, slow down in congestion, re-
sponse to collisions, avoiding each other, jamming at exits,
swirling to resolve congestion, vortices, etc.

Circle-1K: 1,000 agents start arranged uniformly around
a circle and try to move directly through the circle to their
antipodal position on the other side (Fig. 2). We observe
swirling behavior in the middle.

4-Streams: 2,000 agents are organized as four streams
that walk along the diagonals of the square. This is similar
to the benchmark in Continuum Crowds [TCP06], though
ClearPath results in different behaviors, including smooth
motion, lane formation and some swirls.

Back&Forth: 10 - 100 agents move back and forth along
a line. This test is run side-by-side with OpenSteer to com-
pare the number of collisions of unmodified OpenSteer vs.
OpenSteer combined with ClearPath. With both techniques,
we see some agents smoothly avoiding each other. How-
ever, when ClearPath local collision avoidance algorithm is
added, we see all agents avoiding penetrations.

5.1.2. Complex Scenarios

We set up different scenarios and also measure the scalability
of the algorithm as we increase the number of agents.

Building Evacuation: The agents move towards the goal
positions corresponding to the exit signs (Fig. 1). We use
three versions of this scenario with 500 (Evac-500), 1K
(Evac-1K) and 5K (Evac-5K) agents.

Stadium Scene: We simulate the motion of 25K agents
as they exit from their seats out of a stadium. The scene has
around 1.4K obstacles. The agents move towards the corri-
dors and we observe congestion and highly-packed scenar-
i0s. We denote this benchmark as Stad-25K.

City Simulation: We use a city model with buildings and
streets with 1.5K obstacles. The agents move at different
speeds and overtake each other and avoid collisions with on-
coming agents. We simulate three versions with 10K (City-
10K), 100K (City-100K) and 250K (City-250) agents.
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Figure 7: Performance (FPS) of P-ClearPath on SSE (left most
column) and Larrabee (with different units) architectures. Target
FPS range of 30 — 60 is highlighted.

5.2. Parallel Implementation

We parallelized our algorithm across multiple agents since
the computation performed by each agent is local and in-
dependent of the remaining ones. Specifically, we tested
ClearPath performance on two kinds of parallel processors:

1. Multi-core Xeon processors: A PC workstation with
a Intel quad-core Xeon processor (X5460) running at
3.14 GHz with 32KB L1 and 12MB L2 cache. Each core
runs a single thread. There is no support for gather/scatter
operations.

2. Many-core Larrabee simulator: Larrabee [SCS*08] is
an x86-based many-core processor architecture based on
small in-order cores. A Larrabee processor core consists of a
vector unit (VPU) together with a scalar unit augmented with
4-way multi-threading. VPU supports 16 32-bit float or inte-
ger operations per clock. Each core has 32KB L1 and 256KB
L2 cache. Hardware support for masking, gather/scatter, and
pack instructions allows us to exploit the substantial amount
of fine-grained parallelism in P-ClearPath.

5.2.1. Data-Parallelism

Fig. 6 shows the improvement due to SSE instructions for
P-ClearPath on Xeon processors. We observe only about
25 —50% speedup with SSE instructions as Xeon processors
do not support scatter and gather instructions. Fig. 7 shows
the performance of P-ClearPath on SSE and Larrabee archi-
tectures. For Larrabee, we measured performance in terms of
Larrabee units. A Larrabee unit is defined to be one Larrabee
core running at 1 GHz. The reported performance data is
derived from detailed performance simulation using a cycle-
accurate system simulator, which is used in and validated for
designing Intel multi-core CPUs.

5.2.2. Thread-Level Parallelism (TLP)

One of the issues that affects scaling is the load balanc-
ing amongst different threads. Some agents in dense sce-
narios may perform more computations than those in sparse
regions, as they consider more neighbor s within the dis-
crete optimization computation. Hence, a static partitioning
of agents amongst the threads may suffer from severe load

balance problems, especially in simulations with few num-
ber of agents for large number of threads. The main reason
is that the agents assigned to some specific thread(s) may
finish their computation early, while the remaining ones are
still performing computations. We use a scheme based on
dynamic partitioning of agents to reduce the load imbalance.
Specifically, we use Task Queues [MKH90], and decompose
the execution into parallel tasks consisting of small number
of agents. This allows the runtime system to schedule the
tasks on different cores. In practice, we improve our scal-
ing by more than 2X as compared to static partitioning for
16 threads. We observe this speedup in small game like sce-
narios with tens or hundreds of agents. By exploiting TLP,
P-ClearPath achieves around 3.8X parallel speedup on the
quad-core.

Additionally, in Larrabee, we also evaluated the combined
benefits of TLP and data-level parallelism. Running four
threads per core, the working set fits in L1 data cache and the
implementation is not sensitive to memory latency issues.
16-wide SIMD provides around 4X scaling over scalar code.
Hardware gather/scatter provides 50% additional speedup,
resulting in 4.5X scaling. The pack instructions provide ad-
ditional scaling to achieve the overall 6.4X scaling.

6. Analysis and Comparisons
6.1. Performance Analysis

A key issue for many interactive applications is the fraction
of processor cycles that are actually spent in collision avoid-
ance and multi-agent simulation. Collision avoidance can
take a high fraction of frame time, especially when we are
dealing with dense scenarios with a high number of agents.
The left-hand side graph in Fig. 7 highlights the perfor-
mance on simulations with 5K and 25K agents. P-ClearPath
achieves real-time simulation rates of 30 — 60FPS with only
one Larrabee unit of computation. Using 64 Larrabee units,
this would take up less than 2% of the total computation time
and the rest of the remaining 98% time could be used for Al,
Physics, behavior, rendering and related computations. Even
on a quad-core Xeon CPU, P-ClearPath takes up only 20%
of the available computation time for 5K agents. As a result,
P-ClearPath running on a commodity many-core processor
may be fast enough for game-like scenes. The right-hand
side graph in Fig. 7 highlights the scalability of ClearPath
on large simulations. For a simulation with 100K to 250K
agents, we observe real-time rates with 32-64 Larrabee units.
The runtime is a function of the number of agents, goals, ob-
stacles and the complexity of the roadmap.

6.2. Behavioral Analysis

Evaluating behavior of the simulation is difficult, as there
is no clear standard for the "right way" to avoid collisions,
especially among a high number of agents in a dense sce-
nario. However qualitatively, as can be seen from the videos,
ClearPath results in smooth collision free motion. Despite
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Figure 8: A snapshot of the 80 agent Back&Forth demo. Open-
Steer (on the left) averages 16 collisions per frame. When combined
with ClearPath (on the right) the simulation is collision free. Two
particularly egregious collisions are circled in red.

the large increase in speed, we still provide behavior that is
similar to the original RVO-Library.

Quantitatively, we can directly measure the number of
times agents are colliding. In the 80 agent version of the
Back&Forth benchmark, OpenSteer agents were colliding
with each other nearly 16 times per frame. In contrast, when
ClearPath was added there were no collisions among the
agents over the entire simulation (Fig. 8). As the density in-
creases OpenSteer may result in more collisions, whereas
using ClearPath or adding it to OpenSteer results in virtually
no collisions regardless of the density of the agents (Fig. 9).

6.3. Comparison and Limitations

In this section, we compare the features of the multi-agent
or crowd systems that use the parallel capabilities of GPUs
or multiple CPUs. Our multi-agent system based on P-
ClearPath can handle heterogeneous agents, global navi-
gation and support collision response between the agents.
Some earlier algorithms also offered similar capabilities.
These include Parallel-SFM [QMHz03], which is an imple-
mentation based on a social force model that parallelizes the
simulation process over 11 PCs and used for simulations
with thousands of agents. Sud et al. [SAC*07] used GPU-
based discretized Voronoi diagrams for multi-agent naviga-
tion (MANG), but this approach doesn’t scale to large num-
ber of agents. It is hard to make direct comparisons with
Parallel-SFM and MANG, as they have very different be-
havior than our system.

Recently, Bleiweiss [Ble09] ported the RVO library to the
NVIDIA GTX280 architecture. As compared to their GPU
performance numbers, P-ClearPath is around 1.8X faster on
quad-core Xeon, and around 4.9X faster on 8 Larrabee units.
There are other approaches that can handle some complex
scenarios. But it is hard to make direct comparison with them
because some of the underlying features of these approaches
are different. FastCrowd [CMO04] is an implementation of a
similar social force model on a single GPU, but it doesn’t
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Figure 9: As density increases, the number of collisions per frame
in OpenSteer increases. Using ClearPath on its own, or combining
OpenSteer with ClearPath results in practically no collisions.

include collision response. PSCrowd [Rey06] implements a
simple flocking model on a Cell Processor, but provides only
limited collision avoidance. Continuum Crowds [TCP06] is
designed to handle homogeneous groups of large agents.
It achieves impressive performance for large homogeneous
groups, but is inappropriate for heterogeneous crowds.

Limitations: ClearPath has some limitations. The FVO con-
straints highlighted in Section 3.2 are conservative. It is pos-
sible that there is a collision free path for the agents, but our
algorithm may not be able to compute it. Moreover, we com-
pute a new velocity for each agent, v, which can change
behavior of the agents or their path for the rest of the sim-
ulations. The data parallel algorithm can obtain up to 50%
improvement as a function of SIMD width and the perfor-
mance varies based on cache size and memory bandwidth.

7. Conclusions and Future Work

In this paper, we present a robust algorithm for collision
avoidance among multiple agents. Our approach is gen-
eral and works well on complex multi-agent simulations
with tightly-packed and dense scenarios. The algorithm
is almost one order of magnitude faster than prior VO-
based approaches. Moreover, our algorithm can be combined
with other crowd simulation systems and used to generate
collision-free motion for each agent (e.g. OpenSteer). We
describe a parallel extension using data-level and thread-
level parallelism and use that for real-time collision avoid-
ance in scenarios with hundreds of thousands of agents.

There are many avenues for future work. We would like
to port P-ClearPath to many-core GPUs and evaluate its run-
time performance. We would like to compare and validate
the agent behavior generated by ClearPath with other re-
cent techniques (e.g. [KSHF09]) and real-world data. Our
general framework can be extended to use linear constraints
to maintain a convex region of admissible velocities, al-
lowing for potential performance improvements [BGLMO09].
An interesting extension would be to incorporate other con-
straints related to human dynamics and human behavior with
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ClearPath. Finally, we would like to integrate ClearPath with
modern game engines.
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Appendix A. Derivations and Proofs

A.1. Derivations of I'45(v) and Y45 (v)

(a) (b)

Figure 1: Derivation of (a) Tap(v) and (b) Yag(v)

For symbols, refer to Section 3.2.

. . _ (ratrs)
In Fig. 1(a), sino. = oasl - Therefore,

n=tan (sin ™" ((ra +78)/IpasD)) (IPasl = (4 +75)
M is computed as follows:

M = (|pag| — (ra+rB))Pap + (Va+Vs)/2

Tap(v) = A (M~ (pzn). pis ) (Sec32)

To derive y45(v), we define |v| = 8 (refer to Fig. 1(b)).
teotlision = (VA +VB)/2+8/(2AT)

Using the triangle cosine rule,

8= (pag) ¥ — \/((PAB) )2 [pag|* + (ra +78)?
Therefore,

VAtV

YaB(v) >

(Pan) - ¥ =/ (Pag) -9 — [Pasl® + (s + 1)

2-AT

A.2. Proof of Lemma 1

We prove by contradiction. Let v not be on the edge of

one of the segments of PCR and say it minimizes the distance
from v4¢*. Consider a circle of radius e|[v*" — v4%| centered
at v (€ > 0). The circle is completely outside the PCR, and
we have a point V¢ + ¢ (v4¢
a distance of (1 —&)|vi" — v4°| from v4¢. Thus we arrive
at a contradiction. Therefore, v/} must lie on the boundary

segment of one of the neighbors.

A.3. Proof of Lemma 2

— i) that is outside and at

This follows from the fact that the truncated cones are con-
vex regions. Hence once we identify a point that is out-
side the remaining truncated cones, the subsegment before
it would be inside or outside. We use this fact to compute
the inside/outside regions on the constraint cone boundaries.
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ClearPath Steps % Time Breakdown | SIMD Scaling
Step 1 14% 7.9X
Step 2 39% 5.6X
Step 3 21% 5.9X
Step 4 13% 9.3X
Step 5 13% 5.6X
Total 100% 6.4X

Table B.1: Average time (%) spent in various steps (Section 3.5)
of ClearPath and the corresponding SIMD scalability on Larrabee
simulator of execution cycles as compared to the scalar version.

System Hardware Year | Agents | FPS
FastCrowd GPU 2005 10,000 35T
Cont. Crowds CPU 2006 | 10,000 5
PSCrowd Cell (6 SPUs) 2006 | 15,000 8
ClearPath 4 Cores 2009 10,000 36

ClearPath LRB (32 Cores) | 2009 | 10,000 | 302

Table B.2: Performance Comparison with other crowd simulation
systems. V includes rendering time.

A.4. Proof of Theorem 1

All the agents are in a collision-free state if the resultant ve-
locity is outside the VO of its neighbors. FVO;%;(v) and
F VOR/E,-(V) ensure that the resultant velocity is outside the
RVO of the neighboring agents. Furthermore, for every pair
of agents, F VOcé,v(v) ensures that we are on the same side
of the line joining the centers of the agents. Hence it fol-
lows from RVO pair-wise collision-free property by Berg et
al. [vdBLMO8] that all pairs of agents are collision-free w.r.t
each other, and hence the system is in a collision-free state.

Appendix B. Performance Comparison

Table B.1 shows the SIMD scaling achieved by each of the
steps of ClearPath (Section 3.5). We perform packing opera-
tions to handle path divergence and early termination of the
agent cone intersection and inside/outside computation.

Table B.2 provides performance numbers of recent crowd
simulation systems. Since the simulations run on different
benchmarks with varying behaviors and on different sys-
tems, it is not fair to directly compare the reported runtimes.
The performance numbers are given only to provide a rough
idea of the relative performance. Some of the other systems
use only a few groups of agents pursuing a few distinct goals,
while our simulations treat each agent individually with het-
erogeneous behaviors.



